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Rationale: The error-related negativity (ERN) is a negative event-related potential that
occurs immediately after an erroneous response and is thought to reflect human per-
formance monitoring. Delta-9-Tetrahydrocannabinol (THC) administration in healthy volun-
teers has been linked to impaired performance monitoring in behavioral studies, but to date
no studies have examined the effects of cannabinoids on the ERN. Methods: EEG data
from 10 healthy volunteers was recorded during execution of a speeded choice-reaction-
time task (Flankers task) after administration of THC or placebo vapor in a double-blind
randomized crossover design. Results: The findings of this study show that the ERN was
significantly reduced after administration ofTHC.The behavioral outcomes on the Flankers
task showed no indications of drug-induced impairments. Discussion:The diminished ERN
reflects impairments in the process of performance monitoring. The task design was not
optimized to find behavioral effects.The study shows that cannabinoids impair performance
monitoring.
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INTRODUCTION
Several studies have shown that acute cannabis administration is
associated with impairments of several cognitive processes (Gon-
zalez, 2007). One important process is the identification and
correction of differences between intended and executed actions,
also known as performance monitoring. This performance-
monitoring system enables us to detect failures in our actions
and to adapt our behavior accordingly. Therefore, it is an essential
process for safe and efficient functioning in everyday situations.
The functionality of the performance-monitoring system may vary
with conditions such as fatigue, psychiatric disease, and drug tak-
ing (Scheffers et al., 1999; de Bruijn et al., 2004; Lorist et al., 2005;
Schrijvers et al., 2009; Schellekens et al., 2010). Many drugs of
abuse are known to increase the risk of engaging in maladaptive
behavior, suggesting that drugs of abuse may impair human per-
formance monitoring. Cannabis is the most frequently used illegal
drug in Europe, most often self-administered for its mood-altering
or “relaxing” effects (Green et al., 2003; Vicente et al., 2008). The
use of cannabis and other cannabinoids for medical purposes as
an analgesic or antiemetic for example is on the rise (Machado
Rocha et al., 2008; Elikkottil et al., 2009). Surprisingly, to date the
effect of cannabinoids on human performance monitoring is not
sufficiently understood.

Cannabis contains a number of chemicals that belong to the
class of cannabinoids. Delta-9-tetrahydrocannabinol (THC) is the
main and most potent psychoactive cannabinoid of cannabis and is
probably of greatest importance in the recreational use of the drug
(Ashton, 1999; Russo and Guy, 2005). In pharmacological chal-
lenge studies in humans THC in isolation as well as cannabis has

been administered. Administration of THC activates the cannabi-
noid receptors (CB1 and CB2). CB1 receptors are widespread in
the brain, which probably accounts for the great variety of asso-
ciated effects (Glass et al., 1997). These effects can be classified
into two categories: affective and cognitive. Studies addressing the
affective effects have shown that THC administration may cause
an increase in anxiety and sedation and a decrease in motivation
(Fusar-Poli et al., 2009; Dumont et al., 2011). Studies address-
ing the cognitive effects of THC, have often demonstrated that
THC is associated with impairments in, e.g., working memory
and attention (Crean et al., 2011). Studies of both human and ani-
mal subjects have also demonstrated that cannabis administration
impairs behavioral flexibility and inhibitory control (McDonald
et al., 2003; Ramaekers et al., 2006; Pattij et al., 2008).

Performance monitoring is a process that allows humans to
respond actively and safely to changing environmental demands.
Neural correlates of this process can be assessed by means of
electroencephalography (EEG). When humans make an error in
speeded choice-reaction tasks, a sharp negative peak is seen in
the EEG around 50–100 ms after the erroneous response. Because
of these characteristics, this event-related potential (ERP) com-
ponent was named the error-related negativity (ERN; Falkenstein
et al., 1990; Gehring et al., 1993). The ERN is considered a valid
and reliable index of performance monitoring (Segalowitz et al.,
2010). ERP recordings present a major advantage over behavioral
outcomes, because ERP measures enable us to objectively inves-
tigate mechanisms underlying changes in cognitive functioning,
for example as a result of drug effects (Kenemans and Kähkönen,
2011). Three influential theories have been developed that have
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thoroughly modeled the functional significance of the component:
the Mismatch hypothesis (e.g., Falkenstein et al., 1991; Bernstein
et al., 1995), the reinforcement-learning theory (RL; Holroyd and
Coles, 2002), and the response-conflict theory (Yeung et al., 2004).
The Mismatch hypothesis presumes that the ERN reflects a process
that compares a representation of a correct response with the
actual response. The RL-theory has been developed as an exten-
sion of the Mismatch Theory. According to the RL-theory the ERN
reflects a learning process mediated by dopaminergic signaling in
the mesencephalic dopaminergic nuclei when an outcome is worse
than expected. The response-conflict theory, on the other hand,
states that the ERN is generated when response-conflict occurs,
i.e., in situations where a choice between several incompatible
responses has to be made. Various imaging studies have implicated
the anterior cingulate cortex (ACC) as the most likely candidate
structure for generating the ERN (Herrmann et al., 2004; Stem-
mer et al., 2004; Debener et al., 2005). In line with this assumption,
Debener et al. (2005) showed that larger ERN amplitudes are asso-
ciated with a larger BOLD response in the ACC and that this is
accompanied by stronger behavioral adaptations following errors.

To the authors’ knowledge no previous studies have specifically
addressed the effects of acute THC intoxication on the ERN. How-
ever, a number of other cognitive processes that are tightly coupled
with performance monitoring have been investigated. First, Lane
et al. (2005) found that cannabis decreases sensitivity to choice
outcome during decision making tasks (Lane et al., 2005). The
sensitivity to choice outcome can be interpreted as the behav-
ioral consequence of performance monitoring. Second, working
memory impairments following THC administration are proba-
bly one of the most consistently reported cognitive effects of THC
(Ranganathan and D’Souza, 2006). Previously it was shown that
working memory improvement was positively correlated with the
ERN (Horowitz-Kraus and Breznitz, 2009). This coupling between
working memory and performance monitoring also suggests that
performance monitoring will be impaired after THC. Third, in a
study on the long-term effects of cannabis use on error awareness
was shown that regular cannabis users demonstrated less error
awareness. Impaired error awareness is indicative of impaired per-
formance monitoring. In the same report the authors also showed
that this impairment was associated with hypoactivity in the ACC
(Hester et al., 2009). Several imaging studies have shown that THC
administration is associated with a reduction in cerebral blood
flow in frontal brain regions (Borgwardt et al., 2008; Martín-Santos
et al., 2010). Brain areas that are also of importance in perfor-
mance monitoring. Together, these studies strongly suggest that
THC administration is associated with compromised performance
monitoring.

Jocham and Ullsperger (2009) mentioned in a recent review
that investigating the effects of cannabinoids on the ERN is of
particular relevance (Jocham and Ullsperger, 2009). They arrived
at this conclusion because of the widespread distribution of
cannabinoid receptors in the brain together with the growing
use of THC. However, they also note in their review that to
date these studies are lacking. Nonetheless, previous research can
provide some hypotheses about the effects of cannabinoids on
the ERN. Pharmacological studies, for example, have suggested
that ERN characteristics depend on changes in dopaminergic

neurotransmission. Specifically, in healthy volunteers the ampli-
tude is increased after administration of the indirect dopaminergic
agonist amphetamine (de Bruijn et al., 2004), and decreased by the
dopamine 2 receptor antagonist haloperidol (Zirnheld et al., 2004;
de Bruijn et al., 2006). Importantly, THC has also been shown
to interact with the dopamine system, i.e., THC administration
is followed by an increase in dopamine release in the striatum
(Bossong et al., 2009). On this premise, it can be expected that
ERN amplitudes are larger after THC administration.

The ERN may also be dependent on levels of motivation and
sedation. Administration of alcohol or benzodiazepines (both sub-
stances known to induce sedation) has shown a reduction in the
ERN amplitude (Johannes et al., 2001; Ridderinkhof et al., 2002; de
Bruijn et al., 2004). Non-pharmacological studies have repeatedly
demonstrated a positive correlation between ERN amplitude and
motivation and arousal (de Bruijn et al., 2006; Ganushchak and
Schiller, 2008). From this research it may be expected that THC
may have a sedative and de-motivational effect which may reduce
the ERN amplitudes post THC administration.

In summary, there may be two competing effects. Based on
pharmacological studies we expect to observe an increased ERN
following THC administration. Conversely, based on results from
cognitive studies, we predict that THC will impair performance
monitoring and that the ERN will therefore be reduced. At this
point, we do not know which is the dominant effect. In order
to investigate the effect of THC administration on the ERN, we
subjected participants to the Flankers task after acute THC admin-
istration on two separate testing days in a placebo-controlled
manner.

MATERIAL AND METHODS
SUBJECTS
Sixteen healthy volunteers (12 male, four female), regular users
between the ages of 18 and 27 were recruited through adver-
tisement on the internet and at local drug testing services. All
subjects met inclusion criteria of on average at least two exposures
of THC per week in the last year and at least eight ecstasy expo-
sures in the last 2 years. Detailed demographic data can be found
in other reports (see e.g., Dumont et al., 2011). Exclusion crite-
ria included pregnancy, (history of) psychiatric illness (assessed
using the Structured Clinical Interview for DSM-IV axis I dis-
orders, non-patient version (First et al., 1994) Axis II disorders
were excluded using the Temperament and Character Inventory
(Svrakic et al., 1993), use of over-the-counter medication within
2 months prior to the commencement of the study, (history of)
treatment for addiction problems as assessed by a structured
interview, excessive smoking (>10 cigarets/day), and orthosta-
tic dysregulation. Physical and mental health was determined by
assessment of medical history, a physical, and electrocardiographic
examination as well as standard hematological and chemical blood
examinations. A total number of 10 subjects (eight male, two
female, average age of 20.6 years) were included in the current
analyses. Subjects smoked on average 4.6 exposures of THC per
week for an average period of 5.9 years. Of the subjects excluded,
one did not refrain from drug use, after which further study par-
ticipation was denied. Two subjects experienced an adverse event
that was judged to be likely related to study drug administration.
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Furthermore, for three subjects no EEG data could be analyzed due
to technical problems. These six subjects were not included in the
final data-analysis. All subjects provided their written informed
consent before participating in the study, and were paid for their
participation.

The study was approved by the Medical Ethics Committee of
the Radboud University Nijmegen Medical Centre. The study is
registered at The Netherlands Trial Registry (No. NTR1317).

STUDY DRUGS
THC was purified according to good manufacturing practice
(GMP)-compliant procedures (Farmalyse BV, Zaandam, The
Netherlands) from the flowers of Cannabis sativa grown under
Good Agricultural Practice (Bedrocan BV Medicinal Cannabis,
Veendam, The Netherlands; Choi et al., 2004; Hazekamp et al.,
2004) and was dissolved in 200 μl 100 vol% alcohol. THC was
stored in a dark room at −20˚C in 1-ml amber glass vials con-
taining a Teflon screw cap secured with Parafilm to minimize
evaporation. The 200-μl 100% alcohol solution without THC
was used as placebo. On each study day, three subsequent dosages
of THC (4, 6, and 6 mg) or placebo were administered at 90-
min intervals. Placebo and THC were administered by means
of using a Volcano® vaporizer (Storz-Bickel GmbH, Tüttlingen,
Germany), a validated method of intrapulmonary THC adminis-
tration (Hazekamp et al., 2006; Abrams et al., 2007). Five minutes
before administration, THC was vaporized at a temperature of
225˚C and the vapor was stored in a polythene bag equipped with a
valved mouthpiece, preventing the loss of THC in between inhala-
tions. The transparent bag was covered with a black plastic bag to
prevent unblinding. Subjects were not allowed to speak, and were
instructed to inhale deeply and hold their breath for 10 s after each
inhalation. Subjects were instructed to empty the bag within 2–
3 min. The inhalation procedure was practiced at screening using
the mouthpiece of the vaporizer only.

DESIGN AND PROCEDURE
Placebo and THC were administered according to a balanced pro-
tocol in a randomized, double-blind, and crossover design. Every
subject participated in both conditions with at least 7 days in
between in which no other drug exposure was allowed. The cur-
rent study was part of a larger study. Pharmacokinetic, cognitive,
and neurophysiological data obtained from the study sample have
been published previously (Dumont et al., 2009, 2011; Lansbergen
et al., 2011).

To elicit ERNs, the participants performed a modified Flankers
task (Eriksen and Eriksen, 1974; de Bruijn et al., 2004, 2006) in
which they had to respond with either their left or right index
finger to the central letter (H or S) of a congruent (HHHHH or
SSSSS) or incongruent (HHSHH or SSHSS) letter string. First,
a fixation point was presented (lasting 100 ms) followed 300 ms
later by the stimulus (also lasting 100 ms). During the next 900 ms
the screen remained blank, after which a visual feedback stimulus
appeared for 1000 ms. The next trial was presented after an inter-
trial interval of 100 ms. Visual feedback consisted of a yellow, a
blue, or a red rectangle indicating whether the preceding response
had been correct, incorrect or too late, respectively. Participants
were instructed to respond as fast as possible to avoid feedback

indicating that their response was too slow according to a preset
reaction-time (RT) deadline. After written and verbal instructions,
the participants familiarized themselves with the task in a practice
block consisting of 60 trials, during which the initial RT deadline
was set at a relatively liberal limit of 800 ms. At the end of this
practice block, the average RT and SD of the correct responses
were computed. Next, for each individual participant and test day
the RT deadline was determined by adding 0.5 SD to the mean RT.
For each subject and per each condition an individualized dead-
line was computed. Because previous studies on action monitoring
have shown that ERN amplitude is affected by accuracy (see e.g.,
Gehring et al., 1993) including this RT deadline was essential to
ensure that error rates did not vary across treatment conditions (de
Bruijn et al., 2004, 2006). The experimental phase consisted of five
blocks of 100 trials with a self-paced pause halfway through each
block. After each block, participants were informed on the number
of incorrect responses and responses whose latency exceeded the
deadline. Verbal encouragement was given to keep performance
accuracy around 80–90%.

PHARMACOKINETIC MEASUREMENTS
Blood samples (4.5 ml covered with aluminum foil) were taken at
baseline 5, 20, 95, 110, 185, 200 min after the first THC adminis-
tration. Plasma samples were immediately put on ice and were
processed within 30 min after collection. Plasma samples were
stored at a temperature of −80˚C for less than 3 months before
laboratory analysis.

EEG RECORDING
The electroencephalogram (EEG) was recorded from 27 tin elec-
trodes mounted in an elastic electrode cap (Electrocap Interna-
tional). Electrodes were placed at seven midline and 20 lateral
locations in accordance with the international 10–20 system. All
electrodes were referenced to the left mastoid. The vertical electro-
oculogram (EOG) was recorded bipolarly from electrodes placed
above and below the right eye. The horizontal EOG was also
recorded bipolarly from electrodes lateral to each eye. All electrode
impedances were kept below 5 kΩ at the start of the recording
session. The EEG and EOG signals were amplified using a time-
constant of 8 s and a bandpass between 0.02 and 30 Hz. All signals
were digitized with a sampling rate of 200 Hz using a 16-bit A/D
converter.

STATISTICAL ANALYSES
Electro-oculogram artifact correction was carried out using the
procedure proposed by Gratton et al. (1983). For the ERP analy-
ses all responses with reaction times faster than 150 ms (placebo
1.5% and THC 1.0%) were removed from the data sets. Epochs
associated with correct and incorrect responses were averaged sep-
arately and time-locked to response onset, starting 100 ms before
and ending 500 ms after response onset relative to a 100-ms pre-
response baseline. Correct responses were also averaged separately
for congruent and incongruent stimuli time-locked to stimulus
onset. The ERN was determined on correct and error trials in
separate subject averages by subtracting the most negative peak
in the 0- to 200-ms time-window after response onset from the
most positive peak in the time-window starting 80 ms before and
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ending 80 ms after response onset at electrode FCz/Cz, where ERN
amplitude was largest (Holroyd et al., 2003; de Bruijn et al., 2004).
The stimulus-locked ERPs were computed separately for correct
congruent and incongruent trial types, in both treatment condi-
tions. The amplitude of the N1 component was defined as the
most negative deflection occurring in the 50- to 150-ms post
stimulus time-window at electrodes FCz, Cz, and Pz. The N2 com-
ponent was defined on incongruent trials as the most negative peak
between 200–350 ms after stimulus onset at electrode FCz. The
amplitude of the P300 was defined on incongruent stimuli as the
largest positive deflection between 300 and 500 ms at electrodes
FCz, Cz, and Pz.

Individual averages for error rates and RTs were entered in a
general linear model (GLM) with repeated measures (SPSS ver-
sion 16.0, Chicago, IL, USA). The possible factors of the different
GLMs were condition (two levels: THC or placebo), congruency
(two levels: congruent vs. incongruent), and correctness (two lev-
els: correct vs. incorrect). Adaptive behavior following erroneous
responses was investigated by examining reaction times on cor-
rect responses following either correct or incorrect trials. To avoid
serial congruency effects, only incongruent trials were included
in these analyses. This type of performance adjustment is also
known as post-error slowing (Rabbitt, 1966). A GLM analysis was
performed with the factor condition (two levels: THC or placebo),
and post-correctness (two levels: post-correct vs. post-error). The
response-locked ERN was entered in a GLM, again with condi-
tion, congruency, and correctness as within subject factors. The
stimulus-locked ERPs were analyzed by a GLM including condi-
tion (two levels: THC and placebo), congruency (congruent vs.
incongruent), and electrode sites (three levels only for P300 and
N1 analyses).

RESULTS
THC PLASMA CONCENTRATIONS
THC concentrations have previously been published (Dumont
et al., 2011) but are reported here for the current sample selection.
Average THC peak and trough plasma concentrations are shown
in Table 1. THC concentrations during the placebo condition were
always zero.

BEHAVIORAL EFFECTS
Performance
The percentage of Trial responses for each of the five possi-
ble response types for each condition and trial type is given in
Table 2. The average error rate and average percentage of “too
late” trial responses did not differ between the two drug con-
ditions (both p > 0.1). The ANOVA revealed that the error rate
of incongruent trial types was higher than on congruent trial
types [F(1,9) = 125.60, p < 0.001]. Similarly, there were more

Table 1 | Mean (SEM)THC peak (5 min after drug administration) and

trough (20 min after drug administration) plasma levels (in ng/ml).

4 mg (1st) 6 mg (2nd) 6 mg (3rd)

Peak 59.8 (7.5) 71.9 (10.9) 89.2 (18.0)

Trough 9.5 (1.1) 13.4 (1.8) 17.8 (2.0)

“too late” responses at incongruent trials than at congruent trials
[F(1,9) = 32.67, p < 0.001]. The interaction between congruency
and condition did not reach significance for “incorrect” and “too
late” trial responses (p > 0.05). The percentages for “too early” and
“omission” responses showed that they constitute less than 4% of
the responses in each condition.

Reaction times
A repeated measures ANOVA for correct and incorrect trials only
(“too late” trials were excluded) showed that there were no dif-
ferences between the placebo and THC condition on the reaction
time (see Figure 1). There was a significant main effect of congru-
ency [F(1,9) = 43.46, p < 0.001] and correctness [F(1,9) = 66.39,
p < 0.001]. Subjects were faster in general on the incorrect trials
(314 ms) in comparison to correct trials (347 ms) and performed
faster on the congruent trials (322 ms) compared to incongru-
ent trials (339 ms). No interaction effects were observed (all
p > 0.1).

Performance adjustments
First, we compared reaction times of correct responses on trials
that followed a correct response (post-correct) or an erroneous
response (post-error). This post-error slowing analysis revealed
neither a main effect for condition [F(1,9) = 0.11, p = 0.743], nor

Table 2 | Mean percentages of correct, incorrect, too late, too early,

and omission responses to congruent and incongruent trials for the

placebo andTHC condition.

Congruent Incongruent

Placebo THC Placebo THC

% Correct 77.6 76.1 52.8 53.7

% Incorrect 12.5 15.3 27.3 32.3

% Too late 7.4 7.2 16.6 12.1

% Too early 1.4 1.0 1.5 1.0

% Omission 1.1 0.4 1.8 0.9

FIGURE 1 | Bar graphs showing average ReactionTime for “congruent”

and “incongruent” trials for placebo (black), andTHC (gray) condition.

Results are displayed separately for “correct,” “incorrect,” and “too late”
responses. Error bars represent SE of the mean.
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for post-correctness [F(1,9) = 2.48, p = 0.150], nor an interaction
between the two [F(1,9) = 0.92, p = 0.362].

Second, we compared reaction times of correct responses that
preceded an error (pre-error) or that followed an error (post-
error). This post-error slowing analyses did reveal a main effect of
post-error slowing [F(1,9) = 19.77, p = 0.002]. There was neither
a significant main effect for condition [F(1,9) = 0.41, p = 0.538],
nor a significant interaction between the two [F(1,9) = 0.65,
p = 0.442]. The main effect of post-error slowing showed that
reaction times following an error (349 ms) were significantly
slower than reaction times preceding the erroneous response
(336 ms).

ERP ANALYSES
Response-locked ERPs
Figure 2 depicts the response-locked ERNs for the two treatment
conditions. No overall significant effects of drugs were observed
[F(1,9) = 0.072, p = 0.795], nor was there a significant main
effect of correctness (p > 0.1). There was a significant interaction
between condition and correctness [F(1,9) = 7.00, p = 0.027].
Planned contrasts showed that the difference in the “ERN” for
correct and incorrect trial responses was significant in the placebo
condition [F(1,9) = 19.28, p = 0.002, −0.9 vs. −4.9 μV] but not
in the THC condition [F(1,9) = 2.90, p = 0.123, −2.4 μV vs.
−3.9 μV].

STIMULUS-LOCKED ERPs
To investigate whether the effects of THC on response-locked
ERPs were not caused by an overall reduction in general stimu-
lus processing or attention, additional stimulus-locked ERPs were
conducted. Figure 3 depicts the grand average ERP wave for cor-
rect and incorrect trial responses separately for both conditions
and for the three selected electrode sites. The waveform is in
accordance with typical stimulus-locked waveforms.

N1 amplitude
For the N1 amplitude, the GLM only revealed a significant main
effect of electrode [F(1,9) = 4.516, p = 0.040]. The post hoc tests
showed that the effect was caused by larger N1 amplitudes at
frontal and central sites (−2.5 and −2.4 μV) in comparison to
parietal sites (−1.8 μV, p < 0.05). There was no effect of condi-
tion, nor a significant interaction effect between electrode and
condition (all p > 0.1).

P300 amplitude
For the P300 amplitude, there was only a significant main effect
of electrode [F(1,9) = 6.829, p = 0.023]. The post hoc tests showed
that the P300 amplitudes over the central and posterior electrode
sites (9.6 and 10.1 μV) were significantly higher than over the
frontal electrode site (6,7 μV, p < 0.05). Drug condition had no
effect on the P300 amplitude (p > 0.1).

N2 amplitude
The analyses on the N2 amplitude showed a main effect of congru-
ency [F(1,9) = 18.575, p = 0.002]. As expected, the N2 amplitude
was larger for incongruent trials than for congruent trials (−2.7
vs. −0.9 μV). There was no main effect of condition, nor was there
a condition by congruency interaction effect (p > 0.1).

DISCUSSION
The current study investigated the effects of THC administration
on performance monitoring. Results showed that THC leads to
reduced performance monitoring, as reflected in decreased ERN
amplitudes compared to the placebo condition. The two condi-
tions did not differ however, with respect to either behavioral
performance measures or stimulus-locked ERP components.

THC AND PERFORMANCE MONITORING
Compromised performance monitoring as reflected by a reduced
ERN under acute THC administration is consistent with a num-
ber of previous behavioral reports. For example, impairments in
associated cognitive processes after THC and cannabis administra-
tion were demonstrated for reversal learning, inhibitory control,
risk taking, and working memory (Curran et al., 2002; Ramaekers
et al., 2006; Pattij et al., 2008; Hunault et al., 2009). We did not
find any effects of condition on the behavioral measures of error
rate, RT, and post-error slowing. The employment of individu-
ally determined RT deadlines results in a limited time-window in
which participants are able to give a correct response. This proce-
dure leads to a considerable limitation in the possible variance in
performance and reaction times, but with the aim of maintaining
similar performance levels between the conditions. The absence of
an effect in performance measures is therefore not surprising and
is a direct consequence of the individualized deadline. The reason
we employed this method was to ensure that effects on the ERN
would be due to the pharmacological condition, and not caused by
differences in performance levels. This procedure is rather com-
mon in ERN studies as differences in performance may have an
effect on ERN amplitude (see e.g., Gehring et al., 1993) and was
employed in a number of other studies including from our own
lab (e.g., Luu et al., 2000; de Bruijn et al., 2004, 2006; Debener
et al., 2005). Comparable to our findings, in a number of other
studies not always an association between the ERN and perfor-
mance measures could be demonstrated (see e.g., Ullsperger et al.,
2002; de Bruijn et al., 2004; Ullsperger and von Cramon,2006). The
absence of behavioral effects may, among other factors, be depend-
ing on sample size and the employed task design. The task design
is likely to be the main contributing factor in our study. It is not
unthinkable that employment of the Flankers task with different
task parameters will yield behavioral effects in future experiments.

As stated in the introduction performance monitoring is a
process that allows humans to respond actively and safely to
changing environmental demands. Existing theories agree that this
process reflected by the ERN is the result of a warning signal in
the brain –error or conflict– that triggers the need for behavioral
adaptation. In order to modify and improve behavior, other func-
tions are recruited such as motor responses, attention, or learning.
Although the relation with behavioral performance is often not
that evident in highly controlled paradigms designed to investi-
gate the ERN, the relevance of performance monitoring in daily
life is evident. Everyday actions like safely driving a car require con-
tinuous performance monitoring and are obviously much more
complex than choice-reaction tasks like the one currently used.
Thus it is highly plausible that reductions in performance mon-
itoring may be even more obvious in such complex behaviors.
When drivers accidentally reach the verge of a road, they need to
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FIGURE 2 | Grand average waveforms of incorrect and correct responses to incongruent trial types for placebo andTHC conditions.

recognize this and correct their steering in order to prevent the
car from slipping off the road. Our results suggest that impair-
ments in performance monitoring caused by THC administration
may result in diminished warning signals and less efficient behav-
ioral adaptations in a daily task like driving. In practice this could
mean that the risk of slipping off the road is not timely notified
and the required motor response to keep the car on the road is

not operating correctly or fast enough. This suggestion is in line
with recent findings from Calabria et al. (2010) and Penning et al.
(2010) demonstrating that cannabis users show impaired driving
abilities and have an increased risk to die in motor accidents.

In our study all subjects were regular users, i.e., at least 1–2
exposures per week in the last year. Also, the age range was small
and all subjects had comparable durations of cannabis use. We

Frontiers in Behavioral Neuroscience www.frontiersin.org September 2011 | Volume 5 | Article 59 | 6

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Spronk et al. THC and performance monitoring

FIGURE 3 | Grand average stimulus-locked waveforms in response to congruent and incongruent trial types for placebo, andTHC conditions.

observed an effect of THC on performance monitoring in reg-
ular users, however, it is of interest if the effect is also observed
in occasional cannabis users. Studies in which the effects of THC
on performance monitoring are directly compared between occa-
sional and heavy users are warranted in order to directly investigate
potential differences in affected cognitive processes. It is also
imperative to compare acute drug effects with long-term drug
effects in order to identify to what extent the cognitive profiles are

different. For example, memory problems have repeatedly been
found among heavy and long-term cannabis users, but may also
occur under acute administration (see for a review Solowij and
Battisti, 2008). It is also of importance to dissociate between acute
drug effects in short-term occasional users vs. long-term/heavy
users. For example, Ramaekers et al. (2009) compared the cogni-
tive effects of THC administration between heavy and occasional
users. They reported that THC significantly impaired performance

Frontiers in Behavioral Neuroscience www.frontiersin.org September 2011 | Volume 5 | Article 59 | 7

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Spronk et al. THC and performance monitoring

on critical tracking, divided attention, and the stop signal task in
occasional users, while in the heavy user group only stop signal
performance was affected. Therefore, it is of importance to assess
user history and to select subjects with comparable histories as this
may interact with the cognitive process under investigation.

Another important question to address is to what extent the
effect of THC on performance monitoring differs from other
substances. It has been shown that alcohol and benzodiazepines
also produce reductions in the ERN (de Bruijn et al., 2004;
Ridderinkhof et al., 2002). In contrast to our results, benzo-
diazepine administration was associated with greater cognitive
impairments as indicated by a slowed reaction time and absence
of the N2 congruency effect. Despite control measures that
were taken to ensure similar performance levels, benzodiazepine
administration overruled this. In order to systematically address
potential differences between THC and other pharmacological
compounds, future studies in which THC, benzodiazepines, and
alcohol are directly compared are recommended.

PHARMACOLOGY
Our study showed that activation of the cannabinoid system results
in a reduction of the amplitude of the ERN. Previous studies have
demonstrated ERN modulations by dopamine, i.e., DA agonists
increase the amplitude and DA antagonists result in amplitude
reductions (de Bruijn et al., 2004, 2006). THC administration is
thought to increase dopaminergic release through disinhibition
of GABAergic neurons (Pistis et al., 2002; Lupica et al., 2004),
which implies an effect equivalent to a DA agonist. In keeping with
previous pharmacological literature an increase in ERN ampli-
tude would be expected, while we have observed the opposite in
the present study. The dopamine system is also of importance in
one of the three influential theories that have modeled the ERN:
the RL-theory (Holroyd and Coles, 2002). The theory states that
whenever a response is worse than expected, i.e., during commit-
ment of an error, a negative error signal is generated which is
coded as a phasic dopaminergic dip in the tonic activity of the
mesencephalic dopaminergic system (Holroyd and Yeung, 2003).
Holroyd and Yeung (2003) have outlined how the finding of the
supposed increase in tonic mesencephalic dopaminergic neuro-
transmission by alcohol, may lead to a decreased ERN according
to the RL-theory. One of the mechanisms they proposed is that
increased tonic activity of the mesencephalic dopamine system,
could lead to an increased inhibition of the ACC that in turn
yields a reduction of the ERN. Similar to alcohol, cannabis also
increases tonic dopaminergic neurotransmission in the mesen-
cephalic brain areas (Boileau et al., 2003; Bossong et al., 2009).
We therefore speculate that a similar mechanism occurs following
THC administration.

The predictions from other pharmacological work and the RL-
theory are contradictory and imply that there is a discrepancy
within current opinions about dopaminergic pharmacology and
the ERN/performance monitoring. Contributing to this conun-
drum is that drugs may affect dopaminergic neurotransmission
via different pathways. Cannabis, e.g., may increase dopamine
release via inhibition of the GABAergic system after activa-
tion of the endocannabinoid system. Amphetamine for exam-
ple, interacts with dopamine by the redistribution of dopamine

from the synaptic vesicle into the cytosol and the induction of
reverse transport of dopamine through pre-synaptic reuptake
transporters of dopamine through pre-synaptic reuptake trans-
porters (Sulzer et al., 2005). We also do not sufficiently know how
drugs induced changes in tonic mesencephalic dopamine neu-
rotransmission relate to phasic dopaminergic in- and decreases
and how this exactly translates to reinforcement-learning. Caution
should thus be exercised in interpretation of our results in terms of
the RL-theory. Future research into the underlying mechanisms of
the RL-theory as well as the pharmacology of THC administration
is needed.

Drugs rarely only affect dopaminergic neurotransmission, and
this certainly also applies for administration of THC. Cannabinoid
administration has also been associated with altered noradrener-
gic (Muntoni et al., 2006), GABAergic, and glutamatergic changes
(Pistis et al., 2002). These other systems may also directly have an
effect on the ERN. For example, it has been proposed that nora-
drenergic activation results in enlarged ERN amplitude (de Bruijn
et al., 2004; Riba et al., 2005). This is also nicely illustrated with
the example of alcohol administration, which is known to increase
the release of GABA and of dopamine in the midbrain. Like THC,
alcohol is associated with a reduction of the ERN amplitude (Rid-
derinkhof et al., 2002; Bartholow et al., in press). This example
shows that it is hard to show which neurotransmission system the
observed findings should be attributed to.

The endocannabinoid system has relatively recently been dis-
covered and new perspectives and insights are booming. One new
perspective is, for example, that THC administration in rats with
a history of regular THC exposure yields a decrease in dopamine
rather than an increase (Jentsch et al., 1998; Verrico et al., 2004).
Although this preclinical work might not be directly comparable
to the situation in our study, it is important to consider in the
interpretation and discussion of our results in light of other phar-
macological studies and the RL-theory. All subjects included in
the current study used at least 1–2 cannabis exposures per week in
the last year and can thus be considered as regular users. In order
to better address this issue, it is highly recommended for future
research to investigate if and how cannabis administration affects
dopaminergic signaling in short vs. long-term users.

MOTIVATION, ATTENTION, AND ALERTNESS
To further explore the decreased ERN post THC administration,
we evaluated three potential factors that could have influenced
the decreased ERN. First, based on data obtained from a par-
tial overlapping study sample, we previously published that THC
administration causes a decrease in motivation (Dumont et al.,
2011). These findings are in accordance with other reports (Böcker
et al., 2010). Also, the ERN is known to be dependent on motiva-
tion levels (Bush et al., 2000; Boksem et al., 2006) and therefore a
decrease in motivation levels could have indirectly modulated the
observed reduction of the ERN. In order to address this with more
objective measures we analyzed stimulus-locked ERPs. The ampli-
tude of the stimulus-locked P300 component is most relevant for
motivation, as its amplitude has previously been positively corre-
lated with motivation (Nijboer et al., 2010). Despite the fact that no
P300 differences could be found in our data,an effect of motivation
cannot be excluded, because the self-report scales obtained from
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the same sample suggested that motivation decreased under THC
affects. Similar to the effects of motivation, THC was shown to
reduce attention and the ERN was previously shown to depend
on subjects’ attention levels (Pailing and Segalowitz, 2004; Böcker
et al., 2010; Larson and Clayson, 2011). The N100 and P300 com-
ponents are among the group of ERPs that are known to be reduced
by decreased attention (Coull, 1998). Because we did not find an
effect on these outcomes following THC administration, we could
not provide support for the possibility that THC affects the ERN
through reduction of attention.

Finally, we investigated the effect of sedation by analyzing the
stimulus-locked N2 amplitude to congruent and incongruent tri-
als. Previous work showed that this N2 congruency effect (i.e.,
increased conflict-induced N2 amplitudes on incongruent trials),
is affected by strong sedative effects of drugs. Administration of
benzodiazepines, for example, induces a reduction in this N2 effect
(de Bruijn et al., 2004). We did not find an effect on the N2 after
THC administration, which suggests our subjects were not heav-
ily sedated. Alternatively, reduced N2 amplitude may be a specific
biomarker of sedative effects of benzodiazepines and might not
extrapolate to other sedative substances. Interestingly enough the
administration of alcohol, which is also known to induce moderate
sedative effects, also did not affect the amplitude of N2 (Rid-
derinkhof et al., 2002). Saccadic eye movement can also be used
to measure sedation. Again, previously published data of a partly
overlapping subject sample showed no effects of THC on saccadic
eye-movements (Dumont et al., 2011). In contrast, the subjective
alertness scale showed a significant decrease in the THC condi-
tion (Dumont et al., 2011). Taken together, the subjective measures
suggest that the ERN could be mediated by sedation. However, this
could not be supported by the objective measures and thus suggests

a discrepancy between the two. Consequently, more research
should be conducted in this area to better address the sedative
drug effects and their relation with performance monitoring.

CONCLUSION
To conclude, our findings suggest that administration of THC
has a diminishing effect on human performance monitoring as
reflected by reduced ERN amplitudes. Given the small size of the
study consisting of only 10 subjects, the results should be consid-
ered as preliminary and need to be confirmed with larger samples.
Nevertheless, the results are relevant for several reasons. First, THC
is the most important component of cannabis, which is a drug that
is recreationally used by many people over the world. The study
provides a better understanding of the risks of cannabis use dur-
ing performance of complex functions like driving which require a
high level of performance monitoring. Second, as THC is increas-
ingly examined and applied for clinical applications, mapping the
potential (cognitive) side-effects are crucial aspects of patient’s
safety and drug compliance. We for the first time demonstrated
that activation of the endocannabinoid system influences the ERN.
We believe that the results of this study have extended our under-
standing of the cognitive effects associated with cannabinoids. The
effects of cannabinoids on performance monitoring and cognitive
process in general, need further evaluation.
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