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Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates
memory through interactions with multiple memory systems. The cellular mechanisms
for this interaction remain unresolved. Memory-modulating BLA manipulations influence
expression of the protein product of the immediate early gene activity-regulated
cytoskeletal-associated protein (Arc) in the dorsal hippocampus, and hippocampal
expression of Arc protein is critically involved in memory consolidation and long-term
potentiation. The present studies examined whether this influence of the BLA is specific
to the hippocampus and to Arc protein. Like the hippocampus, the rostral portion of the
anterior cingulate cortex (rACC) is involved in the consolidation of inhibitory avoidance (IA)
memory, and IA training increases Arc protein in the rACC. Because the BLA interacts
with the rACC in the consolidation of IA memory, the rACC is a potential candidate
for further studies of BLA modulation of synaptic plasticity. The alpha isoform of the
Calcium/Calmodulin-dependent protein kinase II (CaMKIIα) and the immediate early gene
c-Fos are involved in long-term potentiation and memory. Both Arc and CaMKIIα proteins
can be translated in isolated synapses, where the mRNA is localized, but c-Fos protein
remains in the soma. To examine the influence of memory-modulating manipulations
of the BLA on expression of these memory and plasticity-associated proteins in the
rACC, male Sprague–Dawley rats were trained on an IA task and given intra-BLA
infusions of either clenbuterol or lidocaine immediately after training. Findings suggest
that noradrenergic stimulation of the BLA may modulate memory consolidation through
effects on both synaptic proteins Arc and CaMKIIα, but not the somatic protein c-Fos.
Furthermore, protein changes observed in the rACC following BLA manipulations suggest
that the influence of the BLA on synaptic proteins is not limited to those in the dorsal
hippocampus.
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INTRODUCTION
Stressful or emotionally arousing events are typically remembered
better than emotionally neutral events. Stress hormones, released
by the adrenal glands into the bloodstream, assist in preparing
an animal to fight or flee by increasing energy resources and
promoting attention and vigilance. Extensive evidence indicates
that this sympathetic response contributes to the enhancement
of memory consolidation through actions on β-adrenoceptors
in the basolateral complex of the amygdala (BLA) (Liang et al.,
1986; Quirarte et al., 1997; McIntyre et al., 2002; McReynolds
et al., 2010). A single footshock is sufficient to produce a long-
term contextual memory in rats and increases norepinephrine
(NE) levels in the amygdala (Quirarte et al., 1998; McIntyre et al.,
2002). Administration of an antagonist to β-adrenoceptors in
the BLA blocks the memory enhancement produced by systemic
administration of epinephrine (Liang et al., 1986) or the gluco-
corticoid corticosterone (Quirarte et al., 1997; McReynolds et al.,
2010). Further, direct activation of the noradrenergic system in

the amygdala, through infusions of NE or the β-adrenoceptor
agonist clenbuterol enhance memory of inhibitory avoidance
(IA) training, passive avoidance tasks, contextual fear condition-
ing, conditioned taste aversion, and object recognition training
(Gold and van Buskirk, 1975; Gallagher et al., 1977; Ferry and
McGaugh, 1999; Hatfield and McGaugh, 1999; LaLumiere et al.,
2003; Miranda et al., 2003; McIntyre et al., 2005; Roozendaal et al.,
2008).

The amygdala appears to interact with many other brain areas
in order to influence these various types of memories (McGaugh,
2004). In fact, memory processing involving the hippocampus
(Packard et al., 1994; Malin and McGaugh, 2006), caudate nucleus
(Packard et al., 1994), insular cortex (Miranda and McGaugh,
2004), entorhinal cortex (Roesler et al., 2002), medial prefrontal
cortex (mPFC) (Roozendaal et al., 2009) and the anterior cin-
gulate cortex (Malin and McGaugh, 2006; Malin et al., 2007) is
modulated by manipulations of the amygdala. These findings sug-
gest that the BLA may naturally exercise control over synaptic
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plasticity in other regions of the brain that are engaged in memory
consolidation.

Expression of the activity-regulated cytoskeletal-associated
protein (Arc) immediate early gene can be used as a marker for
neuronal plasticity based on its rapid appearance and degradation,
and the critical involvement of Arc protein in long-term synap-
tic plasticity and memory (Bramham et al., 2008). Pre-training
intra-hippocampal infusions of antisense oligodeoxynucleotides
(ODNs), which disrupt translation of Arc protein, impair long-
term memory of spatial water maze, and IA training (Guzowski
et al., 2000; McIntyre et al., 2005). Infusions of the β-adrenoceptor
agonist clenbuterol into the BLA immediately after training
on a single-trial IA task enhance both memory retention and
expression of Arc protein in the dorsal hippocampus (McIntyre
et al., 2005). Intra-BLA infusions of the sodium channel blocker
lidocaine into the BLA immediately after training impair mem-
ory for IA and decrease Arc protein expression in the dorsal
hippocampus. These findings support the hypothesis that the
BLA modulates the consolidation of long-term memory through
actions on efferent brain regions such as the hippocampus.

Arc is also expressed in areas of the brain outside of the hip-
pocampus. Both aversive and non-aversive tasks increase Arc
mRNA in cortical and limbic areas of the brain (Kelly and
Deadwyler, 2002, 2003; Ons et al., 2004; Ploski et al., 2008). In
mice, fear conditioning increases Arc mRNA in the hippocam-
pus as well as the anterior cingulate cortex, the olfactory bulb,
the pyriform, parietal, sensory and motor cortices, and the amyg-
dala (Montag-Sallaz and Montag, 2003). Similarly, stress and fear
conditioning increase Arc protein expression in many of the same
areas of the rat brain, as well as the mPFC (Kelly and Deadwyler,
2003; Koya et al., 2005; Mikkelsen and Larsen, 2006; Ploski et al.,
2008). However, it is unknown whether the BLA can influence
these training-induced changes in Arc expression in areas outside
of the hippocampus.

The immediate early gene Arc has received attention due to
the presence of mRNA in dendritic spines, where it can be trans-
lated to protein by interacting with local ribosomes (Steward and
Worley, 2002; Yin et al., 2002; Moga et al., 2004; Bramham et al.,
2008). Based on evidence that Arc protein is involved in synaptic
plasticity, this expression pattern presents a possible mechanism
for synapse-specific modifications. However, Arc is not the only
known memory-related immediate early gene, or locally trans-
lated protein. Our previous findings suggest that the BLA does
not modulate expression of the protein product of the immedi-
ate early gene c-Fos in the dorsal hippocampus (McIntyre et al.,
2005). Both c-Fos protein and mRNA are localized to the soma.
Therefore, it is possible that the BLA influences memory through
synapse-specific effects by modulating local translation of synap-
tically localized mRNAs. Another locally translated protein is the
alpha-isoform of Calcium/Calmodulin-dependent protein kinase
II (CaMKIIα), which appears to play a similar role in memory
(Silva et al., 1992a,b). If the BLA modulates memory through
an influence specifically on local translation of synaptic proteins,
then memory-modulating stimulation of the BLA should produce
changes in Arc and CaMKIIα, but not c-Fos protein.

Like the hippocampus, the rostral portion of the anterior cin-
gulate cortex (rACC) appears to interact with the amygdala to

consolidate memory of IA training (Malin and McGaugh, 2006;
Malin et al., 2007). Activating the rACC with the muscarinic
agonist oxotremorine immediately after IA training enhances
memory for the nociceptive component of the task, as evi-
denced by longer retention latencies when tested 48 h later (Malin
and McGaugh, 2006). When the BLA is lesioned prior to acti-
vation of the rACC by oxotremorine, the memory-enhancing
effect is attenuated, showing an interaction between the rACC
and the BLA for long-term consolidation of memory (Malin
et al., 2007). Indeed, there is substantial evidence showing direct
anatomical connections between the ACC and the BLA (Sarter
and Markowitsch, 1983; Sripanidkulchai et al., 1984; McDonald,
1991). We recently reported that Arc protein in synapses of the
rACC is increased following IA training and rACC expression of
Arc protein is necessary for optimal long-term memory for the
task (Holloway and McIntyre, 2011). Using western immunoblot-
ting, we found a significant increase in Arc protein expression
in tissue taken from the rACC of rats that were trained on a
single-trial IA task, compared to the rACC of naive rats. Infusions
of antisense ODNs into the rACC immediately or 6 h after IA
training disrupted memory for the task (Holloway and McIntyre,
2011). These results provide a basis for exploring the effect of
post-training stimulation of BLA β-adrenoceptors on expression
of long-term memory and synaptic plasticity-associated proteins
Arc, CamKIIα, and c-Fos in the rACC.

METHODS
SUBJECTS
One hundred and fifty four male Sprague-Dawley rats (250–275 g
upon arrival) were purchased from Charles River Laboratories
(Wilmington, MA). All animals were housed separately in a
temperature controlled setting (19.5◦C) maintained on a 12 h
light/dark cycle (lights on at 7:00 AM), given food and water
ad libitum. All procedures were conducted in accordance with
National Institutes of Health guidelines and approved by The
University of Texas at Dallas Institutional Animal Care and Use
Committee.

SURGERIES
Rats were anesthetized with isoflurane (1% in O2, Western
Medical Supply). A continuous flow of isoflurane was delivered
to the animal throughout the surgery. Once anesthetized, rats’
heads were leveled in a stereotaxic device (Stoelting Inc, Wood
Dale, IL). Rats were given subcutaneous injections of 0.5 mL
marcaine/lidocaine at the incision site. Fifteen millimeter can-
nulae were placed directly above the BLA [Coordinates in mm:
anteroposterior (AP), −2.7 from bregma; mediolateral (ML) ±
5.2 from the midline; dorsoventral (DV) −6.4 from the top of
the skull; incisor bar, −3.3 mm from interaural line (Paxinos and
Watson, 2005)], mounted with dental cement and secured with
skull screws. Stylets (15 mm long insect dissection pins) were
inserted into each cannula to maintain patency. Animals were
given 3–5 mL of saline subcutaneously to help prevent dehydra-
tion, and moved to a warm recovery chamber until they were
awake and moving. They were then allowed to recover for one
week before training.
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INHIBITORY AVOIDANCE (IA) TRAINING
All rats were handled for 2 min/day for five days prior to being
trained on an IA task. The IA apparatus was a trough-shaped
box, 90 cm in length, with a sliding guillotine style door divid-
ing two compartments. The box was placed in a dark room, and
the rats were brought into the room immediately before train-
ing. The lighted compartment was 30 cm long, with white plastic
sides. A table lamp sat directly over this side, shining down into
the compartment. The dark compartment was 60 cm long, with
metal sides. Each rat was removed from its home cage and placed
in the light compartment facing away from the dark compart-
ment. Once the rat turned around (180◦) and crossed over into
the dark compartment, the sliding guillotine door was closed
and the rat was trapped in the dark compartment. When the rat
walked all the way to the end of the box and turned around again,
an inescapable 1.0 s shock (0.38 mA for clenbuterol-infused rats;
0.48 mA for lidocaine-infused rats) was applied to the floor plates.
The rat remained in the dark compartment for 10 s following the
shock before being removed from the IA box and given imme-
diate, post-training intra-BLA infusions of either clenbuterol or
lidocaine. Rats were returned to the IA apparatus for memory
retention testing 48 h after completion of training. They were
again placed in the light compartment. Latency to cross into the
dark compartment was recorded and used as a measure of mem-
ory. If a rat failed to cross into the dark compartment before ten
minutes, it was removed and a time of 600 s was recorded.

INFUSIONS
The β-adrenoceptor agonist clenbuterol (4 ng/0.2 μL dissolved in
a vehicle of 0.9% saline; Sigma-Aldrich), the local anesthetic lido-
caine (2.0% in saline; Hospira Inc., Lake Forest, IL), or vehicle
were administered immediately post-training, through 30 gauge
dental needles-extending 2 mm beyond the cannulae-attached to
10 μL Hamilton microsyringes. A volume of 0.2 μL of drug or
vehicle was administered over 32 s, at a constant rate, by a KD
Scientific (Harvard Instruments) infusion pump. Infusion nee-
dles remained in place for an additional 30 s to allow for diffusion
of the drug. The doses of clenbuterol and lidocaine were used
based on results of previous research showing their effectiveness
at enhancing or impairing memory for an IA task (Coleman-
Mesches and McGaugh, 1995; McIntyre et al., 2005). For the
behavioral task, animals received bilateral post-training intra-
BLA infusions. For analysis of protein expression in the ACC, rats
were given infusions of clenbuterol or lidocaine into the right or
left BLA (and vehicle into the other hemisphere), or vehicle bilat-
erally (Figures 3–5). In this way, each rat served as its own control
(as reported previously in McIntyre et al., 2005).

TISSUE PREPARATION
Animals were deeply anesthetized using isoflurane (Western
Medical Supply) and brains were rapidly removed and flash
frozen by submersion in 2-methylbutane in a dry ice/ethanol
bath. Trained animals were euthanized 1 h after training. This
time point was chosen based on previous research showing
increases in Arc, c-Fos, and CaMKIIα protein in the hippocam-
pus or cortex at this time point (Kleim et al., 1996; Ouyang et al.,
1999; Otmakhov et al., 2004; Aslam et al., 2009; Holloway and

McIntyre, 2011). The brains were cut coronally just in front of the
BLA (−1.20 mm from Bregma) and the anterior portions were
saved for tissue collection from the ACC. Only brains with correct
cannula placement were used. To determine cannula placement,
40 μm sections were taken from the posterior section with a cryo-
stat, mounted on gelatin subbed slides, and stained with thionin.
These slides were analyzed under a light microscope to determine
the location of the cannulae and drug infusion sites; Figure 1
shows a representative photomicrograph indicating a cannula
track and drug infusion site in the BLA. Any brains that did not
have needle tips in the BLA were not used for data analysis. A
series of 500 μm cryosections were collected starting +4.2 mm
from bregma and continuing to +2.1 mm from bregma. The ACC
was dissected out using a tissue punch kit (0.5 mm diameter),
0.5 mm from midline to the medial edge of each hemisphere and

FIGURE 1 | Representative photomicrograph showing cannula tracks

and drug infusion site in the BLA, and schematic showing the BLA and

surrounding areas.
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starting from the top of the brain and continuing –2 mm. The
tissue punches were stored at –80◦C for later western blot analysis.

WESTERN IMMUNOBLOTTING
Tissue was sonicated in a 0.1 M phosphate buffer, pH 7.4 con-
taining 10% glycerol, 20% protease inhibitor cocktail (Sigma-
Aldrich), and 10% phosphatase inhibitor (Sigma-Aldrich).
Protein amounts were determined using a Qubit fluorometer
and Qubit protein assay kit (Invitrogen). Approximately 15 μg of
protein from each sample was heated with a sample buffer and
reducing agent (Invitrogen), loaded and then run on 4–12% Bis-
Tris MIDI Gels (Invitrogen) using an electrophoresis apparatus.
Each gel contained samples from each experimental condition.
Gels were transferred by electroblotting onto a nitrocellulose
membrane using an iBlot dry-blotting system (Invitrogen). The
membrane was then washed in Tris-buffered saline (TBS: 150 mM
NaCl/100 mM tris base, pH 7.5) and incubated with primary
antibodies diluted in blocking solution (5% non-fat dry milk in
TBS-Tween) overnight at 4◦C. The primary antibodies were Anti-
Arc (rabbit polyclonal; 1:2000, Synaptic Systems), Anti-CaMKIIα
(rabbit polyclonal; 1:1000, Cell Signaling), Anti-c-Fos (rabbit
polyclonal; 1:250, Santa Cruz Biotechnology) and Anti-Actin
(rabbit; 1:1500, Sigma-Aldrich). Two days later the membranes
were washed in TBS-Tween, and incubated at room tempera-
ture for 1 h in a secondary HRP-linked antibody (goat anti-
rabbit; 1:6000, Cell Signaling). Immunoreactivity was detected
using chemiluminescence (ECL Western Blot Kit; Pierce). A
marker (Invitrogen) was run to determine the relative mobility
of immunoreactive bands. For densitometric quantification, films
were scanned and converted into TIF files to be analyzed using
Image-J software (NIH).

STATISTICAL ANALYSIS
Two-sample t-tests were used to analyze IA retention latencies
in experiment one. Pair-wise comparisons were made between
clenbuterol- or lidocaine-treated animals and vehicle-treated rats.
For western blot densitometry, results are expressed as a ratio of
Arc, CaMKIIα, and c-Fos to actin, and then expressed as a ratio
of drug-infused to vehicle-infused hemisphere, or randomized
as a ratio of one hemisphere to the other hemisphere in rats
given bilateral vehicle infusions. These values are presented as
percent of cage control values to account for film variation. For
experiments comparing trained animals to untrained animals, the
values are expressed as a percent of experimental/control vehicle
group. The final values were analyzed using a Student’s t-test to
make pair-wise comparisons between the groups. A probability
level of p < 0.05 was considered significant. Data are presented as
means ± SEM.

RESULTS
POST-TRAINING INTRA-BLA INFUSIONS OF CLENBUTEROL OR
LIDOCAINE SIGNIFICANTLY ENHANCE OR IMPAIR INHIBITORY
AVOIDANCE MEMORY
In order to investigate the effects of BLA manipulation on
memory, rats were trained on the IA task and received
immediate bilateral intra-BLA infusions of clenbuterol (n = 7)
or vehicle (n = 6). Memory retention was tested 48 h later.

FIGURE 2 | (A) Retention latency times (in seconds) of animals trained on a
one-trial inhibitory avoidance task and immediately given intra-BLA
infusions of clenbuterol or vehicle. Rats that received infusions of
clenbuterol (m = 267.43 ± 93.36, n = 7) had a significantly greater
cross-over latency 48 h later when compared to animals receiving vehicle
infusions (m = 36 ± 16.96, n = 6). ∗p < 0.05. (B) Rats given post-training
intra-BLA infusions of lidocaine (m = 162 ± 36.91, n = 13) had significantly
lower cross-over latencies than animals given vehicle infusions
(m = 338.69 ± 46.04, n = 13). ∗p < 0.05.

Clenbuterol-treated rats showed significantly higher retention
latencies (mean = 267.42 s) than vehicle-treated rats (mean =
36.00 s; Figure 2A; t(6) = −2.44, p < 0.05), suggesting that
clenbuterol-infused animals had an enhanced memory for the
task (p < 0.05). In another experiment, rats were trained on
the IA task and received immediate intra-BLA infusions of lido-
caine (n = 13) or vehicle (n = 13). Rats given intra-BLA infu-
sions of lidocaine showed significantly lower retention latencies
(mean = 162.00 s) than rats given intra-BLA infusions of vehicle
(mean = 338.70 s; Figure 2B; t(23) = 2.99, p < 0.05) indicating
that lidocaine treatment was memory impairing.

ARC AND CAMKIIα PROTEIN LEVELS ARE MODULATED BY
INTRA-BLA CLENBUTEROL OR LIDOCAINE INFUSIONS
To examine the interaction between the BLA and the rACC, sepa-
rate groups of rats were trained on an IA task and given unilateral
infusions of clenbuterol or lidocaine into one hemisphere and
vehicle into the other hemisphere, or bilateral intra-BLA vehicle
infusions. Arc protein expression in the rACC was measured and
reported as a ratio of the drug infused hemisphere/vehicle infused
hemisphere. Arc protein expression was significantly increased
in rACC tissue taken from the clenbuterol infused rats (n = 10)
when compared to rats (n = 8) given bilateral intra-BLA vehi-
cle infusions (Figure 3A; t(15) = −3.72, p < 0.05). Rats given
unilateral infusions of lidocaine (n = 5) into the BLA showed
decreased Arc protein expression in homogenate tissue collected
from the rACC compared to the rats (n = 5) given bilateral
vehicle infusions (Figure 3B; t(8) = 2.96, p < 0.05).

Post-training infusions of the memory-enhancing dose of
clenbuterol in the BLA also increased CaMKIIα protein
expression in the rACC (Figure 4A; t(9) = −1.94; p < 0.05).
Expression of CaMKIIα protein was significantly greater in rats
given post-training infusions of clenbuterol (n = 5) than vehicle-
treated controls (n = 6). Likewise, CaMKIIα protein expression
in tissue collected from the rACC was significantly lower in rats
given intra-BLA lidocaine infusions (n = 7) than vehicle-treated
controls (n = 7) (Figure 4B; t(12) = 3.18; p < 0.05).
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FIGURE 3 | Memory-enhancing intra-BLA infusions of clenbuterol

increase Arc expression and memory-impairing intra-BLA infusions of

lidocaine decrease Arc expression in the rACC. Western immunoblotting
was used to quantify protein expression in the rACC following inhibitory
avoidance training. (A) Significantly greater Arc protein expression was
measured in the rACC of rats treated with intra-BLA infusions of clenbuterol
immediately following training (m = 1.33 ± 0.07, n = 10) when compared to

vehicle-infused animals (m = 1.00 ± 0.05, n = 8). Values are expressed as
percent to normalized cage control ratios. ∗p < 0.01. (B) Significantly
less Arc protein expression was measured in the rACC of rats treated with
intra-BLA infusions of lidocaine immediately after training (m = 0.69 ± 0.03,
n = 5) compared to vehicle-treated animals (m = 1.00 ± 0.10, n = 5).
Values are expressed as percent to normalized cage control ratios.
∗p < 0.01.

c-FOS PROTEIN LEVELS ARE NOT INFLUENCED BY INTRA-BLA
CLENBUTEROL OR LIDOCAINE INFUSIONS
In order to determine whether BLA manipulations have an effect
on c-Fos protein expression, rats were trained on the IA task
and were given immediate post-training intra-BLA infusions of
either clenbuterol or lidocaine into one hemisphere and vehicle
into the other or bilateral intra-BLA vehicle infusions. Intra-
BLA infusions of clenbuterol did not significantly influence c-Fos
expression (Figure 5A; t(9) = 0.25, p = 0.40). Similarly, intra-
BLA infusions of lidocaine did not influence c-Fos protein expres-
sion in the rACC (Figure 5B; t(11) = −0.67, p = 0.25). These
results led us to question the involvement of c-Fos in the rACC
in memory for an IA task. Therefore, c-Fos protein levels were
compared in tissue from the rACC of rats trained on an IA task
(n = 4) to animals that were not trained (n = 4). Expression of c-
Fos protein was significantly greater in the rACC of rats that were
trained on the task as compared to the naïve cage control animals
(Figure 5C; t(4) = −2.39, p < 0.05), indicating that c-Fos in the
rACC is responsive to IA training, but not to manipulations of
the BLA.

DISCUSSION
The main finding of these experiments is that post-training infu-
sions of a memory-enhancing dose of clenbuterol into the BLA
increase expression of the plasticity-associated proteins Arc and
CaMKIIα in the rACC. Conversely, infusions of lidocaine into the

BLA decrease expression of these synaptic proteins in the rACC.
This is consistent with previous findings indicating that the BLA
modulates Arc protein expression in the dorsal hippocampus.
Taken together, these results suggest that amygdala actions may
influence cellular processes involved in the storage of memory
by a mechanism that is conserved, at least in part, across brain
regions. Results also suggest that the effect of BLA actions is not
specific to the immediate early gene Arc.

Consistent with previous findings, bilateral post-training infu-
sions of clenbuterol into the BLA-enhanced, and bilateral intra-
BLA infusions of lidocaine impaired long-term memory for
the IA task (Ferry and McGaugh, 1999; Vazdarjanova and
McGaugh, 1999; McIntyre et al., 2005). Using a retrograde
tracer, Sripanidkulchai and colleagues demonstrated that BLA
projections to the ACC are predominantly ipsilateral (1984). To
examine protein expression in the current studies, the memory-
modulating doses of clenbuterol or lidocaine were infused uni-
laterally so proteins in the rACC ipsilateral to the drug infusion
could be compared to those in the rACC ipsilateral to an intra-
BLA vehicle infusion. Therefore, each animal served as its own
control. This paradigm is useful as individual differences in pro-
tein levels may obscure subtle group differences (McIntyre et al.,
2005).

The research carried out here was based on the hypothesis that
the BLA modulates the expression of proteins important for the
strengthening of synapses that enables the rapid consolidation of
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FIGURE 4 | Memory-enhancing intra-BLA infusions of clenbuterol

increase CamKIIα expression and memory-impairing intra-BLA

infusions of lidocaine decrease CaMKIIα expression in the rACC.

Western immunoblotting was used to quantify protein expression in
the rACC following inhibitory avoidance training. Values are expressed
as percent to normalized cage control ratios. (A) Significantly greater
CaMKIIα protein expression was measured in the rACC of rats treated

with infusions of clenbuterol immediately following training
(m = 1.40 ± 0.14, n = 5) when compared to vehicle-infused animals
(1.00 ± 0.15, n = 6). ∗p < 0.05. (B) Significantly less CaMKIIα protein
expression was measured in the rACC of rats treated with intra-BLA
infusions of lidocaine immediately after training (m = 0.61 ± 0.09,
n = 7) compared to vehicle-infused animals (m = 1.00 ± 0.09, n = 7).
∗p < 0.05.

long-term memory of emotionally arousing events. This hypoth-
esis is rooted in research suggesting that emotional memories
can be stored for the long-term after a single experience or trial
(Christianson, 1992), and the BLA interacts with multiple mem-
ory systems in the consolidation of long-term memory (McGaugh
et al., 2002). Stress hormones, such as adrenaline and glucocorti-
coids, enhance memory consolidation in rats and humans when
administered immediately after training (Gold and van Buskirk,
1975; Liang et al., 1986; Roozendaal et al., 1996; Okuda et al.,
2004; Roozendaal et al., 2004; Miranda et al., 2008). Importantly,
the effect of these stress hormones depends upon β-adrenoceptor
activity in the BLA (Packard et al., 1995; McGaugh, 2004).

The BLA may influence rACC Arc and CamKIIα levels through
effects on transport, translation, or degradation of the proteins.
CamKIIα mRNA, like Arc, is found in stimulated spines of hip-
pocampal neurons (Havik et al., 2003; Moga et al., 2004). In fact,
the mRNA for both proteins is packaged in the same granule for
transport to the dendrites (Gao et al., 2008). Both have internal
ribosomal entry sites (IRES) that might add a translational advan-
tage (Pinkstaff et al., 2001; Svitkin et al., 2005; Dyer et al., 2003).
Finally, both Arc and CamKIIα have a 3′-UTR intron downstream
of their natural stop codon, which has been shown to induce
nonsense-mediated decay of Arc, potentially allowing for spe-
cific control of breakdown of the mRNAs (Giorgi et al., 2007). In
contrast, c-Fos is a somatically localized protein. Consistent with
previous findings that c-Fos is increased by novelty or electrical

stimulation (Sagar et al., 1988), it was demonstrated here that c-
Fos expression was increased in the rACC following IA training.
However, post-training manipulations of the BLA did not fur-
ther affect c-Fos protein expression as it did Arc and CaMKIIα.
These results suggest that the increases and decreases found in
Arc and CaMKIIα protein expression in rACC are not merely a
result of a general increase in cellular activity due to training.
The selective change in levels of locally translated proteins sup-
ports the hypothesis that the BLA modulates local translation of
synaptic plasticity-associated proteins but, because protein levels
were measured in lysates made from the rACC, this result does
not exclude the possibility that translation occurs elsewhere in the
cell. Additionally, the observed differences may mark preferential
degradation of Arc and CamKIIα.

While these findings suggest that the BLA influences synap-
tic plasticity in the hippocampus and rACC, they do not exclude
the possibility that the interactions that cause the changes in pro-
tein expression are bidirectional. Ploski and colleagues (2008)
observed increases in Arc mRNA and protein expression in
the lateral amygdala (LA) after auditory fear conditioning and
by long-term potentiation-inducing stimulation. They further
showed that the expression of Arc protein in the LA is important
for long-term memory by blocking the expression of Arc protein
with antisense ODN infusions into the LA (Ploski et al., 2008).
Therefore, while the BLA modulates synaptic plasticity in efferent
regions of the brain, transient plasticity may simultaneously
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FIGURE 5 | Memory-modulating intra-BLA infusions of clenbuterol

and lidocaine did not affect rACC expression of c-Fos. Western
immunoblotting was used to quantify protein expression in the rACC
following inhibitory avoidance training. c-Fos was normalized to actin by
calculating the ratio of band density of c-Fos to that of actin, and then
expressed as a percentage of normalized cage control values.
(A) Intra-BLA infusions of clenbuterol immediately following training did
not produce a significant increase in c-Fos expression in the rACC

(m = 0.94 ± 0.15, n = 5) when compared to vehicle-treated rats
(m = 1.00 ± 0.13, n = 7; p = 0.40). (B) Intra-BLA infusions of lidocaine
immediately following training did not produce a significant increase in
c-Fos expression in the rACC (m = 1.17 ± 0.17, n = 7) when compared to
vehicle-treated animals (m = 1.00 ± 0.19, n = 6; p = 0.26). (C) c-Fos
protein expression was significantly increased in the rACC of rats trained
on the inhibitory avoidance task (m = 1.96 ± 0.38, n = 4) when
compared to untrained rats (m = 1.00 ± 0.13, n = 4). ∗p < 0.05.

1

occur within the BLA. Other regions of the brain could, like-
wise, influence that plasticity. For example, lesions of the BLA
block the memory enhancement produced by infusions of a glu-
cocorticoid receptor agonist into the mPFC. Phosphorylation of
the extracellular-regulated protein kinase (Erk1/2) is increased
within the BLA of rats treated with intra-mPFC infusions of the
GR agonist and interference of this with intra-BLA infusions of
a MEK inhibitor blocked the enhancement of memory produced
by intra-mPFC infusions of the GR agonist (Roozendaal et al.,
2009). These results suggest that the BLA and mPFC interact in a
bidirectional manner to influence memory consolidation.

The present findings support the hypothesis that the BLA
modulates protein expression in other areas of the brain to influ-
ence long-term memory. Stimulation of β-adrenoceptors in the
BLA increases, and temporary inactivation of the BLA decreases
expression of both Arc and CaMKIIα. Both proteins are critically

involved in memory consolidation and synaptic plasticity. These
results indicate that the modulation of Arc protein by the BLA
can occur through a process that is conserved across at least
two brain regions: the hippocampus and the rACC. The present
results also indicate that CaMKIIα, another synaptically localized
plasticity-related protein, can be modulated by pharmacological
stimulation of the BLA. The finding that c-Fos was not signifi-
cantly affected by the same pharmacological stimulation of the
BLA suggests that activation of β-adrenoceptors in the BLA does
not simply lead to a general increase in neuronal activity in the
rACC. The specific changes in synaptic proteins may reflect a
synapse-specific influence of the BLA on neurons in the rACC.
These findings can provide a framework for understanding the
mechanisms by which arousal-induced activation of the amyg-
dala modulates consolidation of long-term memory and synaptic
plasticity that is distributed across brain regions.
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