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Individuals with cervical spinal cord injury (SCI) that causes tetraplegia are challenged
with dramatic sensorimotor deficits. However, certain rehabilitation techniques may
significantly enhance their autonomy by restoring reach-to-grasp movements. Among
others, evidence of motor imagery (MI) benefits for neurological rehabilitation of upper
limb movements is growing. This literature review addresses MI effectiveness during
reach-to-grasp rehabilitation after tetraplegia. Among articles from MEDLINE published
between 1966 and 2015, we selected ten studies including 34 participants with
C4 to C7 tetraplegia and 22 healthy controls published during the last 15 years.
We found that MI of possible non-paralyzed movements improved reach-to-grasp
performance by: (i) increasing both tenodesis grasp capabilities and muscle strength;
(ii) decreasing movement time (MT), and trajectory variability; and (iii) reducing the
abnormally increased brain activity. MI can also strengthen motor commands by
potentiating recruitment and synchronization of motoneurons, which leads to improved
recovery. These improvements reflect brain adaptations induced by MI. Furthermore,
MI can be used to control brain-computer interfaces (BCI) that successfully restore
grasp capabilities. These results highlight the growing interest for MI and its potential
to recover functional grasping in individuals with tetraplegia, and motivate the need for
further studies to substantiate it.

Keywords: tetraplegia, motor imagery, grasping, brain plasticity, motor control, kinematic, recovery,
compensation

Introduction

Individuals with tetraplegia are challenged with dramatic sensorimotor deficits caused by cervical
spinal cord injury (SCI). Active grasp is lost due to hand and finger muscle paralysis although
compensation is possible (Long and Lawton, 1955; Kirshblum et al., 2007). Compensations
are restricted to bimanual grasp after C5 SCI while other grips using the mouth or tongue
compensate for grasp after C4 SCI. Tenodesis grasp relies on the spared wrist extensor muscle
after C6 and C7 SCI. Indeed, tendon shortening of either the flexor digitorum or flexor pollicis longus
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occurs simultaneously to wrist extension resulting respectively in
passive palmar or lateral grip (Mateo et al., 2013). These upper
limb movement modifications are accompanied by increased
activity of contralateral sensorimotor cortex, supplementary
motor area and ipsilateral cerebellum, varying according to the
SCI level (Bruehlmeier et al., 1998; Curt et al., 2002; Cramer et al.,
2005; Jurkiewicz et al., 2007; Kokotilo et al., 2009). Improving
grasping abilities are important issues for recovering autonomy
of individuals with tetraplegia (Long and Lawton, 1955; Beninato
et al., 2004). Consequently, rehabilitation aims to restore reach-
to-grasp using physical and occupational therapies (Woolsey,
1985; Kirshblum et al., 2007).

There is growing evidence of motor imagery (MI) benefits
for neurological rehabilitation of upper limb movements
(Warner and McNeill, 1988; Jackson et al., 2001). The mental
representation of an action without any physical execution
engages brain motor regions overlapping those activated by
physical practice (PP; Decety and Grèzes, 1999; Pfurtscheller,
2001). This functional equivalence principle was early described
in healthy individuals (Jeannerod, 1994; Lotze and Halsband,
2006; Hanakawa et al., 2008; Munzert et al., 2009) and in
individuals with SCI (Decety and Boisson, 1990; Lotze and
Halsband, 2006; Di Rienzo et al., 2014a). Thus MI enables active
stimulation of brain motor areas promoting brain plasticity
(Lotze and Halsband, 2006; Dunlop, 2008) associated with
positive effects on motor performance (Driskell et al., 1994).

Thereby, MI could constitute a promising approach to
rehabilitate grasping abilities after C6 and C7 tetraplegia.
Furthermore, individuals with C4 and C5 tetraplegia could
imagine movements to control a device that can replace
grasping using brain-computer interfaces (BCI; Pfurtscheller
et al., 2003a). BCI extract the somato-topically organized
sensorimotor rhythms from brain activity during MI (Yuan
and He, 2014). The BCI then transforms brain activity into
signals driving an output to control a grasping device. A
BCI requires several steps including: (i) preprocessing to
improve signal-to-noise ratio; (ii) frequency selection where
the greatest amplitude of sensorimotor rhythms during MI
are measured; and (iii) detection and classification where
participants are extensively trained to imagine a movement with
or without cues, which results in a less adaptive synchronous
BCI (cue-paced) or a more adaptive asynchronous BCI (self-
paced).

The aim of this literature review is to address the effectiveness
of MI upon upper limb rehabilitation after tetraplegia. More
precisely, we will investigate behavioral changes (reduction of
upper limb functional deficit) and brain activity changes in
response to MI intervention. Understanding the potential for MI
to improve motor performance by reinforcing compensations
or potentiating recovery, with or without influence on brain
plasticity is of particular interest.

Materials and Methods

We selected full articles from the U.S. National Library of
Mediciner (MEDLINE) between 1966 and June 2015 assessing
the effect of MI intervention in individuals with complete motor

tetraplegia. Included are single case, case series and control
case studies of MI intervention on upper limb and tongue
trials with pre-post movement performance or brain activity
recordings. Excluded studies are those without grasping deficit
e.g., in individuals with paraplegia, without complete SCI, and/or
when MI intervention only involved lower limb movements.
We analyzed behavioral improvement due to MI intervention
on several dependent variables (performance, velocity, manual
dexterity and kinematics) while also considering brain activity
changes in response to MI.

Results

Studies
Figure 1 provides a flowchart that illustrates and summarizes
the literature review process we used. From the 306 articles
screened, papers that did not fulfill at least one of our exclusion
criteria were not considered. This resulted in exclusion of 230
articles after reading the title and/or abstract. Among the 76
remaining full-text articles, 66 papers were rejected for the
following reasons:

1. MI studies with no tetraplegic participants (Boschker et al.,
2000; Pfurtscheller et al., 2003b; Wilson, 2003; Erfani and
Erfanian, 2004; Erfanian and Erfani, 2004; Grush, 2004;
Grosjean et al., 2007; Szpunar et al., 2007; Miller et al., 2010;
Müller-Putz et al., 2010; Olsson and Nyberg, 2010; Schill
et al., 2011; Viswanathan et al., 2012; Papageorgiou et al.,
2013; Smits-Engelsman and Wilson, 2013; Kondo et al., 2014;
Grosprêtre et al., 2015; Malik et al., 2015);

2. Studies including tetraplegic participants with no MI
intervention (Saxena et al., 1995; de Castro and Cliquet,
2000a,b; Laffont et al., 2000, 2007, 2009; Memberg and Crago,
2000; Thorsen et al., 2001, 2014; Hoffmann et al., 2002;
Nunome et al., 2002; Taylor et al., 2002; Remy-Neris et al.,
2003; Shimada et al., 2003; Cornwall and Hausman, 2004;
Pfurtscheller et al., 2005; Anderson et al., 2008; Robinson
et al., 2010; de los Reyes-Guzmán et al., 2010; Martin et al.,
2012; Siedziewski et al., 2012; Coignard et al., 2013; Collinger
et al., 2013a,b; Cortes et al., 2013; Mateo et al., 2013, 2015a;
Wodlinger et al., 2015);

3. MI of lower limb movements only (Pfurtscheller et al., 2008;
Flanagin et al., 2009; Tcheang et al., 2011);

4. Articles without pre-post measures (Decety and Boisson,
1990; Lacourse, 1999; An et al., 2006; De Mauro et al., 2011;
Ajiboye et al., 2012; Blokland et al., 2012, 2014; Grangeon
et al., 2012b; López-Larraz et al., 2012; Fiori et al., 2014;
Müller-Putz et al., 2014); and

5. Articles without movement performance assessment
(Enzinger et al., 2008; Di Rienzo et al., 2014b, 2015; Faller
et al., 2014; Scherer et al., 2015; Tidoni et al., 2015).

We thus included 10 studies involving five single case
(Pfurtscheller et al., 2000; Müller-Putz et al., 2005; Grangeon
et al., 2010, 2012a; Rohm et al., 2013), two case series
(Onose et al., 2012; Vučkovíc et al., 2015) and three control cases
(Cramer et al., 2007; Di Rienzo et al., 2014c; Mateo et al., 2015b).
We scored the quality of these studies using the Single-Case
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Experimental Design (SCED) scale (Tate et al., 2008), the 3 min
critical appraisal for case series (Chan and Bhandari, 2011)
and the Physiotherapy Evidence Database (PEDro) scale (Maher
et al., 2003; de Morton, 2009). The SCED scores were 5/10
(Grangeon et al., 2010, 2012a) and 3/10 (Pfurtscheller et al.,
2000; Müller-Putz et al., 2005; Rohm et al., 2013). The absence
of a baseline and statistical analysis explained the difference in
score. Similarly, the control case series studies all had a 5/10
PEDro score. We note that PEDro scores below 6/10, have been
considered as low quality (Paci et al., 2010). Only the two case
series studies were evaluated as having so-called high quality
(Chan and Bhandari, 2011).

Participants
The 10 studies involved a total of 34 participants with tetraplegia
and 22 healthy age-matched controls. Mean age was 33 years
(22–42). SCI Levels were C4 (n = 3), C5 (n = 9), C6 (n = 16)
and C7 (n = 6; see Table 1). All participants were at a chronic
stage (mean = 31 months after SCI 3.5–84) with the exception
of two who were included 3 and 4 months after SCI (Vučkovíc
et al., 2015). Furthermore, all studies included participants with
complete motor lesion AIS A or B, except the article by Onose
et al. (2012), which included two participants with AIS C. MI
vividness was on average self-rated at 3.6/5 (from 3.3–4.1) and
3.3/5 (from 2.2–3.8) for visual and kinesthetic MI modalities,
respectively (Grangeon et al., 2012a; Di Rienzo et al., 2014c;
Mateo et al., 2015b; Vučkovíc et al., 2015).

Outcome Measures
MI intervention effects were assessed through clinical and
kinematic outcomes, along with changes in brain activity.
These include: (i) passive range of motion measured with
a goniometer (Grangeon et al., 2010); (ii) muscle strength
assessed by the Manual Muscle Test (Grangeon et al., 2010;
Vučkovíc et al., 2015); (iii) manual dexterity outcome using
the Minnesota Manual Dexterity Test (MMDT), the Block
and Box Test (BBT; Grangeon et al., 2012a) and the Grasp
and Release Test (GRT; Müller-Putz et al., 2005); and
(iv) kinematic outcomes during reaching and reach-to-grasp
movements including temporal parameters e.g., movement time
(MT) and spatial parameters e.g., trajectory, joint motion,
wrist extension angle during grasping (Grangeon et al.,
2010, 2012a; Mateo et al., 2015b). In addition, outcomes
of grasping effectiveness have also been done using a BCI
device controlled by MI (Pfurtscheller et al., 2000; Müller-
Putz et al., 2005; Onose et al., 2012; Rohm et al., 2013;
Vučkovíc et al., 2015). Finally, 8 studies investigated brain activity
changes in response to MI using electroencephalography (EEG;
Pfurtscheller et al., 2000; Müller-Putz et al., 2005; Onose et al.,
2012; Rohm et al., 2013; Vučkovíc et al., 2015), functional
magnetic resonance imaging (fMRI; Cramer et al., 2007) or
magnetoencephalagraphy (MEG; Di Rienzo et al., 2014c; Mateo
et al., 2015b).

MI Interventions
Mean data showed that participants rehearsed mentally during
598 min (range from 300–900). However, one study did not

report MI practice duration (Rohm et al., 2013; Table 1). Instead,
Rohm et al. (2013) indicated that participants performed 413
MI trials. The mean number of MI sessions was 14 (range
from 3–43) over 10 weeks (range from 0.4–52). Practice before
MI consisted of video observation (Cramer et al., 2007; Onose
et al., 2012) or PP with a crossover design (Grangeon et al.,
2010) and without crossover (Grangeon et al., 2012a; Di Rienzo
et al., 2014c; Mateo et al., 2015b). Conversely, there was no
practice before MI in the other studies (Pfurtscheller et al.,
2000; Müller-Putz et al., 2005; Cramer et al., 2007; Rohm
et al., 2013; Vučkovíc et al., 2015). SCI participants imagined
single-joint movements of: (i) wrist flexion/extension (Di Rienzo
et al., 2014c; Mateo et al., 2015b); (ii) hand movements
(Müller-Putz et al., 2005; Rohm et al., 2013); (iii) arrhythmic
flexion/extension of both finger and ankle (Onose et al., 2012);
or (iv) functional movement of reaching and reach-to-grasp
(Grangeon et al., 2010, 2012a; Di Rienzo et al., 2014a; Mateo et al.,
2015b).

In cases of C4-C5 SCI, grasping was achieved using MI
based BCI via an EEG to control a motorized hand orthosis
(Pfurtscheller et al., 2000), an implanted functional electrical
stimulation (FES; Müller-Putz et al., 2005), a surface FES
(Rohm et al., 2013; Vučkovíc et al., 2015) or a grasping
robot (Onose et al., 2012). The EEG recorded the electrical
activity over the sensorimotor cortex (electrodes were located
at C3, Cz and C4 according to the 10–20 international
system). Then, the frequency range showing the highest
sensorimotor rhythms within the alpha/mu and beta bands
(8–13, 13–35 Hz) were tailored to each participant. All but
one study used two imagined movements to generate the
output signal and control the device, with the exception
of Müller-Putz et al. (2005) who only used one imagined
movement to control the device. The total amount of MI
training ranged between 3 and 1012 sessions (see Table 2). The
ratio between correctly classified trials and the total number
of trials (i.e., the classification accuracy; Graimann et al.,
2010) ranged between 71 and 95%. Finally, SCI participants
controlled the device to restore grasping using either self-
paced MI i.e., asynchronous BCI (Müller-Putz et al., 2005;
Vučkovíc et al., 2015) or cue-paced MI i.e., synchronous BCI
(Pfurtscheller et al., 2000; Onose et al., 2012; Vučkovíc et al.,
2015).

Clinical Evidence of MI Effectiveness
Using a crossover design, Grangeon et al. (2010) reported
motor improvement whatever the order of practice (PP before
MI or after). The chronic C6 SCI participants exhibited;
(i) increased amplitude of passive elbow flexion (from 90◦

to 145◦), and (ii) increase in strength of both the elbow
flexor and extensor muscles respectively from 2 to 4/5 and
1 to 4/5 on the Manual Muscle Testing score, indicating
that the movement could subsequently be performed against
gravity and even against a light resistance after MI training.
Similarly, after training of triggered electrical stimulation using
MI-based BCI, Vučkovíc et al. (2015) showed that one of
the two C5 acute SCI participants increased brachioradialis
strength (from 1 to 3/5, i.e., the initial palpable muscle
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FIGURE 1 | Flow diagram of review process according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA—Moher et al., 2009). aThe three identified papers were (Laffont et al., 2000; Hoffmann et al., 2002; Collinger et al., 2013b).

contraction changed to full elbow flexion range of motion against
gravity).

In response to MI of possible upper limb movements
(e.g., grasping), one C6 SCI participant demonstrated increased
manual dexterity as shown by; (i) significant improvement
in the BBT; and (ii) decreased time to complete the MMDT
(Grangeon et al., 2012a). Similarly, six C6-C7 SCI participants
showed decreased variability of MTs during a complete
reach-to-grasp sequence, including bringing an apple to the
mouth and then putting it back in its initial location
(Di Rienzo et al., 2014c). In addition, after learning a
movement sequence using MI of either the right foot or the
tongue, seven C5 to C7 SCI participants only exhibited a
decreased in MT to complete the sequence with the tongue

(i.e., during practice of possible movements; Cramer et al.,
2007).

Furthermore, training of MI based BCI resulted in
compensation of grasping movements with the successful
control of the BCI device. By controlling surface FES, one C4 SCI
participant showed decreased MT when grasping, along with
writing his own name or eating an ice cream cone (Rohm et al.,
2013). Similarly, one C5 SCI participant successfully grasped a
paperweight in the GRT and moved it five times from one place
to another (Müller-Putz et al., 2005). By controlling a motorized
hand orthosis, another C5 SCI participant grasped and ate an
apple (Pfurtscheller et al., 2000). In addition, by controlling an
upper limb robot 3 of 9 C5 SCI participants successfully grasped
a glass and drank from it (Onose et al., 2012; Table 2).
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Kinematic Evidence of MI Effectiveness
Variability of hand trajectory decreased during reaching toward
a central target placed 15 cm from a starting point in one C6
SCI participant (Grangeon et al., 2010). Similarly, variability of
hand trajectory decreased by 58% during reach-to-grasp of a glass
placed 40 cm in the front of the C6 SCI participant (Grangeon
et al., 2012a; Figure 2). In addition, MT decreased by about
29% (Grangeon et al., 2012a). Finally, six C6-C7 SCI participants
increased their wrist extension angle by 28% (i.e., wrist extension
triggering tenodesis grasp) during reach-to-grasp of an apple
placed at 35 cm (Mateo et al., 2015b). Motor improvements were
preserved during retention tests, up to 2 months (Mateo et al.,
2015b) and 3 months (Grangeon et al., 2012a) after MI training
was stopped.

Brain Activity Modification in Response to MI
In response to MI of impossible paralyzed movements (e.g., foot),
seven C5 to C7 SCI participants showed increased activation
in the left putamen and globus pallidus during imagined foot
movements measured by fMRI (Cramer et al., 2007). Similarly,
one C5 SCI participant performing foot-movement MI exhibited
increased amplitude of EEG sensorimotor rhythms in the cortical
areas controlling the foot (Pfurtscheller et al., 2000). Conversely,
MI practice of possible movements spared from SCI (e.g., reach-
to-grasp) resulted in a decrease in the left premotor cortex
activity during complete reach-to-grasp with the right hand in
six C6-C7 SCI participants measured by MEG (Di Rienzo et al.,
2014c). Similarly, six C6-C7 SCI participants exhibited decreased
contralateral sensorimotor activity measured by MEG during
wrist-extension triggering of the tenodesis grasp (Mateo et al.,
2015b; Figure 3).

Discussion

The interest of using MI practice during upper limb
rehabilitation after tetraplegia is growing. The effectiveness
of MI to promote upper limb rehabilitation after tetraplegia
remains nevertheless poorly understood. The aim of this
review is to address the extent to which MI practice of possible
movements spared from cervical SCI or impossible paralyzed
movements may activate and reinforce cerebral networks in
order to promote recovery or reinforce compensation during
rehabilitation of reach-to-grasp movement after tetraplegia.

The training effects of MI on possible movement recovery
have been studied through strength assessments using the
Manual Muscle Test (Compston, 2010). Indeed, one chronic
C6 SCI participant underwent surgical tendon transfer of the
biceps brachii onto that of the triceps brachii and exhibited
strength increase in both elbow flexor and extensor muscles in
response to 2 weeks of MI practice (Grangeon et al., 2010).
Here, improvement in strength relies on central modifications
favoring: (i) change in biceps brachii function from elbow
flexion to extension; and (ii) compensation of the loss of
the transferred biceps brachii by the two remaining elbow
flexor muscles (brachioradialis and brachialis). Moreover,
strength increase was reported in the brachioradialis of
one acute C5 SCI participant after seven MI sessions of
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FIGURE 2 | Illustration of the motor control improvement after motor imagery (MI) practice in one C6 SCI participant. Kinematic recordings showing
trajectory variability decrease of the right index finger (I—red), thumb (T—blue) and wrist (W—green) during reaching in the contralateral space immediately after
MI practice, 1 and 3 months later (POST; adapted with permission from Grangeon et al., 2012a). Abbreviations: X, X-axis sets in participant’s frontal plane;
Y, Y-axis sets in participant’s sagittal plane.

FIGURE 3 | Illustration of the adaptive brain plasticity after MI practice in one C6 SCI participant. Magnetoencephalography (MEG) maps displaying the
contralateral sensorimotor activation decrease immediately after MI training (POST1) and 2 months later (POST2; adapted with permission from Mateo et al., 2015b).

grip preparation aimed at restoring grasp using surface FES
controlled by BCI (Vučkovíc et al., 2015). This is consistent
with a similar strength increase in the little finger abductor
and elbow flexor muscles reported in response to MI in
healthy individuals (Yue and Cole, 1992; Ranganathan et al.,
2004). Associated with these gains, EEG showed that the
amplitude of sensorimotor rhythms increase during maximal
voluntary contraction of the trained muscles, particularly
during the power signal decrease i.e., the event related
desynchronization (Ranganathan et al., 2004). From these
observations, gain in strength has been attributed to central
motor planning improvement, such as better recruiting and
synchronizing of motoneurons in absence of muscle hypertrophy
(Yue and Cole, 1992). Furthermore, based on EEG results,
Ranganathan et al. (2004) concluded that MI ‘‘enhances the
cortical output signal, which drives the muscles to higher

activation levels and increases strength’’. Although these results
should be associated with processes of natural recovery
and rehabilitation, MI may have the potential to strengthen
motor commands of upper limb movements, thus improving
recovery.

Results from the other studies suggest a potential MI effect
on compensation improvements during reach-to-grasp. One
example is the BBT and MMDT improvements in response to
675 min of upper limb MI in a complete C6 SCI participant
(Grangeon et al., 2012a). This may be related to the kinematic
measures that reveal wrist extension increases, in the tenodesis
grasp of six C6-C7 SCI participants, also after 675 min of
MI practice (Mateo et al., 2015b). Taken together, the results
suggest that hand dexterity improved which can be explained
by endpoint movement accuracy and reinforcement of the
tenodesis grasp. Thus, MI may have strengthened the motor
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planning (Mateo et al., 2015a). Furthermore, the reduction
in hand trajectory variability indicates a reduction in both
reaching and grasping movement inefficiencies (Grangeon
et al., 2010, 2012a). Since reach-to-grasp is sub-divided into a
transport phase (specifically tested by reaching) and a grasping
phase (Jeannerod, 1984), overall motor control improvements
involve both phases. This suggests that MI also reinforces
the motor planning based on the kinematic invariant of
minimal cost (Mateo et al., 2015a). Additionally, movement
duration is also an index of performance. In response to
MI of possible movements, duration of both reach-to-grasp
and tongue sequence movements decrease (Cramer et al.,
2007; Grangeon et al., 2012a) along with movement duration
variability (Di Rienzo et al., 2014c). Hence, MI of possible
movements is likely to: (i) promote the learning of new
movement sequences; and (ii) improve the tenodesis grasp
strategy that is one cause of MT reduction after tetraplegia
(Mateo et al., 2015a). Therefore, these results imply that
MI of possible movements reinforces strategies of movement
planning according to kinematic invariants like minimal cost
and endpoint movement accuracy (Mateo et al., 2015a). Here
again, the effects of MI are thought to be limited to the
central level by reinforcing the necessary motor commands
and by building new motor commands through brain plasticity
(Dunlop, 2008).

MI can induce brain plasticity through active stimulation
of brain motor networks (Lotze and Halsband, 2006; Dunlop,
2008). Consequently, MI has been used to test if it can
reduce the abnormally increased brain activity after tetraplegia
(Kokotilo et al., 2009) using both impossible movements (e.g.,
foot) or possible movements (e.g., hand). After 420 min of
MI training based on impossible foot movement sequences,
Cramer et al. (2007) reported increased activity in the left
putamen and globus pallidus. These areas are associated with
motor learning and foot movements and can thus be considered
as new movements that are not physically practiced due to
paralysis. Consequently, this change in brain activity may
relate to the first stage of motor learning (Karni et al., 1998).
However, the absence of brain activity reduction in response
to MI of impossible movement could not be definitively
concluded because MI practice duration was short (7 days)
and further practice could have resulted in the hypothesized
brain activity changes (Doyon and Benali, 2005). Conversely,
after 675 min of MI on possible upper limb movements, the
additional recruitment in premotor cortex during grasping,
compared to healthy control participants before MI training,
was no longer observed (Di Rienzo et al., 2014c). In addition,
the abnormally increased activity within the contralateral
sensorimotor cortex during wrist-extension, was reduced and
matched with healthy controls (Mateo et al., 2015b). Since
both premotor- and sensorimotor cortex have been associated
with motor planning during MI (Guillot et al., 2014), reduced
activity could be due to ‘‘automation’’ thus involving cortical
motor regions, parietal cortex, basal ganglia, and cerebellum
(Doyon and Benali, 2005; Doyon et al., 2009; Vahdat et al.,
2015). Along these lines, Cramer et al. (2007) reported that
movement automation was associated with increased activity

in basal ganglia even if C6 SCI participants performed MI of
impossible foot movements. There is no additional evidence of
brain activity changes within sub-cortical and cerebellar areas,
related to MI learning after tetraplegia. However, considering
functional equivalence between MI and PP, brain plasticity
could be inferred from motor learning through actual practice.
Hence, healthy participants exhibited activity decrease in the
motor related brain areas involving cortico-basal ganglia and
cortico-cerebellar pathways associated with more efficient skills
requiring less energy (Doyon et al., 2009). Vahdat et al. (2015)
recently investigated brain-spinal cord activity changes after
actual training of finger movements. Healthy individuals showed
that connectivity between sensorimotor cortex and the spinal
cord decreased while that between cerebellum and the spinal
cord was reinforced during learning. Whether these changes
are less likely to occur after MI due to motor command
inhibition remains unknown. Nevertheless, spinal cord plasticity
induced by MI practice cannot be excluded since inhibition
is weakened after SCI (Roy et al., 2011; Di Rienzo et al.,
2014b) while corticospinal facilitation below motor threshold can
occur (Stinear, 2010). Consequently, further studies should look
for plasticity evolution in the motor related brain areas even
considering the spinal cord after MI practice. Finally, the results
we reviewed here, generally suggest that MI practice of possible
and impossible movements resulted in a fundamental difference
in brain plasticity. MI practice of impossible movements could
be seen as learning a new task due to paralysis. Conversely,
there is some evidence that increased activity caused by SCI
is negated after MI training of possible movements. It is also
noteworthy to mention that cortical changes, in particular after
MI training of possible movements, could be associated with
motor control and movement performance improvement due to
the reinforcement of compensatory movement (e.g., tenodesis
grasp).

Although there have been limited studies, promising evidence
of MI based BCI efficacy to compensate for inability to grasp
is also accumulating. Indeed, participants with C4 and C5
tetraplegia have gradually become able to control a grasping
BCI device using extensive MI training of impossible movements
(e.g., right, left hand or feet). In parallel, sensorimotor rhythms of
imagined foot movements matched those from healthy control
participants after 5 months of training (Pfurtscheller et al.,
2000). This indicates that MI of impossible movements could
restore brain activity reversing the reduction of sensorimotor
rhythms which was previously reported during MI of impossible
movements (Lacourse, 1999). As in healthy populations, MI
has the ability to reinforce brain activity, leading to its
use in controlling a BCI device. Nevertheless, the diversity
of devices (e.g., surface or implanted FES, motorized hand
orthosis or grasping robot) and methods (based on choice
of frequency recorded or on type of movement imagined)
or data processing (EEG data treatment leading to device
control output) require further development to promote their
routine use in rehabilitation. In particular, several issues
should be further addressed e.g., the limited number of
degrees of freedom controlled by MI based BCI, along
with the reduction of MI training duration to control
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the device, from 5 months to 3 days respectively in the
articles by Pfurtscheller et al. (2000) and Müller-Putz et al.
(2005).

Conclusion

This literature review included 10 studies involving MI training
for cervical SCI published over the last 15 years. The interest
for using MI stems from its use as a complementary technique
during grasping rehabilitation after tetraplegia. The results we
briefly described here show motor control and performance
improvement in response to MI of possible movements
in individuals with SCI. This could be attributed to the
improvement of compensation movements like the tenodesis
grasp and to a lesser extend strength recovery. In addition,
thus far it appears that only MI of possible movements
can reduce abnormally increased brain activity as compared
to control participants. Taken together, motor performance
and brain plasticity reflect functional and structural changes
in the central nervous system enabling the improvement
of the compensated grasping movements. Furthermore, MI
based BCI is a promising procedure which could further
complete rehabilitation programs, in particular for the case
of high level SCI (C4 and C5). Despite promising results
and potential use of MI in rehabilitation methods, current

studies provide only a weak level of evidence (Guyatt et al.,
2008). Thus at this point, any generalization of results must
be taken with caution and future studies should strive to
eliminate potential bias due to low quality, and small sample
sizes of SCI participants. Further investigations providing
randomized controlled trials with a high evidence level are
needed to confirm the MI effects for grasp rehabilitation
after tetraplegia and to elucidate any changes in brain
plasticity.
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