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The central complex in the insect brain is a composite of midline neuropils involved

in processing sensory cues and mediating behavioral outputs to orchestrate spatial

navigation. Despite recent advances, however, the neural mechanisms underlying

sensory integration and motor action selections have remained largely elusive. In

particular, it is not yet understood how the central complex exploits sensory inputs to

realize motor functions associated with spatial navigation. Here we report an in silico

interrogation of central complex-mediated spatial navigation with a special emphasis

on the ellipsoid body. Based on known connectivity and function, we developed a

computational model to test how the local connectome of the central complex can

mediate sensorimotor integration to guide different forms of behavioral outputs. Our

simulations show integration of multiple sensory sources can be effectively performed in

the ellipsoid body. This processed information is used to trigger continuous sequences

of action selections resulting in self-motion, obstacle avoidance and the navigation

of simulated environments of varying complexity. The motor responses to perceived

sensory stimuli can be stored in the neural structure of the central complex to simulate

navigation relying on a collective of guidance cues, akin to sensory-driven innate or

habitual behaviors. By comparing behaviors under different conditions of accessible

sources of input information, we show the simulated insect computes visual inputs

and body posture to estimate its position in space. Finally, we tested whether the local

connectome of the central complex might also allow the flexibility required to recall an

intentional behavioral sequence, among different courses of actions. Our simulations

suggest that the central complex can encode combined representations of motor and

spatial information to pursue a goal and thus successfully guide orientation behavior.

Together, the observed computational features identify central complex circuitry, and

especially the ellipsoid body, as a key neural correlate involved in spatial navigation.

Keywords: insect brain, central complex, ellipsoid body, lateral accessory lobes, computational model, spatial

navigation, cognitive map
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INTRODUCTION

Ambulatory animals are constantly subject to changing stimuli.
These include external sensory stimuli, such as light, temperature
or food locations; and internal stimuli, such as body posture,
position in space, thirst or hunger. Efficient mechanisms to
identify, consolidate and recall information and appropriate
motor actions are essential for the animal’s ability to respond to
the external stimuli, avoid obstacles, move away from potential
threats or approach hedonic rewards. Accordingly, hunters,
foragers or harvesters have evolved neural mechanisms that
exploit the integration of changing internal and external stimuli
to trigger action sequences in order to drive both goal-driven
behaviors and reactive sensory-driven habits. The selection of
appropriate motor commands allows the animal to change
position in space or to interact with elements in the environment.
This self-motion information is then computed jointly with new
incoming sensory stimuli to consolidate memory of experienced
action-outcome contingencies, in association with allocentric
and egocentric representations. Eventually, the association of
outcomes with a representation of sensory stimuli, body posture,
and actions result in a mental map (Tolman, 1932; Collett
et al., 2013), which guides adaptive behavior and is essential for
intentional spatial navigation.

Like all ambulatory animals, insects express behaviors that
result in intentional spatial navigation. For instance, complex
visual features (Neuser et al., 2008; Ofstad et al., 2011) or antennal
mechanosensations (Ritzmann et al., 2008; Varga et al., 2017)
perceived whilst exploring an arena, can be learned and stored
to subsequently recall an action (Neuser et al., 2008; Ofstad et al.,
2011). However, it has remained contentious whether insects use
spatial representations to guide their navigation (e.g., Cheeseman
et al., 2014; Cheung et al., 2014) or rather their orientation
behavior relies on a collective of guidance cues (Cruse and
Wehner, 2011; Collett et al., 2013) that include neural correlates
of head direction (e.g., Varga and Ritzmann, 2016), celestial
compass cues (e.g., el Jundi et al., 2015) and configurations
of visual stimuli in view-based panoramas (e.g., see Zeil, 2012;
Seelig and Jayaraman, 2015; Weir and Dickinson, 2015). A key
neural correlate involved in processing these guidance cues and
mediating behavioral outputs resulting in spatial navigation is the
central complex (CX) (Strausfeld and Hirth, 2013; Pfeiffer and
Homberg, 2014; Turner-Evans and Jayaraman, 2016; Webb and
Wystrach, 2016).

The CX is a central brain structure composed of midline
neuropils comprising the protocerebral bridge (PB), the fan-
shaped body (FB), the ellipsoid body (EB), the noduli and
the lateral accessory lobes (LAL) (Figures 1A,B). Histological
(Williams, 1975; Hanesch et al., 1989), immunocytochemical
(Hanesch et al., 1989; Renn et al., 1999; Young and Armstrong,
2010; Kahsai andWinther, 2011; Boyan and Liu, 2016), and clonal
analyses (Ito and Awasaki, 2008; Ito et al., 2013; Lin et al., 2013;
Wolff et al., 2015) reveal the CX organization as amodular system
of neuronal layers and columns (Figure 1C). Columnar neurons
leading to and from the CX connect all its component neuropils
(Ito and Awasaki, 2008; Lin et al., 2013; Wolff et al., 2015), which
are themselves subdivided into modules. These modules encode

spatial information about sensory events (Heinze and Homberg,
2007; Sakura et al., 2008; Heinze and Reppert, 2011; Seelig and
Jayaraman, 2013). As shown for the EB, tangential layers of neural
processes intersect columnar projections and modulate spatial
representations of sensory events across modules (Vitzthum
et al., 2002; Heinze and Homberg, 2007; Sakura et al., 2008;
Heinze and Reppert, 2011; Rosner and Homberg, 2013). Specific
sensory inputs (afferents signaling “what” is perceived and
its features) are mapped across modules (afferents signaling
“where” the stimulus is located with respect to the body and
the environment), each representing a segment of sensory space
(Strausfeld, 2012). These representations are relayed to the EB,
which weights them according to input salience and strength
of connectivity. Finally, the strength of connectivity can be
modulated by dopamine-related learning processes (Waddell,
2013), so that the EB effectively integrates current and previous
information about all its incoming sensory inputs. In turn, the
EB processes its incoming input to release the inhibition of
appropriate premotor programs in the LAL, selecting actions
in response to the computed sensory stimuli (Fiore et al., 2015;
Kottler et al., 2017).

This proposed model of CX functionality identifies the
EB as a key node in mediating sensorimotor integration and
action selection for reactive stimulus-responses and goal-directed
behavior, thus driving purposeful spatial navigation. In support
of this notion, recent studies identified columnar neurons
that project from PB to EB where they form wedge-specific
arborisations that together cover all layers and modules of
the EB, and thus all segments of sensory space represented
in the EB (Seelig and Jayaraman, 2015; Wolff et al., 2015;
Omoto et al., 2017; Figure 1D). These studies propose that
visual cues and their positions are represented in the EB relative
to the animal’s heading. If correct, this hypothesis suggests
that columnar wedge-neuron activity encodes an internal
compass that combines visual landmarks with self-generated
(idiothetic) cues (Heinze, 2015). Despite these advances, the
neural mechanisms underlying sensory integration and motor
action selections have remained largely elusive. In particular, it is
not clear how the CX exploits sensory inputs and encoded head
and body orientation to realize motor functions associated with
spatial navigation.

We previously proposed that all of these functions may
rely on computational processes that can also be found in
the vertebrate basal ganglia (Strausfeld and Hirth, 2013). In
particular, transient winner-take-all competitions (Rabinovich
et al., 2001; Afraimovich et al., 2008) may be a common
solution across species for the essential functions of sensory
noise suppression, detection and selection of salient inputs
weighed by previous experience and sensorimotor integration
(Fiore et al., 2015). Here we examine how these functions can
be implemented by the CX, as a simulated insect is required
to navigate arenas of increasing complexity, to reach two target
regions, whilst avoiding obstacles. To solve its task, the simulated
insect relies on a heterogeneous set of sensory information
about body orientation and visual landmarks, organized in an
egocentric representation. These inputs are processed in a bio-
constrained neural model (i.e., whose structure is constrained
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FIGURE 1 | The Drosophila central complex and derived architecture of the computational model. (A) Confocal image (color inverted) of a dissected adult Drosophila

brain immuno-labeled with an antibody that specifically recognizes synaptic terminals. (B) Cartoon of adult Drosophila brain showing central complex neuropils (PB,

protocerebral bridge; FB, fan-shaped body; EB, ellipsoid body; NO, noduli; LAL, lateral accessory lobes—mushroom bodies are shown for orientation); box indicates

enlarged region in C. (C) Schematic summary of PB and EB to show key assumptions of computational model: columnar wedge neurons project to specific EB

wedges (here shown for one in black), tangential ring neurons project in a subtype and layer-specific manner into EB ring (colour coded); the model assumes synaptic

connections between both neuron types (see enlarged area for one wedge). (D) Architecture of the neural model, replicating the local connectome of the central

complex in the connections among modules.

by known neuroanatomy) simulating the neural activity of the
EB and LAL as parts of the CX. Our model relies on evidence-
based assumptions (Ito et al., 2013; Lin et al., 2013; Seelig
and Jayaraman, 2015; Wolff et al., 2015; Kottler et al., 2017)
that a somatotopic columnar input organization and lateral
inhibitions can generate transient winner-take-all competitions.
The behavior of the simulated insect shows the activity in the
ellipsoid body can integrate and encode inputs from different
sensory sources, and successfully rely on visual information and
body orientation to correctly estimate its position in space.

MATERIALS AND METHODS

Neural Architecture and Computational
Features of the Model
We developed a neural model based on an architecture that
replicates known connectivity of the CX, focusing on afferent
and efferent EB projections (Figure 1D). The model relies on two
core features, a loop architecture between EB and LAL, and lateral
inhibition among tangential EB ring neurons, both of which are
supported by clonal, immunocytological, and functional analyses
(Hanesch et al., 1989; Kahsai and Winther, 2011; Lin et al., 2013;
Seelig and Jayaraman, 2015;Wolff et al., 2015; Kottler et al., 2017).

The model simulates activity in the modules of EB and LAL in
a continuous-time differential equation termed “leaky integrator,”

which is used to simulate the mean-field activity of an entire pool
of neurons (Deco et al., 2008):

τg u̇j = −uj + bj +
∑

i

wjiyi (1)

yj =
[

tanh(uj)
]+

(2)

Equation (1) defines the activation potential of a generic unit
j and Equation (2) defines the final activation of the unit in
a positive saturation transfer function.

∑

i
wjiyi represents the

overall input reaching unit j from all units i and wji represents
the connection weight between an input unit i and a target unit
j. Finally, a bias bj represents the basal activity of the unit j.
The value of this constant is equal to 0 under all conditions,
with the exception of those simulating either deactivation or
overactivation of the EB, when the value is set < −0.5 for
deactivation and >0.5 for overactivation, for all EB units.

The neural architecture of the model was based on the
projections of columnar neurons which divide the CX into 8
units/columns per hemisphere; and tangential neurons which
in the case of the EB project in a subtype specific manner
to generate 3 layers of the EB neuropil (Strausfeld and
Hirth, 2013; Pfeiffer and Homberg, 2014; Turner-Evans and
Jayaraman, 2016; Webb and Wystrach, 2016). Hence our model
consisted of 48 units for the EB (16 modules, also called
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wegdes, each subdivided into 3 layers). Furthermore, based
on neuroanatomical and functional studies (Williams, 1975;
Hanesch et al., 1989; Namiki and Kanzaki, 2016) we assumed
16 units for the LAL (one unit per LAL segment or module,
grouped in 8 units per hemisphere). Sensory information was
organized in vectors, where elements represented landmark
features and their allocentric position, body orientation of the
simulated insect and its position in space (see subsections
below). All elements in the input sources were connected with
all modules in both EB and LAL, allowing for the integration
of heterogeneous sensory information. Tangential ring neuron
projections (Fiore et al., 2015; Kottler et al., 2017) were modeled
following a computationally parsimonious assumption, which
assumed symmetric lateral inhibitions within each layer and
among all layers of the EB, per hemisphere (Figure 1D). Lateral
inhibitions among layers and modules/wedges resulted in the
competition among inputs and the subsequent selection of the
strongest signal among competitors (see also: Kottler et al., 2017).
In turn, this competition resulted in a transient winner-takes-all
functionality, which replicated the structurally stable dynamics
reported for the EB (Seelig and Jayaraman, 2015). This selection
process carried out in the EB was biased by the weights of the
connections streaming sensory information toward the EB itself.
Thus, the behavior of the simulated insect ultimately depended
on the configuration of the parameters representing the weights
wji between sensory inputs and EB.

In the model, information processed in the EB (sensory
integration and selection) was then streamed to the LAL via
inhibitory connections (Fiore et al., 2015; Wolff et al., 2015),
conveying EB-mediated selections into premotor outputs. The
topology of the inhibitory connections linking EB–LAL has been
only partially described in the literature. Thus, we completed
the model connectivity relying again on a computationally
parsimonious assumption, where all EB modules exerted an
off-center gating function toward the two separate layers of
the LAL (Figure 1D). Layers in the LAL encode premotor
commands, which provide essential feedback to the EB in terms
of self-motion information (Namiki and Kanzaki, 2016), besides
triggering motor selections. In the simulated agent, LAL self-
motion information is conveyed via parallel connectivity from
both layers in the LAL toward all layers in the EB, completing
the EB-LAL-EB loop. Motor selections were modeled in a simple
correlation between activity in the eight modules of the two
LAL layers and the execution of basic motor commands. For
the spatial navigation task, we mapped the actionsmove forward,
turn right (clock-wise) and turn left (counter-clockwise) to the
activity of three arbitrary modules (per hemisphere). Activity in
the remaining five modules (per hemisphere) was used to trigger
a series of actions (e.g., grooming, eating, standing still etc.,)
that did not produce any change in terms of the position of the
simulated insect in the arena or its body orientation. Although
these actions were not relevant in terms of spatial navigation, they
were part of the transient competition for motor commands and
could be selected in response to any combination of perceived
sensory stimuli. Thus, the described configuration of motor
commands was meant to illustrate how sensory integration can
trigger a sequence of actions—it does not represent the entire

repertoire of actions that can be performed by an insect. The
specifications of our model are well supported by experimental
evidence that identifies key roles for the EB in sensorimotor
integration and goal-directed behavioral output (e.g., Martin
et al., 1999; Heinze and Homberg, 2007; Neuser et al., 2008;
Lebestky et al., 2009; Kong et al., 2010; Ofstad et al., 2011; Seelig
and Jayaraman, 2015; Kottler et al., 2017) which are essential for
spatial navigation.

Simulated Environment
We tested the navigation behavior of an artificial insect in
a simulated environment that allowed manipulation of its
complexity and of the source of sensory information available
for the orientation of the simulated insect. Three different
environments or arenas were used to limit the movements of the
simulated insect and to set obstacles between a starting position
and a target area. Independent of the complexity of the simulated
environment, all arenas/environments were composed of 1600
distinct locations (40 × 40). In each of the different arenas,
external walls defined the overall number of locations. The
starting position of the simulated insect was randomly selected
out of 100 locations (10× 10) in the southwest of the arena. Two
target areas were defined as squares of 10× 10 locations, both of
which were placed in the northern part of the arena, thus leading
to a considerable distance between the artificial insect’s starting
location and the target area it had to reach (Figure 2A).

The complexity of the simulated environment was modified
by introducing three conditions, characterized by an increasing
number of obstacles that had to be circumnavigated in order to
reach the target areas. Thus, in the environment termed “open
arena” (Figure 2A), the simulated insect was able to change
location by freely moving North, East, South or West. If the
simulated insect reached any of the arena walls and tried to
execute a command to move further, the command was ignored
and the agent remained in its position. In the environment
termed “simple maze” (Figure 2B), the arena presented internal
obstacles as additional walls. These walls divided the arena in half
with the exception of a narrow passage of one sector width (equal
to 10 locations), thereby limiting the ability of the simulated
insect to cross from South to North and vice versa. In the
environment termed “complex maze” (Figure 2C), additional
obstacles were introduced to further limit the movements of the
agent, thereby forcing the simulated agent to execute a series of at
least five well-timed turns to be able to reach a target area.

Simulated Sensory Information
The simulated insect relied on two sources of sensory
information that were made available either in combination or
alone.

Self-Motion

To illustrate the anterior-posterior orientation in relation to the
arena’s polarity (N-E-S-W), the simulated insect was graphically
represented in videos and images with two red circles for
the eyes (e.g., see Figure 2D and Supplementary Videos). This
“body orientation” was encoded in a four dimensional vector
characterized by a binary 0/1 activity. The activity of this
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FIGURE 2 | Simulated environment and insect specifics. (A–C) Different arenas and corresponding boundaries for the spatial navigation tasks of the simulated insect:

open arena (A), simple maze (B) and complex maze (C). Under all conditions, arenas are composed of 40 × 40 locations that can be occupied by the simulated insect

while it navigates the virtual space. The simulated insect starts each trial in one location, randomly selected among the 100 locations characterizing the south-west

sector of the arena, marked as “Start.” The simulated insect can navigate the space freely for a limited time of 30 s of simulated time. The simulation is considered

successful if the insect reaches any of the locations defining the target areas (marked as “Target 1” and “Target 2”). At each step of the simulation, the insect can select

an action that allows it to leave the location it occupies and move into a new location north, south, east or west. These movements are only prevented if the location

occupied by the insect is close to a wall (marked in black), in which case the action is not executed and the agent keeps its previous position. (D) The simulated insect

is graphically represented with black segment for its body and two small red circles for its eyes, to indicate the front of the simulated insect. At any time the location

occupied by the insect is reported in terms of coordinates, outside the arena. (E) Grid organization and perceived landmarks in the arenas. Under all conditions, the

arena is divided into 16 sectors composed of 10 × 10 locations. Four, differently colored, visual cues or landmarks are located at the four corners under all conditions.

(F) Illustration of the way the visual field adapts depending on the position and body orientation of the simulated insect. The agent can perceive a visual landmark,

activating the corresponding visual input to a value of 1, only if this is found in the sector the insect is occupying (E, dark blue sector of the visual field). If the landmark

is found in a sector on the front-left (A), front (B), front-right (C), left (D), or right (F) of the simulated insect (pale blue sectors of the visual field), the corresponding visual

input signal the presence of the cue with a value of 0.5. Angular position units encode, with a 0/1 activity, an egocentric representation of the position of the landmarks

with respect to the body of the simulated insect (one unit per each sector in the visual field). In panel (F), we illustrate two arbitrary examples of the egocentric

landmark representation in terms of sensory input. In these examples, angular position units would signal the presence of a generic landmark on the left of the body in

one case (cue 4 in sector D of the visual field) or in front of the body in the other case (cue 2 in sector B of the visual field). See also related Supplementary Videos.

vector changed with the execution of turning behavior and
it was propagated toward the CX. Jointly with the vector of
activity recorded in the LAL and determining motor selections
in the simulated agent, these two signals provided the agent
information about self-generated motion and posture.

Vision

Any movement resulting in changing the position of the
simulated insect or its body orientation could result in the
modification of its visual field. To simulate this dynamic change,
we first divided the arenas into 16 sectors of 10 × 10 locations
(Figure 2E). Second, we defined the visual field as covering the

sectors in front and on the side of the insect, in a putative
180◦ forward-facing arc (Figure 2F). If any of the visual cues or
landmarks located at the four corners of the arena entered the
visual field of the simulated insect, its presence was encoded in
two signals, representing objects in terms of “what” is perceived,
and its angular position, an egocentric “where” they are perceived.
We simplified the neural representation of the unique visual
features of each landmark (i.e., color) by providing a different
visual unit per each landmark, in a localistic representation. The
activity of a visual unit was set to 1 if the corresponding landmark
was located in the same sector occupied by the simulated insect.
The same value was set to 0.5 when a cue was located anywhere

Frontiers in Behavioral Neuroscience | www.frontiersin.org 5 August 2017 | Volume 11 | Article 142

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Fiore et al. Modeling Central Complex Mediated Navigation

else in the visual field, therefore responding to the presence of
a landmark independently of its position. To spatially represent
and differentiate between landmarks located, for instance, on the
left rather than on the right of the body, a second source of visual
input was conveyed via six angular position units. These units
encoded, with a binary 0/1 activity, an egocentric representation
of the position of the landmarks with respect to the body of
the simulated insect (i.e., each unit was active to signal the
presence of a landmark located, respectively: left, front-left, front,
front-right, right, or in the same sector of the simulated insect
body; Figure 2F). In contrast to visual units, angular units could
not differentiate among landmarks, so that the agent needed to
integrate both sources of visual information in order to determine
which landmark was visible and where.

Putative Desired Outcomes

We explored whether the modeled CX could store multiple
sequences of actions at the same time, and recall the correct
one, depending on a desired outcome. Therefore, we provided
the modeled CX with two “biases” simulating a physiological
assessment of the body status (e.g., representing hunger and
thirst). Under this condition, termed “intentional spatial

navigation,” each of the two target areas was assumed to satisfy
only one of the two desired outcomes: target 1 was associated with
bias 1 and target 2 was associated with bias 2. The biases were
activated in sequence and maintained active until the end of the
trial time or until the appropriate target area was found.

Parameter Estimation

The selection process eventually carried out in the EB is biased
by the weights of the connections streaming sensory information
toward the EB itself. Thus, the behavior of the simulated insect
ultimately depends on the configuration of the parameters
representing the weights wji between sensory inputs and EB. In
a real-life experiment, an insect would randomly explore the
physical equivalent of the proposed simulated arenas, eventually
reaching one of the target areas. In presence of unexpected
positive outcomes (e.g., food or water), reinforcement learning
processes would occur (Sutton and Barto, 1998), thereby altering
the connection weights between sensory regions and the EB
(Waddell, 2010, 2013). In the long run this process results
in instrumental conditioning, effectively generating and storing
motor responses to perceived stimuli in the connection weights
that bias the selection process in the EB. For the time being, we
did not simulate fast dopamine burst firings in our model, which
are essential in regulating the learning process (Schultz, 2002;
Waddell, 2010, 2013). Therefore, we tested the simulated insect
under the theoretical assumption that it had already completed
its training and formed its stimulus-response associations.
This assumption entails there are configurations of connection
weights wji that allow the simulated insect to exploit the sensory
information and recall a path of motor responses to navigate
the arena. We looked for such configurations of parameters
relying on a Monte Carlo method for parameter estimation and
tested the simulated insect in two million randomly sampled
configurations, or behavioral phenotypes, per each condition.

Software

The model, Monte Carlo parameter estimation and simulated
interaction between environment and agent were developed and
run in MatLab in ad hoc libraries.

RESULTS

We exposed the simulated insect to three different arenas
of increasing complexity. The sensory inputs conveyed
information about visual landmarks and self-motion that
changed dynamically, depending on body orientation of the
simulated insect and its location in the arena. We hypothesized
the simulated insect can rely on the accessible information as
guidance cues for both reactive sensory-driven and intentional
spatial navigation (Table 1). Our model explored two key
assumptions:

Columnar Wedge Neurons Integrate Visual
Landmarks with Idiothetic Cues
Visual information available to the insect (Figure 2E) was
simulated by two signals, encoding the perceived object features
and egocentric location. Each of the four visual units was
used to respond to the presence of a specific landmark in
the visual field (Figure 2F), independently of its egocentric
position. Information about the egocentric position of perceived
landmarks was conveyed via six (for landmarks located in a sector
on the left, right, front-left, front-right or front of the insect body,
or in the same sector of the agent) angular position units, which
could not differentiate among landmarks. Our simulated agent
had to integrate both types of visual information jointly with
body orientation and self-motion feed-back information to solve
the task and accomplish purposeful navigation. This process of
sensory integration simulated information encoded in the real
PB->EB columnar wedge neuron activity (Seelig and Jayaraman,
2015) that combines visual landmarks with self-generated cues
(Heinze, 2015).

Tangential Ring Neurons Mediate Motor
Action Selection
In addition to columnar wedge neurons, we included tangential
ring neurons of the EB into the model architecture. Based
on lineage analyses revealing their terminal arborisations (Ito
et al., 2013; Lin et al., 2013; Wolff et al., 2015), we simulated

TABLE 1 | Successful behaviors over attempts ratios.

Available Input

sources

Open arena Simple maze Complex maze

Vision + Target 1–6,950:106 Target 1–67:106 Target 1–0.5:106

Body orientation Target 2–1,335:106 Target 2–175:106 Target 2–18:106

Vision Target 1–0:106 Target 1–0:106 Target 1–0:106

Target 2–0:106 Target 2–0:106 Target 2–0:106

Body orientation Target 1–0:106 Target 1–0:106 Target 1–0:106

Target 2–0:106 Target 2–0:106 Target 2–0:106
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three ring neuron subtypes and layers (R1, R2/4, and R3), each
divided into 16 wedges, and implemented connections between
columnar wedge and tangential ring neurons in a layer- and
wedge-specific pattern in the EB ring neuropil (Figures 1C,D).
Given the lack of information about EB internal organization
or hierarchy among layers, we implemented symmetric lateral
inhibitions among ring neurons (Fiore et al., 2015; Kottler et al.,
2017). These lateral inhibitions established a competition among
incoming inputs, which resulted in the transient selection of
salient stimuli (Rabinovich et al., 2001; Afraimovich et al., 2008).
This transient winner-takes-all functionality was consistent with
the dynamics reported for the EB (e.g., Seelig and Jayaraman,
2015; Kottler et al., 2017). Finally, EB-mediated selections were
conveyed into premotor outputs via the inhibitory gating exerted
by the EB toward the LAL. The simulated LAL encoded premotor
commands that triggered motor activity and provided essential
feedback of self-motion information (Namiki and Kanzaki,
2016).

In silico Interrogation of EB-Mediated
Spatial Navigation
We applied these assumptions in our model and utilized
the Monte Carlo method to compute two million randomly
generated patterns of parameters or behavioral phenotypes. This
allowed us to investigate configurations of parameters that might
have enabled the simulated insect to reach the target areas by
responding to incoming sensory stimuli, under each condition.
We used this sampling to determine a ratio that captures the
number of successful navigations per million attempts, per
condition. The resulting value thus provides a proxy for the
duration of a putative exploration required to successfully find
a target area in the arenas. High ratio values correspond to
frequent discovery of successful configurations of parameters, or
alternative successful paths for the simulated insect, therefore
implying a short exploration time. As expected, the resulting
ratios suggested that successful spatial navigation is dependent
on the complexity of the arena explored and the quality and
combination of available sensory sources (Table 1).

Sensory-Driven Navigation
Under the condition termed as “open arena” the simulated insect
was able to change location by freely moving North, South, East
or West. Therefore, the optimal behavior, marking the shortest
path between starting location and target area, required only one
turn, to the left (Figure 3A, see also Supplementary Videos 1, 2).
Nonetheless, many other suboptimal behaviors (longer than
the shortest path) were still successful, allowing the simulated
insect to reach the target area within the time limit, despite
the fact they relied on multiple turns and unnecessarily long
paths. Information provided by vision and self-motion allowed
the algorithm to find 6950 successful behavioral phenotypes per
million attempts to reach target area 1 and 1,335 per million
attempts to reach target area 2. Neither visual information nor
self-motion information, considered separately, proved to be
sufficient to solve the task.

In the “simple maze” arena, the internal walls divided the
arena in half, with a narrow passage limiting the movements of

the simulated insect from its starting point toward both targets.
The arena termed “complex maze” introduced further internal
walls that required the simulated insect to execute multiple turns
to reach the target areas. Independently of the target area, optimal
behavior required two turns in the simple maze (Figure 3B, see
also Supplementary Videos 3, 4) and five turns in the complex
maze (Figure 4, see also Supplementary Videos 5, 6). These
limits significantly reduced the number of suboptimal behaviors
that could successfully solve the task, thus diminishing the
chances the search algorithm would be able to find solutions
via random sampling. Nonetheless, the search algorithm found
several successful configurations of parameters under both
simple maze and complex maze conditions (Table 1). These
allowed the simulated insect to use visual cues and body
orientation information to trigger the appropriate sequence of
actions, resulting in turns and navigation behavior to avoid the
obstacles and reach the target areas. Neither of the input sources,
considered alone, endowed the search algorithmwith a successful
behavior (Table 1).

Under all conditions of environment complexity, these tests
show that the simulated EB was able to correctly estimate
the position of the agent in space via the integration of
sensory information. This process resulted from the weighed
transformation of a flow of sensory inputs in a sequence
of selections. By establishing a winner at each step in the
competition among received inputs, the EB was then able to
gate all but a single motor response. In turn, this clear-cut
transition of activities in the LAL (Figure 5A) generated the
visible spatial navigation of the simulated insect. Interestingly,
in the complex maze arena, successful navigation correlated in
several instances with periodic oscillations among EB modules
(Figure 4). These oscillations were favored by the self-motion
information conveyed by the body orientation units and
premotor activity. Due to these inputs, the execution of turning
behavior alters the incoming input and, because it is becoming
part of the sensory input, is affecting the execution of future
actions. This information loop resulted in oscillatory activity and
cycles of motor sequences, thereby defining a cyclic attractor.

Navigation with Altered Activity Levels of
EB Layers and Modules
To further explore the role of the EB in spatial navigation, we
simulated either the deactivation or the over-activation of EB
layers and modules, by manipulating the value of the constant
bj in equation 1. In the first set of manipulations, any decrease
in the activity of EB layers resulted in a proportional decrease of
the inhibitory gating function toward the LAL. The model was
robust to low levels of manipulation (bj =−0.5). In contrast, the
more EB modules and layers were artificially impaired in their
activity, the higher the chances of simultaneously co-activating
multiple modules of the LAL (bj < −0.5). This co-activation
was interpreted in the model as the attempt to trigger multiple,
conflicting motor outputs, such as “turn left and right at the same
time” (cf. Figures 5A,B).

In the second set of manipulations, we artificially increased
the baseline activity of EB layers and modules. This altered
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FIGURE 3 | Examples of spatial navigation under the conditions open arena and simple maze. (A) Example of navigation in the open arena, in which the simulated

insect walks from its starting position toward the target area 1. In this example the simulated insect starts from sector 1, then turns left whilst in sector 2, and

proceeds forward crossing sectors 6 and 10, to reach the target in sector 14 (see also related Supplementary Videos 1, 2). (B) Example of navigation in the simple

maze from starting position toward target area 2. Under this condition, the simulated insect has to move east from its starting position, crossing sector 2, to turn left

whilst in sector 3. Then it has to move north, across sectors 7 and 11, before turning right, whilst in sector 15, and complete the path by reaching sector 16 (see also

related Supplementary Videos 3, 4). The path of the simulated insect is also represented with a black and white heat-map under the label “Position.” This heat-map

allows to track the position of the simulated insect at any step of the simulation, where a binary 0/1 activity encodes the presence of the agent in any of the sectors of

the arenas (16 units, one per sector). The inputs reaching the EB are reported under the labels: “body orientation” (4 units, one per possible direction, binary 0/1

activity), “vision” (4 units, one per landmark or visual cue, responding with fixed values of 0, 0.5, or 1, depending on the distance of the landmark), and “angular”

(6 units, one per egocentric position of any landmark in the visual field, responding with a binary 0/1 activity). Finally, the black and white heat-map, labeled “EB

modules,” represents the activity of the modules in the EB in a single hemisphere. This heat-map responds with continuous values between 0 and 1 and encodes the

average activity across the three layers of the EB ring neuropil. In the simulated EB, the competition among modules triggers the selection of one among eight

possible actions via gating of LAL premotor activity. The only actions resulting in changes of the simulated insect position or body orientation are encoded in the first

three modules as follows: move forward (module 1), turn left (module 2) and turn right (module 3). The other five actions remain part of the competition in the EB, but

represent motor activities (e.g., grooming, eating, standing still etc.,) which do not result in movement in the arena and thus do not change spatial navigation behavior.

the signal to noise ratio in the entire CX, impairing the
transient stability of stimulus-driven dynamics characterizing
the EB under control conditions. At lower levels of over-
activation (bj = 0.5), the simulated insect required more time
to change a selected behavior. This effect of over-activation is
highlighted by a comparison we established for 50 (randomly
selected) configurations of parameters that were found to be
successful in reaching either of the two target areas in the open
arena, whereby the simulated insect relied on all sensory input
sources. These successful configurations were tested again after
over-activating one layer in the EB. The comparison showed
a significant increase in the simulated time required to reach
the target area [4.9 ± 2.3 seconds vs. 3.6 ± 1.3 seconds,

p < 0.001, t(49) = −3.58]. Finally, at high levels of over-
activation affecting all EB layers (0.5 < bj < 1.0), the ability
of the simulated insect to perform any selection and change
it in response to new incoming stimuli was compromised,
resulting in irresponsive and unsuccessful navigation behavior
(cf. Figures 5A,C).

Intentional Spatial Navigation
Under this condition, we tested whether the connectome
of the CX, as defined in our model, could account for
the flexible selection among different courses of action and
navigation paths (e.g., Jourjine et al., 2016). Depending on
interoceptive signals (e.g., hunger or thirst), the simulated

Frontiers in Behavioral Neuroscience | www.frontiersin.org 8 August 2017 | Volume 11 | Article 142

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Fiore et al. Modeling Central Complex Mediated Navigation

FIGURE 4 | Examples of spatial navigation under the complex maze condition. Both panels illustrate examples of navigation under the complex maze condition (see

also related Supplementary Videos 5, 6). (A) Motor behavior of the simulated insect, from its starting position toward target area 1. To avoid the obstacles in the

arena, the insect turns 7 times and crosses 7 sectors. (B) Motor behavior displayed by the simulated insect to reach target area 2. In comparison to (A), the insect

reaches its target crossing 5 sectors in total. Under this maze condition, obstacle avoidance requires 5 turns in both versions of the task with the example in (A)

reporting sub-optimal behavior. In both examples, the path of the simulated insect can be tracked in a black and white heat-map under the label “Position.” This

heat-map continuously records the position of the agent during the simulation time, responding with a binary 0/1 activity to the presence of the agent in any of the

sectors of the arenas (16 units, one per sector). The inputs reaching the EB are reported under the labels: “body orientation” (4 units, one per possible direction, binary

0/1 activity), “vision” (4 units, one per landmark or visual cue, responding with fixed values of 0, 0.5, or 1, depending on the distance of the landmark), and “angular” (6

units, one per egocentric position of any landmark in the visual field, responding with a binary 0/1 activity). Finally the black and white heat-map, labeled “EB

modules,” represents the activity of the modules in the EB in a single hemisphere. This heat-map responds with continuous values between 0 and 1 and encodes the

average activity across the three layers. In the simulated EB, the competition among modules triggers the selection of one among eight possible actions via gating of

LAL premotor activity. Activity in the LAL triggers the execution of 8 different actions which can all be selected via the gating function exerted by the EB. Three of these

actions result in changes of body orientation or position of the simulated insect and are encoded in the first three modules: move forward (module 1), turn left

(module 2) and turn right (module 3). The remaining five actions putatively represent motor activities, such as grooming, eating or standing still which are not

graphically represented in terms of behavioral execution.

insect had to decide which of two known repertoires to
recall. Each repertoire putatively allowed to reach one of
the two desired outcomes (e.g., food or water), each located
in a different target area. In comparison with the tests
simulating sensory-driven navigation, under this condition,
a configuration of parameters or behavioral phenotype was
considered successful if it allowed reaching both target area,
in a sequence determined by the desired outcome. The
search algorithm found a ratio of 90 solutions per million
behavioral phenotypes, under the condition of open arena.
The simple and complex maze condition provided one and
zero solutions per million attempts, respectively (see also
Supplementary Videos 7, 8).

DISCUSSION

Previous studies identified the central complex as a key neural
correlate involved in processing sensory guidance cues and
mediating behavioral outputs that together orchestrate spatial
navigation in insects (Strausfeld and Hirth, 2013; Pfeiffer and
Homberg, 2014; Turner-Evans and Jayaraman, 2016; Webb and
Wystrach, 2016). However, the neural mechanisms underlying
sensory integration and motor action selections have remained
largely elusive. In particular, it is not yet understood how the
CX exploits sensory inputs, including internal representations of
head-body orientation, to realize motor functions associated with
spatial navigation. Here we presented an in silico interrogation of
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FIGURE 5 | Simulated LAL under different conditions of EB manipulation. The three panels illustrate 2.5 s of simulated activity recorded in the LAL, single hemisphere,

under different condition of EB manipulation. (A) Under control condition, the heatmap shows differentiated activity in the modules of the LAL, with transient selections

due to the gating inhibition performed by the EB. In this example, the simulated insect successfully moves forward, turns left, and moves forward again until it reaches

target area 1. (B) Under the condition of EB deactivation, the gating function is diminished leading to general overactivation of several modules in the LAL and loss of

differentiation in the signal. In this example, the simulated insect is able to perform the initial motor activity, but it stops when the actions “forward” and “turn right”

become both strongly active. (C) Under the condition of EB overactivation, the gating function exerted by EB on LAL is potentiated. In this example, LAL is only able

to trigger one action (move “forward”) at the beginning of the simulation, when the visual input is strong enough to overcome the inhibition provided by the EB. As

soon as the simulated insect changes its location and the visual input is not accessible, the remaining sensory stimuli are unable to drive any premotor response,

leaving the simulated insect motionless.

the computational role the CX can play in sensory integration for
motor action selection and spatial navigation. A simulated insect
was tasked to navigate a series of environments of increasing
complexity, in order to reach either one of two or both target
areas in 2-dimensional arenas, whilst avoiding obstacles. The
CX, which orchestrated changes in orientation and forward
movements of the simulated insect, was characterized by a bio-
constrained neural connectome (Fiore et al., 2015; Wolff et al.,
2015; Kottler et al., 2017). The simulated insect relied on this
structure to process a variety of sensory inputs, store navigation
strategies and recall them as either a response to the stimuli
perceived or depending on desired outcomes.

The simulations show our model of the CX is compatible
with the sensory-driven multi-stable dynamics that characterize
the presence of multiple attractor states (Fiore et al., 2015). This
key computational feature has been formally described as an
essential requirement for action selection across species, as these
dynamics allow a neural system to perform a transient winner-
take-all competition (Rabinovich et al., 2001; Afraimovich et al.,
2008). Such competition, established among weighed sensory
inputs, grants the suppression of noise and weak competitors,
but does not prevent adaptation, so that the winning signal can
change as a function of the sensory input. In the simulations,
a continuous stream of sensory inputs is processed in our bio-
constrained model of the CX to select sequences of actions
resulting in spatial navigation. Furthermore, the simulations
show this neural structure integrates multiple sensory sources,
simulating how action selection and navigation can be guided
by weighed information about polarized light, visual landmarks,
view-based panoramas or self-motion and body orientation
(Neuser et al., 2008; Ritzmann et al., 2008; Lin et al., 2014; Seelig
and Jayaraman, 2015; Varga and Ritzmann, 2016; Omoto et al.,
2017).

This process of sensory-driven motor selection is weighed by
the columnar formation characterizing the CX, and in particular
afferent EB connectivity. In the proposed model, the parameters
regulating the weights of EB afferents and associated behavior
are fixed and determine reactive responses. These weights
could be either genetically determined, identifying innate motor
behaviors, or they can be shaped by experience, as found in
dopamine-dependent learning processes (Waddell, 2010, 2013;
Lin et al., 2014). The latter case entails the insect would be
able to form sensory-motor memories about stimulus-response
associations, akin to habits.

Finally we tested whether our model could also account for a
simplified form of intentional navigation that would overcome
the limits posed by reactive sensory-driven navigation. In our
test, we show the simulated CX could efficiently store two
courses of actions in a single configuration of parameters or
behavioral phenotype, each leading to a different target area. This
feature allowed the model to arbitrate among different paths
and select the sequence of actions that could satisfy a desired
outcome. Our computational investigation suggests the CX
can form rudimentary representations of space-related action-
outcome contingencies and trigger the sequence of movements
required to reach a desired position in space. Such a combined
representation of motor and spatial information can be exploited
to guide navigation and pursue a goal. We argue that the
presence of this form of spatial memory can be an indication of a
rudimentary mental representation of the environment (Tolman,
1932; Cheeseman et al., 2014).

In our simulations, we assumed that, to produce a simplified
motor output, the neural system integrated different sources of
information: (1) visual landmarks in the arena and their angular
position; (2) body orientation and self-motion. The simulations
show none of these input sources was sufficient, if considered
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alone, to guide the behavior of the simulated insect toward
any of the target areas. Thus, the EB was required to integrate
its multisensory inputs to generate a transient selection that
would adapt to the continuous change of sensory information.
The output of the EB in turn could “gate” the appropriate
premotor response in the LAL, generating a sequence of actions
in response to this multisensory stream of inputs. Importantly,
self-localization in space can be accomplished also by relying on
sensory integration of non-visual sources. For instance, antennal
mechanosensations, which are also conveyed toward the EB
(Ritzmann et al., 2008; Harley and Ritzmann, 2010; Guo and
Ritzmann, 2013) can provide information about obstacles and
landmarks, where surface features take the place of color or
celestial e-vector orientations of polarized light (Heinze and
Homberg, 2007). Therefore, these sensory inputs can be exploited
also by nocturnal animals to trigger sequences of actions and
guide successful spatial navigation (el Jundi et al., 2015).

This hypothesis, assuming multi-stable dynamics for the
generation of sequences of actions, may seem at odds with recent
findings, which suggest that the EB is characterized by ring
attractor dynamics encoding an abstract internal representation
of the fly’s heading direction (Seelig and Jayaraman, 2015; Kim
et al., 2017). Indeed, these studies show visual cues presented
to head-fixed Drosophila result in a bump-like activity pattern
largely confined to one EB module/wedge that can move along
the EB and its wedges according to position changes (Seelig
and Jayaraman, 2015; Kim et al., 2017). These dynamics have
been interpreted as indicative of the presence of a ring attractor,
which could be implemented either in specific layers of the EB
(e.g., E-PG neurons as suggested by (Kim et al., 2017)) or in the
entire neuropil. Different from multi-stable dynamics which are
characterized by a finite set of separate stable states, in a ring
attractor an infinite set of contiguous stable states respond in
the continuum to changes in the input stimuli. These dynamics
are reminiscent of those suggested for head direction cells in
mammals (Taube, 2007), which encode present head and body
direction. Despite compelling data showing how changes in
orientation toward visual stimuli are encoded in the EB, the
dynamics reported in these studies (Seelig and Jayaraman, 2015;
Kim et al., 2017) have also highlighted the presence of clear
discontinuity in the state transitions, as a function of the stimulus
position (Kim et al., 2017–see their video s9 and related model
comparison discussion).

We argue, a different interpretation of these data is supported
by both our model and recent computational (Kakaria and de
Bivort, 2017; Varga et al., 2017) and functional analyses (Omoto
et al., 2017). This interpretation suggests information about
body orientation is encoded upstream of the EB wedges and
propagated toward the EB as one of several sensory inputs.
Importantly, our interpretation does not limit the EB to the
representation of head and body orientation, as the ring attractor
hypothesis might suggest. The problem with such limitation of
EB functions is that the gating exerted on the premotor area
of the LAL would be guided by ring attractor dynamics, and
would be reduced to the execution of changes of head and
body orientation. Such a conclusion would conflict with data
showing the important role of the EB in a wide range of motor
and cognitive responses to diverse sensory stimuli, including

e.g., flying (Weir and Dickinson, 2015), walking (Strauss and
Heisenberg, 1993; Kottler et al., 2017), or place learning (Ofstad
et al., 2011). All these functions are aided by the presence
of a head direction information, as changes of position in
space generally take into account the actual body orientation.
Nonetheless, these motor and memory functions do not require,
nor are limited to, the representation of head and body
orientation, as an agent can perform multiple actions (walking,
flying, grooming etc.) independently of its body orientation.

Despite the inclusion of several known features characterizing
the local connectome of the CX, we acknowledge the presence
of important limitations in the proposed model. Several
aspects of the neural organization of the EB have not been
described in the literature, yet. Details regarding those aspects
of the model that come from biological data as stated in the
literature as well as limitations in that data set that caused
us to make reasonable assumptions can be found in the
Methods section. For instance, a plausible hierarchy among
EB layers (Fiore et al., 2015) would configure pathways of
information processing that would affect the computational
functions of the entire CX. Thus, further developments of the
model will be necessary to include the micro-organization of
the internal structures of the CX. Nonetheless, the dynamics
characterizing our model rely on the macro organization of the
connectivity among internal structures of the CX and suggest
computational roles that account for a wide variety of data and
behaviors. In particular, it is the combined effect of columnar
input organization and lateral inhibitions that results in the
hypothesized transient winner-take-all competitions essential
for action selections and their assembly into action sequences.
Furthermore, columnar connectivity targeting distinct modules
in EB and LAL and associated multi-stability may indicate a
hierarchical organization, akin the functional anatomy of the
vertebrate basal ganglia (Fiore et al., 2015). In vertebrates,
information about head and body orientation is found in the
striatum as part of multiple sensory inputs that are computed
in this nexus of the basal ganglia (Taube, 2007; Kim et al., 2014;
Barter et al., 2015).

Our findings reveal that depleted activity in multiple EB
layers and wedges cause conflicting motor output, whereas
simultaneous co-activation of multiple EB layers and wedges
result in random and ultimately unsuccessful spatial navigation.
In the first case, too many conflicting motor commands are
selected (you can’t turn left and right at the same time), and in the
second case nomotor command is selected, thus causing inaction
comparable to indecision or lack of motivation. In both cases,
the net result inaction is caused by impaired action selection
which in turn affects spatial navigation. Our computational
data suggest that the functional nexus between wedge-specific
columnar PB-EB (Green et al., 2017; Turner-Evans et al., 2017)
and EB-LAL (Fiore et al., 2015) feedback loops, together with
inhibitory activity from EB ring neurons (Kottler et al., 2017),
code for neural mechanisms underlying sensory integration and
motor action selection for spatial navigation. This hypothesis is
supported by recent studies in Drosophila (Green et al., 2017;
Turner-Evans et al., 2017) and cockroaches (Martin et al., 2015;
Varga and Ritzmann, 2016) and leads to testable predictions,
for example that targeted layer and/or wedge-specific activity
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manipulations of the EB in Drosophila affect goal-directed
behavior like turning. It will be interesting to see the outcome
of such experiments.
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The videos show examples of simulated successful navigation,
under different conditions. In each run, the starting location of
the agent is selected randomly within the 100 locations in the
South-West sector 1 of the arena. Target locations are found in
sectors 14 (Target 1) or 16 (Target 2); the navigation is successful
if the agent reaches its designated target within 30 s of simulated
time.

Supplementary Video 1 | Agent reaching Target 1 under the condition of open

arena.

Supplementary Video 2 | Agent reaching Target 2 under the condition of open

arena.

Supplementary Video 3 | An example of successful navigation toward Target 1

under the condition of simple maze.

Supplementary Video 4 | An example of successful navigation toward Target 2

under the condition of simple maze.

Supplementary Video 5 | The behavior of the simulated agent under the

condition of complex maze, as it successfully reaches Target 1.

Supplementary Video 6 | The behavior of the simulated agent under the

condition of complex maze, as it successfully reaches Target 2.

Supplementary Video 7 | An example of “intentional spatial navigation”, defined

as the ability of a single phenotype to discriminate between putative goals and to

pursue the appropriate course of action. The simulated agent is shown in two

consecutive runs as a different goal is activated in each run. The order of the goals

is fixed (e.g., hunger first and thirst second) so that the simulated agent is required

to pursue Target 1 in the first run and Target 2 in the second run (e.g., food first

and water second). The video shows the simulated agent reaching its target

sectors in the order defined by its active goals, under the condition of

open arena.

Supplementary Video 8 | An example of “intentional spatial navigation,” defined

as the ability of a single phenotype to discriminate between putative goals and to

pursue the appropriate course of action. The simulated agent is shown in two

consecutive runs as a different goal is activated in each run. The order of the goals

is fixed (e.g., hunger first and thirst second) so that the simulated agent is required

to pursue Target 1 in the first run and Target 2 in the second run (e.g., food first and

water second). The video shows the simulated agent reaching its target sectors in

the order defined by its active goals, under the condition of simple maze.
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