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Versatility is important for a wearable exoskeleton controller to be responsive to both the

user and the environment. These characteristics are especially important for subjects

with spinal cord injury (SCI), where active recruitment of their own neuromuscular

system could promote motor recovery. Here we demonstrate the capability of a novel,

biologically-inspired neuromuscular controller (NMC) which uses dynamical models of

lower limbmuscles to assist the gait of SCI subjects. Advantages of this controller include

robustness, modularity, and adaptability. The controller requires very few inputs (i.e.,

joint angles, stance, and swing detection), can be decomposed into relevant control

modules (e.g., only knee or hip control), and can generate walking at different speeds

and terrains in simulation. We performed a preliminary evaluation of this controller on

a lower-limb knee and hip robotic gait trainer with seven subjects (N = 7, four with

complete paraplegia, two incomplete, one healthy) to determine if the NMC could enable

normal-like walking. During the experiment, SCI subjects walked with body weight

support on a treadmill and could use the handrails. With controller assistance, subjects

were able to walk at fast walking speeds for ambulatory SCI subjects—from 0.6 to

1.4 m/s. Measured joint angles and NMC-provided joint torques agreed reasonably

well with kinematics and biological joint torques of a healthy subject in shod walking.

Some differences were found between the torques, such as the lack of knee flexion near

mid-stance, but joint angle trajectories did not seem greatly affected. The NMC also

adjusted its torque output to provide more joint work at faster speeds and thus greater

joint angles and step length. We also found that the optimal speed-step length curve

observed in healthy humans emerged for most of the subjects, albeit with relatively longer

step length at faster speeds. Therefore, with very few sensors and no predefined settings

for multiple walking speeds or adjustments for subjects of differing anthropometry and

walking ability, NMC enabled SCI subjects to walk at several speeds, including near

healthy speeds, in a healthy-like manner. These preliminary results are promising for

future implementation of neuromuscular controllers on wearable prototypes for real-world

walking conditions.
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1. INTRODUCTION

The challenges of developing an effective controller for assistive
and rehabilitative robotic devices stem from both incomplete
knowledge of healthy neurophysiology and biomechanics and
the difficulty in translating such knowledge, however incomplete,
into control algorithms. While observed properties of human
gait can be reproduced (e.g., joint trajectories), it is unclear
how to produce gait that can adapt to a variety of situations
and terrains. For individuals with impaired motor functions,
active and natural interaction between user and device is crucial
for promoting motor recovery and increasing brain plasticity
(Rossignol, 2000; Poon, 2004; Rossini and Dal Forno, 2004).
Therefore developing a controller that is safe and intuitive to
operate, responsive to the user’s intentions, and adapts to any
walking situation is an unsolved but necessary challenge.

Controllers of assistive exoskeletons generally uses predefined
movement patterns. This may entail imposing a specific walking
pattern (e.g., early versions of Lokomat, Colombo et al., 2000),
which does not require active user involvement and thus may
encourage slacking (Schmidt and Bjork, 1992) and reduce motor
recovery capacity. Another class of controllers mitigates this
problem by assisting the patient when needed [e.g., when
the patient’s movement is deviated from the desired pattern
(Blaya and Herr, 2004; Sup et al., 2008)]. This can be achieved
by modulating the stiffness and damping properties of the
controller, and knowing these properties also allows controller
actions to be stable and predictable. However, to achieve walking
at different speeds, for example, these parameters need to be
tuned at particular instances in the gait cycle and for each speed
(Sup et al., 2009). Multiple reference trajectories for a variety
of speeds and situations are needed to cover a wide range of
locomotor behaviors, which may require laborious tuning by
experimenters, clinicians, or the users themselves.

An alternative approach for adaptive controllers is to utilize
time-invariant phase variables. For speed adaptation, these
include tibia angular information (Holgate et al., 2009) and
virtual constraints (Quintero et al., 2015). With continuous
estimation of gait phase, users can accelerate or decelerate within
a stride, instead of on a stride-to-stride basis. In comparison
to impedance-based control, fewer parameters are needed, and
state switching is not necessary. Nonetheless, these methods
require accurate sensing of relevant phase variables, and it is
uncertain how these methods can be extended beyond speed
adaptation, where bio-inspired approaches may have more
potential.

User intention is another challenge, and some simple and
unambiguous user interface solutions include manual inputs
(e.g., push-button) or voice commands. However, these user-
activated gaits may be too generic and therefore susceptible to
the lack of interaction discussed previously. They also do not
address multi-joint level human-machine interaction. However,
requiring the user to command lower levels of control (e.g.,
actuate multiple degrees of freedom) can also lead to high
cognitive demands (Tucker et al., 2015). Hence there is a need
to find the right balance among reducing the degrees of freedom
to be controlled, effective subject involvement, and adaptability.

One interesting approach to encourage shared control that
is amenable to different gait conditions is myoelectric control,
which uses electromyographic activity (EMG) to generate
command signals. Myoelectric control does not require reference
signals, and users can actively command their device with
modulation of their own muscle signals (Fleischer et al., 2005;
Ferris et al., 2006). However, this method relies on clean and
reliable signals from functional muscles, which will often be
impractical or even impossible to obtain with paraplegics due to
their motor control problems.

To promote positive shared user-machine control,
bio-inspired controllers that mimic the userâĂŹs own
neuromuscular system are one potential solution. Current
approaches include leveraging complex musculoskeletal models
with virtual Hill-type muscles (Hill, 1938) activated by reflexes
(Geyer and Herr, 2010). This model has no predetermined
patterns of movement, and walking emerges from the interaction
of body dynamics, reflex loops, and virtual muscles with
the environment. Not only can the model recreate human
behavior such as joint kinematics, kinetic measures, and muscle
activations, but it can also walk at a variety of speeds and is
robust against perturbations and environmental disturbances
in simulation (Song and Geyer, 2015). Controller versions
of these models, called neuromuscular controllers (NMC) or
reflex-based controllers, have also been implemented on lower
limb prostheses (Eilenberg et al., 2010; Thatte and Geyer, 2016)
and on assistive devices (Dzeladini et al., 2016; Garate et al.,
2016) with promising results.

We investigated the capabilities of the NMC with a haptic
gait trainer worn by subjects with a Spinal Cord Injury (SCI).
This is the first known application of this controller on a
knee and hip robotic device with SCI subjects. We hypothesize
that the NMC’s virtual dynamics and few sensory inputs could
generate healthy-like gait at several speeds for subjects with a
diverse range of walking abilities. With NMC assistance, we
anticipate that simulating biological muscle motion could allow
active recruitment of the user’s own neuromuscular system,
possibly for rehabilitation.

2. MATERIALS AND METHODS

2.1. Neuromuscular Controller (NMC)
The NMC control paradigm uses a neuromuscular model
(NMM) to derive the reference torque pattern used to drive
the exoskeleton. The NMM comprises bio-inspired models of
muscles, sensors, and neural delays. In this contribution, the
NMM used is based on the gait simulation proposed by Geyer
and Herr (2010), where the torques applied to the different
lower limb joints comprise combined contributions from 14 leg
muscles (seven per leg). These virtual muscles are the tibialis
anterior, soleus, gastrocnemius, vasti muscles, hamstrings, hip
flexors, and glutei muscles (Table 1). The activity of each muscle
is the result of different reflex loops that act depending on the
gait cycle. During stance, the reflex loops induce higher activity
in extensor muscles to favor weight bearing support. When
the swing phase is initiated, the reflexes induce a reduction of
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TABLE 1 | Virtual muscles of the neuromuscular controller, their actions, and

whether or not they were used on LOPES at the time of testing.

Muscle Action In LOPES?

Gluteus (GLU) Hip extension Yes

Hip flexor (HFL) Hip flexion Yes

Hamstring (HAM) Hip extension, knee flexion Yes

Vasti (VAS) Knee extension Yes

Gastrocnemius (GAS) Knee flexion, ankle plantarflexion No

Soleus (SOL) Ankle plantarflexion No

Tibialis anterior (TA) Ankle dorsiflexion No

extensor activity and an increase of flexor activity (see Figure 1A
for a detailed description of the NMC).

The advantages of this controller over other approaches
include robustness, modularity, and adaptability. In particular,
the NMC :

• does not require filtering of its inputs (as with myoelectric
control),

• can be decomposed into relevant modules (e.g., only knee
or hip control), allowing for easy adaptation to different
exoskeletons.

• can be modulate the level of assistance (i.e., through
scaling commanded torques) to account for subject-specific
conditions, such as between legs (to accommodate for
left/right asymmetry), between joints of the same leg (to
accommodate for joint level asymmetry), and within joints
(to accommodate for muscle weakness, i.e., flexor/extension
asymmetry).

• can generate walking at different speeds and on different
terrains (Song and Geyer, 2012, 2015).

While some of these advantages could be achieved with
model-based approaches, the complexity of biological systems
hinders traditional models (e.g., impedance-based control) from
attaining the same benefits without elaborate control algorithms
(as discussed in the Introduction). Likewise, artificial neural
networks, such as adaptive frequency oscillators, can also
learn to adopt various gait patterns. However, this requires
synchronization between the oscillators and the exoskeleton on
a step-by-step basis, which arguably takes longer than the quick
reactivity of the NMC reflexes.

Instead of constraining a specific motion and resisting against
all other external forces, the NMC has the capacity to both work
with or against external forces, depending on the direction of
the external forces and the current muscle states. For example,
during swing at the hip joint, the controller generates a large
burst of flexor activity to swing the leg forward. During that
period, the NMC’s response to an external force on the hip
joint would depend on the direction of its application. An
extensor torque would act against the controller while flexor
torque would act together with the controller. This feature and
the ability of the model to produce movement and interaction
dynamics in agreement with human locomotion ensures that,
barring volitional hindrance by the subject, both the controller
and the subject will work in concert. When combined with the

modularity aspect of the NMC, this approach allows for easier
design of controllers tailored to both the specificity of the subject
and of the device.

There are two important differences between the NMM
proposed by H. Geyer and the one used here for the
NMC. First, to reduce the complexity of the sensors used, a
simplified version of the weight transfer reflex, which does not
require ground reaction forces (GRFs) but only ground contact
information (i.e., the activity of the vastus muscles is decreased
or increased depending a filtered version of the ground contact
information), was implemented. Second, the trunk balance reflex
(proportional-derivative feedback control acting on the trunk to
ensure that the trunk stays upright) was not used. This limits the
current use of NMC for SCI subjects with very good control of
their trunk and thus excludes paraplegics with lesions above C7.

Since the LOPES gait trainer had only knee and hip actuation,
we used only the knee and hip NMC modules. This excluded
all muscles contributing to the ankle (i.e., the tibialis anterior,
soleus, and gastrocnemius). The nominal torques provided by the
controller corresponds to those one needed for a human of 80 kg
in mass and 1.8 m in height to walk at 1.3 m/s. To produce such
a gait, weights on 25 reflex parameters were optimized before the
experiment (see Dzeladini et al., 2014, for optimization details).
These reflex weights were left unchanged for subject testing.
Therefore we did not scale the model to each subject’s mass or
height (e.g., adjust virtual muscle lengths).

Gains multiplying the nominal torque output of the knee
and hip controller were the only parameters used to scale the
level of assistance. The gain was applied as a percentage, where
100% was the nominal provided torque and 0% was zero NMC
torque, which defaulted to Zero Impedance Mode (ZIM, where
the generated torques are to make the device feel as transparent
as possible). The assistance gain could also be further tailored to
act on specific joints (by multiplying a gain to the knee or hip
torque of both legs) or on different legs (by multiplying a gain to
the right or left knee and hip torques.)

2.2. Experiment
2.2.1. LOPES Gait Trainer
The haptic gait trainer LOPES (Figure 1B, see Meuleman et al.,
2016, for details) consists of shadow legs that help move the
subject and a treadmill. The subject is provided body weight
support through a harness and is also attached to the device at the
waist and at the shank with leg clamps. Active degrees of freedom
include shank flexion/extension, thigh flexion/extension and hip
abduction/adduction. LOPES can impart up to 70 N-m of knee
torque and hip torque (Meuleman et al., 2016), within range of
biological torques and therefore able to move the lower limbs
of a fully paralyzed subject. The pelvis can also be moved in the
forward/aft direction and in the frontal plane. Since the ankle is
unactuated, passive toe straps in series with springs were used to
prevent toe drag.

2.2.2. Participants
Seven adult subjects walked with a lower limb gait trainer
controlled by the NMC. Of the seven subjects, one was healthy
(i.e., no neurological deficits, female, 32 years of age, mass
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FIGURE 1 | Schematic overview of (A) the NMC and (B) the LOPES gait trainer. (A) Sensors on the exoskeleton are used to detect ground contact. Then, depending

on whether the limb is in stance or swing, different reflex rules are activated (shown on the bottom right table). An extra term is added to the hip flexors HFL and hip

extensors GLU to facilitate the weight bearing transfer during double support. The reflex loops (which use muscle length, stretching velocity, and tendon force) are

then combined to stimulate virtual Hill-type muscles which then generate active torques on exoskeleton joints. (B) Subjects in LOPES walk on a treadmill with body

weight support. Knee and hip actuation is provided with guidance bars moved by shadow legs, and passive toe straps prevents toe drag. The NMC provides hip and

knee torque commands. Sensory input into NMC include stance state, hip angle, and knee angle for both legs. LOPES figure based on Meuleman et al. (2016).

M 58 kg, height L 1.79 m), and the six others had a spinal
cord injury (see Table 2 for subject information). Neurological
status of SCI patients was assessed using the American Spinal
Injury Association (ASIA) and ASIA Impairment Scale (AIS,
Kirshblum et al., 2011). Of the SCI subjects (N = 6, 2 female,
4 male, 24–52 years of age, mass M 69.5± 14.9 kg, mean± s.d.,
height H 1.79± 0.07 m), two had incomplete injuries (Group
I - AIS level C and D) and the others had a complete injury
(Group II - AIS level A). All subjects provided written informed
consent prior to the study, according to Institutional Review
Board procedures.

2.2.3. Protocol
Subjects walked at a variety of speeds and controller assistance
levels, depending on their ability and comfort level. At the
beginning of each trial, two experimenters manually maneuvered
each leg of the SCI subjects to initiate gait at very slow speeds.
Then treadmill speed and controller gains were increased until
the subject could walk independently with the controller and
without manual assistance. Controller gains and treadmill speed
were adjusted based on the subject’s needs, level of comfort,
and ability and by the clinicians’ subjective evaluation of subject
safety, gait quality, and perceived exertion. Body weight support
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TABLE 2 | Subject characteristics.

Subject Group Gender Age Weight Height Lesion AIS Etiology Lesion time

(year) (kg) (m) level level (months)

SHL – F 32 58 1.79 – – – –

S1A I F 35 48 1.65 T12 C Trauma 33

S1B I M 33 90 1.85 L1 D Trauma 18

S2A II M 52 82 1.78 T7 A Trauma 13

S2B II M 25 64 1.85 T11-T12 A Trauma 71

S2C II M 28 70 1.82 T9 A Trauma 49

S2D II M 24 63 1.80 T7 A Trauma 61

SHL is a healthy subject, S1A and S2A are Group I subjects (incomplete injury), and S2A, S2B, S2C, and S2D are Group II subjects (complete injury). Lesion and AIS level from clinical
neurological assessment, lesion time is the time from lesion diagnosis to data measurement (in months).

TABLE 3 | Subject experiment settings in NMC-controlled LOPES.

Subject EMG BWS AS NMC

Level

Speed Speed

Ind.

Speed

matched

Leg (%BW) (%BW) (%) (m/s) (m/s) (m/s)

SHL R 0 0 100 1.0 0 1.0

S1A L 31 12 40 0.4 (0.15–0.5) 0 0.3

S1B L 36 38 100 0.6 (0.4–1.4) 0.6 0.6

S2A R 60 24 30 0.35 None 0.3

S2B L 24 34 100 0.6 (0.3–0.6) 0.5 0.6

S2C R 21 48 100 0.7 (0.4–1.0) 0.7 0.6

S2D R 38 30 100 0.6 (0.4–1.1) 0.6 0.6

EMG leg indicates from which leg EMG measurements were recorded. BWS is body
weight support provided by LOPES as a percentage of body weight. AS is amount of
arm support exerted by the subject as a percentage of body weight. Speed is the walking
speed exhibited in Figures 2, 3, and the range of speeds for Figures 4, 5 are shown
parenthetically. Speed Ind. specifies the speed in which subjects did not need manual
assistance. SpeedMatched is healthy shod walking speed chosen for comparison against
walking with NMC.

(BWS) was also provided, and subjects could use the handrail for
support. Trials ranged from ∼2 to 5min long with an average of
112 strides, from which a subset is shown here.

2.2.4. Measurements
We evaluated the joint kinematics and muscle activity as well as
the joint torques provided by the controller and virtual muscle
properties. Knee and hip joint angles and controller torques
were measured from LOPES. The LOPES also measures the total
ground reaction force, but not the contribution from each leg.
Therefore gait event detection provided to the controller was
estimated from the vertical linear velocity of the ankle joint and
the angular velocity of the knee, similar to the method reported
in O’Connor et al. (2007). We calculated the contribution of
handrail usage by subtracting body weight support from the
overall bodyweight unloading. Overall unloading was calculated
from the average vertical ground reaction force as measured by
LOPES and the subject’s weight.

We calculated joint power to determine the amount of work
performed on the subject by the controller. Joint power (W)
was derived from joint angular velocity (time derivative of joint

angles) multiplied by joint torques. Joint work (J) was calculated
from the integral of positive (or negative) components of power
over time over a gait cycle. Virtual muscle lengths, velocities, and
activations were determined post-experiment because they were
not recorded in situ. We simulated the experiment by sending
the controller the same sensory inputs (i.e., joint angles, ground
contact) as during the experiment.

Electromyographic (EMG) activity of eight muscles was
recorded with surface electrodes from the least affected
leg (wired Bagnoli system, Delsys, Boston, MA, USA). The
muscles measured were the tibialis anterior (TA), soleus (SOL),
gastrocnemius medialis (MGAS), vastus lateralis (VL), rectus
femoris (RF), biceps femoris (BF), semitendinosus (ST), and
gluteus maximus (GMAX). EMG signals were recorded at
1,000 Hz , and the EMG amplifier had a bandwidth of 20–
450Hz. In post-processing, all signals were high-pass filtered
with a 20 Hz cutoff frequency (fourth-order Butterworth filter,
zero-lag). They were then full-wave rectified and low-pass
filtered at 10 Hz (zero-lag) to obtain the linear envelope.
Each EMG signal was then normalized by its maximum
amplitude over all conditions to obtain a maximum activation of
unity.

2.2.5. Analysis
We were primarily interested in whether or not NMC-controlled
LOPES could recreate healthy-like gait in SCI subjects. To assess
this question, we compared the joint angles and the provided
joint torques of NMC walking against joint angles and biological
joint torques from healthy shodwalking.We also compared EMG
patterns of SCI subjects with the healthy subject in LOPES and
with the virtual muscle activations of the model to assess changes
in muscle activity. As a crude method of evaluating energetic
optimality, we investigated the speed-step length relation of SCI
subjects with NMC. Finally we further studied two SCI subjects,
one with an incomplete lesion to compare walking with ZIM and
NMC, and another with a complete lesion to study how changing
walking speed affected the NMC.

Since each subject had different levels of walking abilities
and impaired behavior (experimental conditions summarized in
Table 3), controller settings and treadmill speed varied, making
inter-subject comparisons difficult. Therefore only qualitative
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FIGURE 2 | Knee and hip angles and NMC generated moments, power, and work from seven subjects walking with NMC and LOPES. Mean (solid line) and standard

deviation (shaded) trajectories are shown along with healthy shod walking (dotted line, see Speed Matched in Table 3) for comparison. Trajectories are shown as a

percentage of gait cycle (% of stride) of one leg (corresponds to “EMG leg” in Table 3). Toe-off indicated by dashed vertical line. Ext, positive; Flx, negative.

assessments in magnitudes and trajectories between healthy
NMC, SCI NMC, and healthy shod were made for joint angles,
torques, and powers at a particular speed and gain. For S1B, S2C,
and S2D, this condition was at 0.6 m/s and 100% gain. S2C data
was compared at a faster speed (0.7 m/s) because this subject still
needed manual assistance at 0.6 m/s. In contrast, S1A and S2A
data were compared at a lower speed and gain. S2A was only able
to walk with a combination of NMC and manual assistance. We
only show data of the same leg from which EMG measurements
were made but acknowledge some small asymmetrical behavior
could exist.

A simple burst detection algorithm was used to determine
if EMG patterns contained meaningful or noisy signals. Similar
to Di Fabio’s method (Di Fabio, 1987), we first calculated a 50
ms baseline of non-activity for each muscle signal. Then we
evaluated whether or not there was a consecutive 25 ms window
of activity that was greater than the mean plus three times
the standard deviation of the baseline activity. If this activity
existed, then the signal was deemed a viable measurement. As
an indication of activation timing, we also calculated the time
of peak muscle activation as a percentage of gait cycle. For the
tibialis anterior signal only, we searched for the peak near toe-off.

The average EMG traces were also compared against
activation signals of its corresponding virtual muscle. Since the
NMC is a simplification of the human musculoskeletal system,
the vastus lateralis was compared against the modeled vasti
activation, the rectus femoris against the hip flexors, biceps
femoris and semitendinosus with the hamstring, and the gluteus
maximus against the glutei muscle group. Although some subject
EMG signals did not contain any activity, it was conceivable that
the virtual muscle activations could compensate for the lack of
motor function.

For comparison with NMC gait, healthy shod joint measures
were derived from one subject (female, 31 years of age,
mass M 65 kg, height H 1.63 m) walking on a treadmill
at 0.3, 0.6, and 1.0 m/s. We derived kinematics and inverse
dynamics (Opensim, Stanford, CA, USA) from motion capture
measurements (Phoenix Technologies, Visualeyez, Canada) and
ground reaction forces from an instrumented dual-belt treadmill
(Motekforce Link, Amsterdam, the Netherlands).

We made two quantitative comparisons across multiple
subjects and trials to determine the general behavior of the NMC.
First, we assessed whether the NMC could reproduce the speed-
step length relation found in healthy gait (Grieve, 1968) and
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FIGURE 3 | EMG patterns from eight leg muscles of subjects walking with NMC. EMG signals which have met the burst criteria (mean: solid black line), and noisy

measurements (light gray) are shown (standard deviation: shaded). Superimposed (red) is muscle activation provided by the virtual muscles in NMC. Trajectories are

shown as a percentage of gait cycle (% of stride). Toe-off indicated by dashed vertical line.

second, the relation between speed and joint work (Donelan et al.,
2002). The first relation represents energetically optimal changes
in step length with speed. Healthy subjects have been found to
walk with a step length s following the power law s = αvβ with β

typically reported to be 0.54± 0.10 (Collins and Kuo, 2013). To
calculate exponent β (and offset α), we applied a linear regression
of log s = logα+β log v for each SCI subject for all trials without
manual assistance (see Table 3 for speed ranges). Since S2B did
not walk without manual assistance, his data was excluded from
this analysis.

We also determined the relation between speed v and
joint work W. Past studies (Zelik and Kuo, 2010) have
found that total joint work should be proportional to speed
W = v0.28. However, it is unclear if the same relation
holds for individual joints. Instead we simply performed a
linear regression on W = α + vβ to determine the
trend β to understand how NMC torques change with
speed.

To further illustrate the effect of NMC speed-related changes,
we showed biomechanical measures from S2D walking at 0.8,
0.9, and 1.0 m/s at a constant assistance level of 100%. We also
compared the joint trajectories of NMC-controlled gait with the
controller inactive (i.e., ZIM) with S1A, who was the only SCI
subject to have walked without assistance manually provided by
the experimenters.

Analysis was performed on a stride-by-stride basis with each
measure calculated as the average over all strides within a
condition. All values for comparisons across subjects (i.e., speed,
step length, joint work) were analyzed in dimensionless form.We
performed linear regression to determine speed-related trends
for step length and for joint work. Regression coefficient β was
statistically significant if its P-value was less than 0.05 (P < 0.05).
Normalization was performed using base units of body mass
M, leg length L, and gravity g. Leg length L was calculated as
0.530H (Contini, 1972). Step length was normalized by L, speed
by

√

gL, and work byMgL. For reporting purposes, statistical data
were converted from dimensionless units to SI units using mean
normalization constants of L = 0.9508m,

√

gL = 3.05ms−1, and
MgL = 629 J.

3. RESULTS

With NMC-controlled LOPES, the SCI subjects were able to
walk at various speeds (from 0.6 to 1.4 m/s), faster than
typical for ambulatory SCI patients (e.g., average speed from
0.34 to 0.88 m/s van Hedel and EMSCI Study Group, 2009).
In comparison, only one of the SCI subjects could walk
unsupported in LOPES (S1A at 0.4 m/s in ZIM). Their
joint angle trajectories were similar to healthy humans, but
joint torques were not, due to the lack of ankle actuation
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TABLE 4 | Time (% of stride) of maximum muscle activation in NMC-controlled

LOPES.

Subject TA SOL MGAS VL RF BF ST GMAX

SHL 57.5 41.5 41.1 2.40 64.9 96.7 91.7 7.40

S1A – – – 13.9 16.4 16.4 17.1 –

S1B 56.3 36.4 43.6 13.3 – 35.5 19.9 –

S2A – – – – – – 70.1 –

S2B 56.8 36.1 53.5 60.0 60.7 82.1 94.8 49.8

S2C 55.8 – 53.4 – – – – –

S2D 62.8 – 56.0 – 65.9 30.4 – 64.3

Maximum activation timing reported as a percentage of gait cycle for mean EMG patterns
(see Figure 3).

TABLE 5 | Step length s and knee and hip joint work (positive W+ and negative

W−) fit parameters, goodness-of-it, and statistical significance of trend values.

Parameter Subject Coefficient β±CI Offset α±CI R2 P

s S1A 0.4591 ± 0.0301 0.9880 ± 0.0688 0.8203 0.0000*

S1B 0.7141 ± 0.0095 1.9007 ± 0.0108 0.9837 0.0000*

S2B 0.8152 ± 0.0710 1.7865 ± 0.1234 0.6657 0.0000*

S2C 0.8160 ± 0.0455 2.1572 ± 0.0625 0.8932 0.0000*

S2D 1.0297 ± 0.0174 2.9703 ± 0.0255 0.9815 0.0000*

W+

knee S1A −0.0021 ± 0.0052 0.0023 ± 0.0006 0.0032 0.4284

S1B 0.0138 ± 0.0023 −0.0020 ± 0.0008 0.2722 0.0000*

S2B 0.0777 ± 0.0257 −0.0040 ± 0.0046 0.1211 0.0000*

S2C 0.0113 ± 0.0082 −0.0005 ± 0.0021 0.0478 0.0068*

S2D 0.0129 ± 0.0088 0.0034 ± 0.0022 0.0313 0.0043*

W−

knee S1A −0.0185 ± 0.0071 −0.0001 ± 0.0008 0.1165 0.0000*

S1B −0.0107 ± 0.0015 −0.0010 ± 0.0005 0.3555 0.0000*

S2B −0.0672 ± 0.0066 0.0090 ± 0.0012 0.6132 0.0000*

S2C −0.0107 ± 0.0093 −0.0041 ± 0.0024 0.0335 0.0241*

S2D −0.0328 ± 0.0030 0.0006 ± 0.0007 0.6483 0.0000*

W+

hip S1A 0.0204 ± 0.0103 0.0083 ± 0.0012 0.0711 0.0001*

S1B 0.0339 ± 0.0020 0.0082 ± 0.0007 0.7565 0.0000*

S2B 0.3173 ± 0.0483 −0.0288 ± 0.0086 0.3942 0.0000*

S2C 0.0851 ± 0.0127 −0.0038 ± 0.0033 0.5399 0.0000*

S2D 0.1258 ± 0.0140 0.0081 ± 0.0035 0.5495 0.0000*

W−

hip S1A −0.0107 ± 0.0031 −0.0000 ± 0.0004 0.1906 0.0000*

S1B −0.0434 ± 0.0014 0.0056 ± 0.0005 0.9140 0.0000*

S2B −0.1088 ± 0.0184 0.0145 ± 0.0033 0.3451 0.0000*

S2C −0.0767 ± 0.0109 0.0108 ± 0.0028 0.5614 0.0000*

S2D −0.1383 ± 0.0087 0.0175 ± 0.0022 0.7912 0.0000*

Coefficients β and offsets α from linear regression to s = αvβ or W = α + vβ. Significant
coefficients are indicated by asterisk if p < 0.05. Coefficients and offsets reported in
dimensionless units using base units of body mass M, leg length L, and gravitational
acceleration g.

in the device and thus active control. For SCI subjects,
body weight support unloaded 21–60% of their body mass
M and use of handrails contributed an additional 12–
48%M.

3.1. Joint Kinematics and Kinetics and
Comparisons with Healthy Data
The NMC was successful in producing healthy-like walking
patterns. NMC joint angles and torques agreed reasonably well
with healthy kinematic data and biologically produced torques
(Figure 2, first four rows). Differences were found between
NMC-provided torques (for both SCI and healthy) and biological
torques produced by healthy subjects, including a lack of knee
flexion torque near mid-stance and greater hip moment near toe-
off. Hip extension torque at heel-strike was also missing. Despite
these discrepancies, joint angle trajectories did not seem greatly
affected. The torque differences also translated into differences
in joint powers (Figure 2, fifth and sixth row), notably more
positive hip power around toe-off. On average, more hip work
was delivered than knee work (Figure 2, last row).

The interaction between the subject and the NMC-controlled
LOPES influences the NMC-provided torques and thus overall
gait behavior. For example, healthy subject SHL required less
assistance than the SCI subjects. Therefore despite the faster
speed and generally larger range of motion, NMC provided SHL
with similar or smaller knee and hip torques than for other
subjects with the same gain (S1B, S2B, S2C, and S2D) but walking
at slower speeds. We also expected the NMC to provide less
torque at small gains and slow speeds. Indeed NMC delivered
relatively small torques and therefore work to S1A and S2A, both
of whom walked at slow speeds (0.4 and 0.35 m/s respectively)
and low gain (40 and 30% respectively).

EMG patterns (Figure 3) indicated that the NMC controller
could be inducing rhythmic activation patterns in leg muscles
of complete SCI subjects. For three subjects with complete
paraplegia, meaningful muscle activity was found at the tibialis
anterior andmedial gastrocnemius.While thesemuscles were not
modeled in the controller and ankle dorsiflexion/plantarflexion
was not an actuated degree of freedom in LOPES, the subsequent
walking motion may have activated these muscles, intentionally
or not by the subject. Unsurprisingly, systematic muscle activity
was found in all muscles measured for the healthy subject. EMG
activity was also detected for all measured muscles for S2B
(complete injury), and perhaps this stems from this subject’s
comparatively low lesion level (T11-T12).

From the timing of peak EMG activity, muscle activation
patterns were more consistent among subjects for the distal
muscles than for the proximal muscles (Table 4). Standard
deviation of peak time for the distal muscles (TA, SOL, MGAS)
ranged from 3 to 7% of stride but was ∼7 times greater for
the proximal muscles. In particular, the biceps femoris and
semitendinosus muscles of SCI subjects differed the most from
healthy subject SHL and from each other. S2B (complete injury),
who exhibited activity in all muscles, had muscle activation
patterns that were similar to those of SHL for most muscles
(except VL and GMAX).

While the virtual muscles could serve to supplement missing
biological function, the virtual muscles do not seem to differ
greatly among subjects, even between SHL and S2A, who only
had activity in one muscle. For all subjects, activation signals
provided by the virtual muscles were greater for the vasti muscles
and hip flexors (comparedwith subjects’ rectus femoris) but small
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FIGURE 4 | SCI speed and step length over a range of speeds. Subject data

(symbols) shown in normalized units (normalized by subject leg length L, and
gravity g) and SI units. Manual assistance threshold (dashed lines) indicates

the slowest speed included in subjects’ fit (solid lines).

for the hamstring and glutei. The virtual muscle activities are also
generally not similar to SHL’s EMG activity. This could be due to
the weight transfer simplification, which now produces muscle
activities that differs from previously reported in simulation
(Geyer and Herr, 2010; Dzeladini et al., 2014).

As walking speed increased (along with increases in NMC
gain up to 100% assistance), the NMC produced longer step
lengths and more joint work. Subjects walked with step lengths
that resembled the power law found empirically in healthy gait
but were not as energetically optimal due to relatively longer step
lengths at faster speeds (Table 5). Four subjects demonstrated the
power law with β = 0.70± 0.17 (mean± s.d., mean R2= 0.84),
and one other exhibited amore linear trend (β = 1.03, R2= 0.98).
Unlike the other subjects who exhibited the power law, S1A
showed a shallower increase in step length. This is likely related
to fitting to the subject’s slow range of speeds (up to 0.4 m/s). For
the subjects who exhibited the power law, the average step length
at 1.6 m/s was∼17% greater than for a healthy human.

NMC produced greater joint work in response to increases
in treadmill speed, more notably at the hip than at the knee
(Figure 5,Table 5). On average, positive work trendwas 5.1 times
greater for the hip than for the knee, and 2.7 times greater for
negative work. For significant trends (p < 0.05), we found that
positive hip work increased at a rate from 2.86 Wm−1s (S1A)
to 63.0 Wm−1s (S2B) with mean goodness of fit R2 = 0.46.
Negative hip work trend ranged from −26.6 Wm−1s (S2D) to
−1.50Wm−1s (S1A) with mean R2 = 0.56. For the knee, positive
work coefficient ranged from 2.44 Wm−1s (S2C) to 15.4 Wm−1s
(S2B) with mean R2 = 0.12, and negative work was from −13.3
Wm−1s (S2B) to−2.30Wm−1s (S2C) with R2 = 0.35.

3.2. Subject S1A (Incomplete Injury): 40%
NMC Gain vs. ZIM
S1A was the only subject to have walked with LOPES in both
ZIM and with the NMC. S1A walked at 0.15 m/s in ZIM and

FIGURE 5 | SCI positive and negative joint work over a range of speeds.

Subject data (symbols) shown in normalized units (normalized by subject mass

M, subject leg length L, and gravity g.) and in SI units. Manual assistance

threshold (dashed lines) indicates the slowest speed included in subjects’ fit

(fits not shown).

with 40% of NMC assistance. Due to problems in step detection
for this subject, only seven strides were analyzed for the NMC
condition at this speed while 50 strides were analyzed for zero
impedance mode. However, the variability of step parameters
are similar for both conditions. NMC served to create shorter
strides when compared against zero impedance mode. The
average step length with NMC (0.21± 0.01 m) was shorter than
without (0.28± 0.03 m), as demonstrated by ankle trajectories
(Figure 6A). In contrast, the average step width with NMC
(0.26± 0.02 m) was slightly wider than the zero impedance mode
(0.23± 0.03 m). The NMC created a larger range of motion
for the knee but reduced motion for the hip, contributing to
shorter step lengths (Figure 6B). EMG activity seemed similar
in magnitude and activation pattern, except for the gluteus
muscle, where the mean activity was slightly higher on average
(Figure 6C).

3.3. Subject S2D (Complete Injury):
Speed-Related Changes at 100% NMC
Gain
Weobserved that NMC’s gait adaptations to different speeds were
similar to observations of healthy subjects walking at different
speeds. In particular, in response to treadmill speed changes,
the NMC automatically modulated the torques exerted on the
subject.We evaluated speed-related changes for S2D, who walked
at 0.6, 0.9, 1.0 m/s at 100% of NMC assistance. The increase in
walking speed produced greater step lengths (0.51 ± 0.02, 0.82
± 0.02, 0.89 ± 0.02 from slowest to fastest speed) while step
width changes showed no trend (0.24 ± 0.03, 0.31 ± 0.02, 0.27
± 0.02m).

Speed increases led to greater magnitudes in joint angle,
similar to healthy humans (Figure 7). In addition, NMC
provided more peak torque, especially at the hip, as humans
would increase biological torques to walk faster. While little
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FIGURE 6 | (A) Left and right ankle trajectories, (B) knee and hip angles, and (C) EMG patterns with standard deviations (shaded) from S1A (incomplete SCI injury)

with NMC assistance and without (ZIM) at 0.15 m/s. Trajectories are shown as a percentage of gait cycle (% of stride). Toe-off indicated by dashed vertical line. Ext,

extension; Flx, flexion.

FIGURE 7 | Knee and hip angles, moments, powers, and work from the right leg of S2D (complete SCI injury) while walking with NMC and LOPES. Mean trajectories

(solid line) are shown with healthy shod walking (dashed line) at similar walking speeds. Trajectories are shown as a percentage of gait cycle (% of stride). Toe-off

indicated by dashed vertical line. Ext, extension; Flx, flexion.

changes were observed in peak powers, positive and negative
work did increase with speed (with the exception of positive knee
work).

We investigated the muscle force, contractile velocity, and
length from NMC’s virtual muscles (Figure 8). The speed-
related increase in torque was produced mainly by changes in

the length of the virtual muscles rather than by velocity. In
congruent with how greater speeds induce longer strides, the hip
extension muscles (i.e., hamstring and glutei muscles) were more
contracted at fast speeds than slow speeds around maximum hip
extension (∼50% of gait), and the hip flexor muscles were more
extended. The vasti muscle did not show much change in length
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FIGURE 8 | Muscle force (Fm), contraction velocity (Vce), and length (Lce)

from four virtual muscles of the NMC with S2D (complete SCI injury) walking in

LOPES. The length of the contractile element has been normalized by the

optimal length Lopt (dashed-dotted line). Trajectories are shown as a

percentage of gait cycle (% of stride). Toe-off indicated by dashed vertical line.

except near heel-strike at the slowest speed. In contrast to the
changes in muscle length, there was no visible trend from the
contractile velocity of the virtual muscles. The noise-like behavior
in these signals are from integration of differential equations
in the muscle model (see Dzeladini et al., 2014). Muscle forces
also seem to be affected by speed, but peak forces do not seem
proportional to speed.

4. DISCUSSION

Our preliminary results demonstrated the versatility of the NMC.
With very few sensors, SCI subjects were able to walk at multiple
speeds, including near healthy speeds, despite the lack of ankle
actuation. NMC gait kinematics resembled those of healthy shod
walking.With no predefined settings for multiple walking speeds,
the NMC also adjusted step length similarly to healthy humans
as speed changed. Meaningful EMG activity was also detected
in several muscles of SCI subjects, possibly implying functional
engagement of the subjects’ own muscles.

Several factors could explain the observed differences between
NMC-generated torques and biological torques. One source of
disparity is the neuromuscular model (NMM), the basis of
the controller, generates human-like walking in simulation but
cannot fully capture human behavior. For example, compared
with biological torques, the model produces a greater hip flexion
torque near toe-off, which we also observed with NMC-generated
torques. In addition, model parameters from NMM simulation
were directly applied to the controller, and therefore user-
machine interactions were not taken into account.

The lack of ankle actuation is another compelling reason
for the differences in NMC and biological torques. For the
knee disparities, the virtual biarticular gastrocnemius muscle,
which provides knee flexion, was also omitted in the NMC for
implementation in LOPES. While the virtual hamstring muscle
can also provide knee flexion, nominal behavior of the full NMM
(i.e., with ankle, from Dzeladini et al., 2014) is a burst of muscle

FIGURE 9 | Joint torques differences between the full NMM (Dzeladini et al.,

2014) and the NMC-LOPES controller. Without the ankle module, the knee

torque from NMC-LOPES (without ankle, solid line) exhibits little flexion near

mid-stance in comparison with torques from the full NMC model (with ankle,

dashed-dotted line). The large extension hip torque at early stance in the full

model is also omitted in the reduced controller. Trajectories are shown as a

percentage of gait cycle (% of stride). Toe-off indicated by dashed vertical line.

activity in the gastrocnemius but little in the hamstring during
peak knee flexion (Geyer and Herr, 2010). Therefore, without
the virtual gastrocnemius muscle, NMC’s ability to produce knee
flexion torque is reduced. This was also found in simulation
by feeding NMM joint angles and footfall patterns into NMC
(Figure 9).

The differences in torques at the hip joint is less clear.
No virtual muscles were missing at this joint and therefore
abnormal behavior was not expected. NMC hip angles were
also very similar to healthy angles and is unlikely greatly
influencing NMC torques. However, the simplification of the
weight bearing algorithm (see Section 2.1), which affects the
virtual vasti muscles, glutei muscles, and hip flexors, could be
one explanation. Themajor discrepancies in hip torques occurred
during double support (e.g., near early stance and toe-off), which
coincides with weight transfer from one leg to the other. In
simulation, the missing hip extension torque (Figure 9) of the
NMC-LOPES controller at early stance, in comparison to the full
NMM, supports this reasoning.

Differences in step length trends between SCI gait and healthy
gait with increased speed could be partially explained by body
weight support and the use of handrails. These subjects had 21–
38% of their body weight unloaded and their use of handrails
also provided an additional 12–48% of support. S3D, the subject
with the linear trend, had the highest body weight support
provided by LOPES. Body weight support has been shown to
affect gait kinematics at 75% of BW (van Hedel et al., 2006),
and the reported effect on stride length (at greater speeds) was a
significant but small increase relative to zero bodyweight support.

Although walking speed was regulated by the treadmill, the
NMC is reactive controller that acts only in the sagittal plane
and thus gait adjustments could be made by healthy subjects
by changing step time or step width. For the SCI subjects, less
adjustments were possible due to their impairment, but subjects
did employ their arms (as indicated in the previous paragraph)
by imparting forces on the handrails. Some arm use may be
in response to an unfamiliar device and controller and the fear
of tripping. However, some SCI subjects also used their arms
to utilize their upper body to assist in propelling their legs
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forward and in making small lateral corrections. We feel this
was unnecessary, as the NMC would swing the leg as soon as it
was unloaded, but we did not test this controller on a completely
passive subject. We also did not directly quantify or study upper
arm effort, but we did ask subjects to decrease their reliance on
the handrails if possible.

Pronounced EMG patterns were detected from both
incomplete and complete SCI subjects. Some patterns seemed
similar to healthy (e.g., TA, BF, and ST of S2B) while others
were more aberrant (e.g., MGAS of S2C and S2D). While these
patterns may have been induced by the uncontrived NMC gait
dynamics, it is difficult to separate in the present study these
findings from EMG activity previously found with coordinated
stepping movements by physiotherapists (Dietz et al., 1994)
and a fixed gait pattern by a driven gait orthosis (Dietz et al.,
2002). Nonetheless, as the previous studies have noted, subjects’
muscle activities in both the actuated joints of the LOPES and
the passive ankle are likely the result of systematic load receptor
input during each stride. The implication and veracity of this
finding deserves further investigation.

The NMC exhibited speed adaptation by modulating its
commanded torques as treadmill speed changed (from 0.4 to
1.4 m/s across subjects), resulting in higher peak torques (see
Figure 7) and greater joint work (see Figure 5). These results
agree with those from a similar neuromuscular controller for a
transtibial prosthesis (Markowitz et al., 2011), which produced
greater ankle torque with increased speed (at 0.75, 1.0, and
1.25 m/s). In impedance-based control of a different transtibial
prosthesis (Fey et al., 2014), subjects were able to ambulate at
±25% of their comfortable walking speed (from 0.49 to 1.39
m/s across subjects), also with increased ankle torque and power
with faster speeds. While these two controllers served to emulate
locomotion for missing limbs rather than impaired ones, our
controller showed comparable results for speed adaptation. Since
few speeds were tested in those studies, it is difficult to assess
howwell those controllers would reproduce the speed-step length
curve (see Figure 4), as we have achieved here.

There were some limitations to this study. We could not
compare the NMC against the device’s ZIM because SCI subjects
were unable to walk without assistance. In addition to testing
a small number of subjects, SCI subjects also could not be
evaluated at the same speeds and controller settings because
each had unique neurological symptoms, and controller gains
were manually tuned for their specific walking ability. A different
investigation with healthy subjects with the NMC would be
appropriate to more fully evaluate the NMC and its ability to
lessen the energetic burden of walking (e.g., less metabolic cost).
However, as our aim is to restore gait in paraplegic subjects, the
controller fared well despite the lack of ankle actuation.

Due to limitations in experimental set up, we also did not
evaluate how walking in LOPES affects healthy gait. In particular,
we compared NMC to shod walking but did not evaluate how
biological joint torques for a healthy subject walking in LOPES
(calculated from inverse dynamics) under ZIM would differ
from shod walking. In addition, some of the differences between
NMC and shod joint angles could be due to dissimilarities
between LOPES-measured angle and kinematics from motion
capture.

The NMC was not optimized for subject anthropometry
to provide subject-specific assistance or at multiple walking
speeds. Although subject-NMC interaction allowed for slow
walking speeds, the NMC cannot function at speeds slower
than 0.6 m/s in simulation. These issues are to be addressed
in future work. However, the controller did produce healthy-
like gait in paraplegic subjects of different anthropometry and
walking abilities and at multiple speeds, thus demonstrating
high robustness. These additional features may, therefore, not be
necessary.

We conducted this study on a treadmill but aim to
demonstrate that the NMC can also provide faster walking
speeds overground, beyond the speeds currently reported (0.26
m/s on average, Louie et al., 2015). Using the same controller
on a wearable exoskeleton overground poses new challenges,
especially for subjects with inadequate volitional hip control.
Indeed the treadmill moves the subjects’ feet, which could aid
in initiating or sustaining gait. The NMC is also better suited
for walking at normal to fast speeds and therefore may need to
be combined with new algorithms, likely with pre-determined
gait patterns. These preset algorithms would contribute more
during transient behaviors (e.g., gait initiation and termination)
and slow walking speeds. At faster speeds (around 0.6 m/s and
greater), the NMC would then fully take control.

5. CONCLUSION

The bio-inspired NMC controller demonstrated remarkable
versatility in generating gait patterns tuned to the subjects’
dynamics and producing near-physiological gait at near-
normative speeds. The positive SCI subject-machine interaction
stemmed from replacing the subject’s impaired function with
dynamical virtual muscles that require few sensors to generate
gait. The power law also enabled indirect evaluation of energetic
economy for controllers tested on subjects with impaired
gait. These preliminary but auspicious results have important
implications toward the exploitation of natural walking dynamics
through understanding human biological behavior in the design
of controllers for wearable devices that are amenable to
various environmental conditions and promote intuitive and
unobtrusive human-machine interaction.
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