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Brain-computer interfaces (BCIs) are an emerging technology that are capable of turning

brain electrical activity into commands for an external device. Motor imagery (MI)—when

a person imagines a motion without executing it—is widely employed in BCI devices for

motor control because of the endogenous origin of its neural control mechanisms, and

the similarity in brain activation to actual movements. Challenges with translating aMI-BCI

into a practical device used outside laboratories include the extensive training required,

often due to poor user engagement and visual feedback response delays; poor user

flexibility/freedom to time the execution/inhibition of their movements, and to control the

movement type (right arm vs. left leg) and characteristics (reaching vs. grabbing); and high

false positive rates of motion control. Solutions to improve sensorimotor activation and

user performance of MI-BCIs have been explored. Virtual reality (VR) motor-execution

tasks have replaced simpler visual feedback (smiling faces, arrows) and have solved

this problem to an extent. Hybrid BCIs (hBCIs) implementing an additional control signal

to MI have improved user control capabilities to a limited extent. These hBCIs either

fail to allow the patients to gain asynchronous control of their movements, or have a

high false positive rate. We propose an immersive VR environment which provides visual

feedback that is both engaging and immediate, but also uniquely engages a different

cognitive process in the patient that generates event-related potentials (ERPs). These

ERPs provide a key executive function for the users to execute/inhibit movements.

Additionally, we propose signal processing strategies and machine learning algorithms to

move BCIs toward developing long-term signal stability in patients with distinctive brain

signals and capabilities to control motor signals. The hBCI itself and the VR environment

we propose would help to move BCI technology outside laboratory environments for

motor rehabilitation in hospitals, and potentially for controlling a prosthetic.
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INTRODUCTION

Jacques Vidal first proposed the brain-computer interface (BCI)
in 1973 when he suggested translating electrical brain signals
captured through electroencephalography (EEG) into computer
control signals (Vidal, 1973). EEG electrodes are commonly
placed using the international 10–20 placement system, called
thus because each electrode is about 10–20% of the head away
from its neighbor electrodes. Each pair of electrodes is then
passed through an amplifier, which is typically an analog to
digital amplifier now that most EEGs are read by computers
(Teplan, 2002). The EEG detects biologically relevant signals
that can be classified as evoked or spontaneous depending
on the volitional capability of the user to control them. For
instance, the performance or imagination of movements evokes
changes in the brain activity that are induced by the user, while
the perception of stimuli provoke spontaneous changes in the
brain potentials. These breakthroughs, which have been due to
successfully monitoring brain activity and translating a user’s
intentions into commands for a device, have led to BCIs that
enable people to control a wheelchair (Castro-Borrero et al., 2012;
Seáñez-González and Mussa-Ivaldi, 2014) or spell out words
using their thoughts (Vourvopoulos and Bermúdez i Badia,
2016).

BCIs can also be used to control prosthetics and orthotics.
One such prosthetic was developed for an amputee that correctly
classified hand grasping and opening from the resting state with
83% accuracy using motor imagery (MI), in which a person
imagines a motion without physically moving (Mahmoudi and
Erfanian, 2002). Similarly, a BCI-controlled tetraplegic orthotic
was made using visually-evoked potentials, similar to event-
related potentials (ERPs), with a positive predictive value of 78%
for a grasping task (Ortner et al., 2011). ERPs are neural rhythms
seen in response to a stimulus, whether that is auditory, visual,
or some other sense. BCI failure has been attributed to several
main aspects. Some say BCIs do not have a sufficient control
method for measuring brain signals, or that the hardware for
measuring brain signals is insufficient (Pinegger et al., 2016),
while others argue that BCIs are not reliable or robust because
of inter-user variability (Jeunet et al., 2016). The accuracy of BCI-
controlled prosthetics/orthotics needs to improve before patients
can reliably control a BCI with a sense of agency. Machine
learning can be used to better reflect the desired movement of
the user, while BCI training sessions can be made more palatable
by creating training games in a VR environment.

In this paper, we address this issue by proposing a hybrid BCI
(hBCI) that incorporates MI signals for types of movement and
ERP signals for movement inhibition. Inhibition is the ability to
suppress, withhold, delay, or interrupt an action that was caused
by a stimulus (Cespón et al., 2015). The manuscript is organized
as follows: in Section Motor Imagery we give an overview of
MI and brain signals associated with such commands; in Section
ERP, we provide background information for ERPs, and how
they have been used in BCI technology; in Section Hybrid BCI:
Merging ERP and MI Signals, we explain the VR environments
and inhibition tasks for training use of the prosthetic, as well as
themachine learningmechanism for improving signal processing

and classification; and in Section Conclusion, we summarize our
paper and suggest future directions (cf. Box 1).

MOTOR IMAGERY

Within various frequency bands, there are amplitude changes
in cortical rhythms that are associated with motor movements
and imagination. Before moving, there is a specific blocking
or desynchronization of 8–13Hz (mu) and 14–25Hz (beta)
rhythms, called event-related desynchronization (ERD) (Nam
et al., 2011). Termination of the movement shows event-related
synchronization (ERS) within the 15–25Hz beta bands in the
precentral region of the brain (Nam et al., 2011). The post-
movement beta ERS has been debated heavily. While some have
found that ERS is dominant over the contralateral precentral
cortex, others have also found it occurring on the ipsilateral side
(Nam et al., 2011). Hence, decoding a “stop” signal from MI is
difficult because the ERS signal varies not only spatiotemporally
between individuals, but also between movements. Furthermore,
discriminating between more than two states can be difficult
when using ERD patterns, because many complex memory
processes and tasks can cause desynchronization in alpha band
rhythms (Pfurtscheller, 2010; Müller-Putz, 2011; Ortner et al.,
2011).

ERP

Event-related potentials (ERPs) arise in response to stimuli.
There are at least two known ERPs that are related to inhibition
and veto—N200 (N2) and P300 (P3) (Greenhouse and Wessel,
2013)—which have been associated with reactive inhibitory
control processes when performing go/no-go (GNG) and stop
signal tasks (SST). Research in the literature suggests N2 arises
from the extrastriate temporo-occipital and associated parietal
cortical regions (Hong et al., 2009). Furthermore, N2 is displayed
by fronto-central negativity 200–300ms after the stimulus is
presented, while P3 is a positive response in the fronto-central to
centro-parietal area following N2 by about 150ms (Huster et al.,
2013). Both N2 and P3 are enhanced during motor inhibition,
and while it is not clear what differentiates them, there is evidence
that N2 is associated with control over a response plan, while P3
reflects evaluation of motor response inhibition (Greenhouse and
Wessel, 2013). A study by Wessel et al. looked at when P3 occurs
relative to the ability to inhibit an action, and found that the P3
onset and latency appear to be related to whether or not the action
can be vetoed. When P3 occurred before a certain time (about
200ms following the stop signal) a successful stop occurred,
whereas if it was later a failed stop occurred. From this, there
are three hypotheses for how P3 is connected to successful stop-
reaction time (SSRT): the onset latency is positively correlated
with SSRT; the onset time point is better correlated with SSRT
than the peak time for P3; and P3 onset is earlier in successful
trials compared to failed trials (Wessel and Aron, 2015).

The go/no-go (GNG) and stop signal task (SST) are robust and
reliable measures for inhibition, and are the preferred methods
for analyzing N2 and P3 ERPs in motor inhibition for healthy
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individuals. The resting-state prior to the response inhibition
signal has been used to predict the success of motor inhibition
in healthy individuals with a 95% prediction accuracy using
one classifier (Chikara and Ko, 2016). A challenge of using
these signals for BCI-controlled prosthetics is that they require
attentiveness to the stop signal and engagement of response
inhibition, which is also reliant on external cues from a controlled
game, as opposed to the user’s self-pacing which better reflects
volition. A GNG task involves showing two equiprobable stimuli,
and having the subject either respond or withhold the response,
while SSTs involve the subject responding to a shown stimulus,
unless an imperative stimulus is shown that prompts them to
withhold their response (Thomas et al., 2008). The robustness
and reliability of GNG and SST, and their wide use in research
in healthy individuals could make them useful training tasks for
a hybrid BCI.

HYBRID BCI: MERGING ERP AND MI
SIGNALS

The hybrid BCI (hBCI) was introduced as a device which
combines multiple existing inputs, including MI and ERPs, by
either switching them on and off or fusing them together.
The hBCI has many components to it: user driven input
signals, control systems from the environment, and feature
extraction and classification methods (Pfurtscheller, 2010;
Müller-Putz, 2011). Additionally, some research groups have
developed new paradigms suitable for hBCIs that result in
higher classification accuracies of certain ERPs (Wang et al.,
2015). The idea of a hybrid BCI in orthotic control has been
previously proposed, where the user controls movement through
volitionally generated SSVEP signals from a screen with a grid
of flickering light frequencies (Ortner et al., 2011). A “brain
switch” using another mental process, like ERPs, would be used
to turn on/off the SSVEP grid. However, we instead propose
using MI signals to distinguish between movements, and using
ERP signals to determine user intention to start or stop a
movement. This hybrid BCI design uses the signals in our natural
decision making and motor movement intuitively. This could
also improve training for hybrid BCI use, as well as improve
movement inhibition encoding.

ERPs and MI can be combined in BCIs for movement
using training for both the patient and the machine learning
algorithm. The user initially sets the baseline signal processing
characteristics and classifiers for the BCI by going through
GNG and SST tasks in a VR environment that are disguised
as games. These baseline characteristics are used to provide
visual and metric feedback while collecting data on the patient’s
MI and ERPs. Once a sufficient amount of data is collected,
a machine learning algorithm is used to optimize signal
processing and classification. The classifier distinguishes between
movements like reaching or grasping using MI, as well as
determining whether the signal is inhibited or not using ERPs. By
continuing to train, the user improves the ability of their BCI to
successfully interpret their movement intentions and inhibition
of movement. Continuing to use the algorithm to update the

classifier will help the BCI to retain its accuracy over time, even
with changes in the user’s brain patterns.

VIRTUAL REALITY ENVIRONMENT

GNG and SST VR training would involve immersing the user
into gamified tasks that require moving only when allowed, and
having to stop when presented with a cue. The gamification
of tasks has been suggested as a way of making them more
engaging to users. Similarly, task complexity has also been used
to improve user performance in both MI and ERP BCIs (Jin
et al., 2017; Qiu et al., 2017). This suggests that a gamified task
of sufficient complexity would aid in user training of a BCI
task. In addition, video games themselves have been shown to
promote learning of perceptual tasks, which further increases
the usefulness and suitability of virtual games to BCI training
for prosthetic use or motor control (Feng et al., 2007; Deveau
et al., 2014). To increase immersion in the VR environment
within the games, a VR headset would be used. The games
would also be designed for a first-person, 3D environment to
heighten the sense of agency. It has previously been shown that
combining training with VR and video games improves BCI
performance (Lotte et al., 2013). An example of this would be
a game in which the user attempts to steal cookies from a jar
under the protection of a watchful parent. The user would be
allowed to move their hand toward the cookie jar only when the
parent is looking away. The “go” cue is then when the parent
turns to look away, while the “stop” cue is when the parent
turns to look at the player. By varying the timing of the cues,
GNG and SST tasks can be performed. The motions that could
be performed by the patient using MI include reaching with
the left or right arm, or grasping onto a cookie. The player
could gain points for successfully stealing a cookie, but could
lose points if they fail to stop moving and are caught by the
parent. A similar scenario can be set up for the reaching and
grasping motion of different objects, like a cup or a pencil, to
adapt to the needs of the patient. Adapting the application of
the BCI to the user’s needs is especially important for upper-
limb amputees, who vary in the actions they require for daily
life, as well as in their motor and cognitive abilities. Hence, the
VR environment can be modified to encode different movements
based on the user desired functionality of the prosthetic. Instead
of showing the same, repetitive training protocol, the user will
be rewarded with points for their success, and engage in the
game while also training the BCI on their MI and ERP signals.
Time taken to complete a task would vary, with a shorter,
more simple task like a reaching and grabbing task taking as
little as 30 s, while a longer task, such as one made up of
repeated movements or with a wait time, would take longer to
complete.

SIGNAL PROCESSING, CLASSIFICATION,
AND MACHINE LEARNING

The BCI would perform real-time computation of a continuous
control signal for features created by MI. The quantification
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measurements of MI include the ERD and ERS, band power,
inter-trial variance, temporal spectral evolution, autoregressive
models and spectral decomposition, task-related power changes,
and others (Gao et al., 2016). In a hybrid BCI, the extracted
features would then be classified into what movement they
indicate (using MI), and if a movement is indicated it then
proceeds to see if the movement is initiated or inhibited (using
ERP). The signal would be actively analyzed for MI movements,
including left and right arm reaching, throughout the VR
training. For instance, when imagining a movement of the left
hand, a characteristic decrease in EEG beta-rhythm power is
seen over the right motor cortex (Pfurtscheller, 2010; Nam et al.,

2011; Tombini et al., 2012). Then, the EEG signal would begin
to be analyzed for ERPs that indicate motion inhibition. If a
signal is generated similar to what is seen in the SST training,
the motion is never begun, while if it is similar to what is
seen in the GNG training or the go trials of the SST training,
the motion is started. If a stop signal is seen as would be
expected from GNG stop signals, the motion is stopped. While
MI classifies the type of motion done, ERP classifies when the
motion is started or stopped. The details of using classification
for determining visual feedback in the VR is shown in Figure 1.
A typical ERP signal is shown in Figure 2 (taken from
Huster et al., 2013).

FIGURE 1 | VR training of a hybrid BCI using MI and ERP inputs and a machine learning algorithm.

BOX 1 | Future directions.

• Information processing in hybrid BCIs. The concept of hybrid BCIs have been proposed in the past (Pfurtscheller, 2010; Leeb et al., 2011; Müller-Putz, 2011).

One of the ideas explored in our paper is incorporating inhibitory ERPs in order to operate a BCI. Hybrid BCIs can process the recorded brain signals sequentially

or simultaneously (Pfurtscheller, 2010), and the BCI in our discussion is sequential because the computer must continually switch between monitoring for MI-based

signals and ERP-based signals. On the other hand, hybrid BCIs have been developed that combine SSVEP and event-related desynchronization (ERD) simultaneously

for improved accuracy (Pfurtscheller, 2010). If ERPs are not suitable for our discussed BCI, inhibitory-related ERD (or ERS) might be more appropriate. Further work

on the implementation and seeing the advantages, if any, in a simultaneous BCI would be necessary.

• Selecting among responses to be inhibited. In this manuscript, by the very nature of the EEG signals used and the tasks employed in the VR environment, all

activity must be stopped, so inhibition is non-selective in this case. In realistic situations, we often have to choose among several possible responses which ones to

inhibit. Some investigators have suggested further research into this issue of selectivity (Verbruggen and Logan, 2008), and others have suggested tasks for such

a paradigm (Ko and Miller, 2011). Further research is needed into components of EEG-signals associated with these tasks, as well implementation of them in a VR

environment. This research might lead to improved hybrid BCIs that can discriminate among responses, whether environmentally induced or self-generated, the user

wishes to inhibit.

• Performance measures for the games. There are metrics that are employed in different prosthetic modalities in order to determine the efficacy of the prosthetic for

the user. These metrics may have an impact on whether insurance can cover the cost of the prosthetic, as in the case of K-levels for Medicare. As the VR environment

is part of the rehabilitation of the patient, it would be desirable to determine the response of the user to the VR environment and tangible ways for how the inhibition

tasks are aiding the patient in recovery as well as during recalibration of the algorithms.

Frontiers in Neurorobotics | www.frontiersin.org 4 August 2017 | Volume 11 | Article 38

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Chmura et al. Classification of Movement and Inhibition

There are two steps of signal processing that would be
modified by machine learning. The first step is the bandpass
filter. An adaptive filter bank was proposed by Thomas et al.
to combat the subject-specific variation in alpha and beta band
activity (Thomas et al., 2008). Their method involves using
a power spectral density along different time windows, and
a time-frequency Fisher ratio to determine which frequency
components contain the most information. The optimal band
window would carry all of the information necessary to correctly
categorize signal. While this is computationally heavy, this limits
the amount of data the software will have to process, and it is
necessary due to intersubject variability in MI and ERP signals.
The second step is the feature extraction. The EEG signal from
each filter band would be applied with a common spatial pattern
(CSP) transformation in order to extract features for MI. If MI
indicates a motion, then the ERP signals are extracted, too. These
features would be weighted for both the probability of their values
indicating a successful motion, as well as their probability of
being successful when compared against other features. Bayesian
classifiers are a common classifier found in BCIs. They use the
probabilities of the events to improve the weight of the feature
when classifying a motion or direction (Müller-Putz, 2011).
Studies often investigate classifiers with feature vectors of high
dimensions. However, the cost, computational intensiveness,
and processing time is not conducive with our proposed VR
training game application. An ideal classifier would instead use

low dimension feature vectors so that the machine learning can
iterate quickly with the signal processing and feature extraction.
Naive Bayes and support vector machines are examples of
classifiers that are capable of handling low dimension feature
vectors accurately and quickly.

The machine learning algorithm compiles the different
features of MI and ERP that were extracted over an array
of smaller frequency bands for each of the movements and
inhibitions. A smaller frequency band may better display the
change in power, just as certain features and values can better
indicate success compared to others. The success of each feature
within a frequency band will be consolidated and used to both
weight the feature against other features, and for values within
the feature itself. For instance, if the CSP of the ERP related to
stopping failed to indicate stopping using the classifier, the CSP
is weighted less in comparison to more successful features, like
the slope, in a future training session. If a value of CSP occurs
more frequently than other values, that value is weighted more
heavily for success, as well. These weights can be determined
using Bayesian probability. Both of these feature weights improve
the classification of the movement or inhibition. The context of
the VR task indicates whether there is a success to a movement.
For example, failing to reach for the cookie jar when prompted, or
failing to stop when the parent looks at the player, would indicate
either that the patient themselves failed to create the motion
or recognize the stop signal, or that the BCI did not properly

FIGURE 2 | ERP responses in a subject performing go, no-go, and stop tasks. The middle row shows the ERPs; the top row shows the associated time-frequency

decompositions; and the bottom row shows how the N200 and P300 potentials are distributed over the scalp (Adapted with permission from Huster et al., 2013).
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recognize the signals they generated. With machine learning,
the BCI optimizes both the frequency band and the weight of
the features extracted for signal processing, thus customizing the
algorithm to the user.

CONCLUSION

BCIs for the control of motion in prosthetics, orthotics, and
virtual environments are a promising technology for restoring

motor function including in upper-limb amputees and stroke
patients. To improve classification of movements as well as
inhibition, we presented a hybrid BCI that uses both MI and ERP
within a virtual reality environment training. The virtual reality
environment uses gamified GNG and SST tasks to improve the
training of the user to their BCI, while the machine learning

aspect improves the accuracy of the BCI in decoding the user’s
intention. The future directions of this technology are shown in
Box 1.
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