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Throughout life new neurons are continuously added to the hippocampal circuitry involved
with spatial learning and memory. These new cells originate from neural precursors in the
subgranular zone of the dentate gyrus, migrate into the granule cell layer, and integrate
into neural networks encoding spatial and contextual information. This process can be
influenced by several environmental and endogenous factors and is modified in different
animal models of neurological disorders. Neuroinflammation, as defined by the presence
of activated microglia, is a common key factor to the progression of neurological disorders.
Analysis of the literature shows that microglial activation impacts not only the production,
but also the migration and the recruitment of new neurons. The impact of microglia
on adult-born neurons appears much more multifaceted than ever envisioned before,
combining both supportive and detrimental effects that are dependent upon the activation
phenotype and the factors being released.The development of strategies aimed to change
microglia toward states that promote functional neurogenesis could therefore offer novel
therapeutic opportunities against neurological disorders associated with cognitive deficits
and neuroinflammation. The present review summarizes the current knowledge on how
production, distribution, and recruitment of new neurons into behaviorally relevant neural
networks are modified in the inflamed hippocampus.
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INTRODUCTION
In the adult mammalian brain, the subgranular zone of the dentate
gyrus (DG) is one of the brain regions where robust neurogenesis
continues throughout life (Altman and Das, 1965; Eriksson et al.,
1998; Spalding et al., 2013). Adult-born neurons have the capacity
to migrate into the granule cell layer, to differentiate into mature
granule neurons and to functionally integrate into hippocampal
neural networks. This process is highly plastic, influenced by envi-
ronmental and endogenous factors, and it appears to be altered
during neuropathological conditions (Parent et al., 1997; Dash
et al., 2001; Ekdahl et al., 2003). In this review, we summarize
the current knowledge on the plasticity of adult-born neurons in
animal models of brain injury associated with neuroinflammation
and we discuss the role of activated microglia and the contribution
of specific inflammatory factors.

FROM NEURAL PROGENITORS TO NEURONAL INTEGRATION
INTO HIPPOCAMPAL NETWORKS
Hippocampal adult-born neurons originate from neural precur-
sor cells located in the subgranular zone of the DG and these
cells have limited self-renewal capacity (Kempermann et al., 2003).
While most of the newly generated cells die shortly after genera-
tion (Kempermann et al., 1997; Biebl et al., 2000), some of the
progeny gives rise to neuroblasts that migrate into the DG granule
cell layer where they mature into fully functional granule neu-
rons (Kempermann et al., 2003; Esposito et al., 2005). The new

cells that become synaptically integrated, receive inputs from the
entorhinal cortex, and send axonal projections to hilar neurons
and CA3 pyramidal cells (Markakis and Gage, 1999; Laplagne et al.,
2007; Toni et al., 2008) can be activated by various stimuli, includ-
ing behavioral experience (Jessberger and Kempermann, 2003;
Ramirez-Amaya et al., 2006; Kee et al., 2007; Belarbi et al.,
2012a) or high-frequency electrical perforant path stimulation
(Bruel-Jungerman et al., 2006; Jungenitz et al., 2013). During
their maturation process, new neurons differ substantially from
existing granule cells. Electrophysiological data show that they
exhibit a decreased overall induction threshold for long-term
potentiation and enhanced synaptic plasticity compared to older
neurons (Schmidt-Hieber et al., 2004; Ge et al., 2007). In response
to spatial exploration, new neurons are also more likely to
express plasticity-related immediate-early genes (IEGs) such as
Arc (activity-regulated cytoskeleton-associated protein) or IEGs
encoding transcription factors such as cfos (Ramirez-Amaya et al.,
2006; Kee et al., 2007). Furthermore, numerous studies ablating or
enhancing adult neurogenesis have demonstrated that hippocam-
pal adult-born neurons are required for hippocampus-dependent
forms of spatial memory (Clelland et al., 2009; Trouche et al., 2009;
Goodman et al., 2010; Nakashiba et al., 2012). Collectively, these
data indicate that adult-born neurons are more likely than existing
granule neurons to be recruited into hippocampal networks that
process spatial and contextual information and exert a critical role
in hippocampus-dependent functions.
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THE INFLAMED HIPPOCAMPUS AND THE MULTIFACETED
ROLE OF MICROGLIA ACTIVATION
Microglia derive from primitive myeloid progenitors and con-
stitute the resident immune system in the brain (Ginhoux et al.,
2010; Kierdorf et al., 2013). In the absence of pathological insult,
microglia exist in a ramified morphological phenotype termed
“resting microglia.” Through their highly motile ramifications
resting microglia continuously scan their territorial domain and
communicate with the other surrounding cells by distinct sig-
naling pathways (Davalos et al., 2005; Nimmerjahn et al., 2005;
Hanisch and Kettenmann, 2007; Kettenmann et al., 2011). Fur-
thermore, microglia transiently make contact with presynaptic
boutons, postsynaptic spines, and the synaptic cleft (Wake et al.,
2009; Tremblay et al., 2010) and facilitate synapses elimination and
pruning, therefore likely contributing to the stability and orga-
nization of neural networks (Wake et al., 2009; Tremblay et al.,
2010; Paolicelli et al., 2011). As a consequence of brain pathology,
microglia respond to pathogen-associated or damage-associated
molecules and acquire a reactive profile usually referred as “acti-
vated microglia.” Typical morphological changes associated with
microglia activation include thickening of ramifications and of
cell bodies followed by acquisition of a rounded amoeboid shape
(Kettenmann et al., 2011). This process is accompanied by expres-
sion of novel surface antigens and production of mediators that
build up and maintain the inflammatory response of the brain
parenchyma. This response is often associated with the recruit-
ment of blood-born macrophages from the periphery which
migrate into the injured brain parenchyma (Schilling et al., 2005;
Schwartz and Shechter,2010). Monocyte-derived macrophages are
distinct in nature from resident microglia (for review, see London
et al., 2013).

Activated microglia in the brain can operate as damage associ-
ated cells, producing a plethora of molecules that are essential for
the elimination of pathogens, toxic factors (such as protein aggre-
gates) and cellular debris (following neuronal death for example).
By producing neurotrophic and growth factors that are pivotal for
tissue repair and renewal they contribute to resolve infection or
injury and to restore normal tissue homeostasis (Neumann et al.,
2006; Lalancette-Hebert et al., 2007). On the other hand, through
the release of proinflammatory cytokines, proteases, and reactive
oxygen species they can induce neurotoxicity (Block et al., 2007;
Hanisch and Kettenmann, 2007).

One of the brain regions most densely populated with microglia
is the hippocampus (Lawson et al., 1990); microglia activation in
this region is a common landmark following stimulation with
the bacterial endotoxin lipopolysaccharide (LPS; Rosi et al., 2005;
Belarbi et al., 2012a,b), ionizing irradiation (Monje et al., 2002,
2003; Rola et al., 2008; Rosi et al., 2008; Belarbi et al., 2013),
traumatic brain injury (Piao et al., 2013), brain ischemia (Liu
et al., 2007), and kainic acid-induced or pilocarpine-induced brain
seizure (Andersson et al., 1991; Borges et al., 2003; Turrin and
Rivest, 2004; Vezzani et al., 2008). Microglia activation is also
present in various models of neurodegenerative diseases associated
with abnormal protein aggregation such as in genetically modified
mouse models mimicking Alzheimer’s disease amyloid pathol-
ogy (APP23: Stalder et al., 1999; Bornemann et al., 2001; PS/APP:
Matsuoka et al., 2001; PS1 + APP: Gordon et al., 2002; Tg2576:

Frautschy et al., 1998; Benzing et al., 1999; Sasaki et al., 2002) or
tau pathology (P301S tau: Bellucci et al., 2004; Yoshiyama et al.,
2007; TgTauP301L: Sasaki et al., 2008; Thy-Tau22: Belarbi et al.,
2011). Normal aging is also characterized by chronic low-level
of inflammation and increased microglia reactivity (Jurgens and
Johnson, 2012).

Both macrophages (Porta et al., 2009) and microglia
(Michelucci et al., 2009) can undergo different forms of polar-
ized activation leading to a potentially neurotoxic “classic or
M1 activation” (characterized by a release of pro-inflammatory
factors) or a potentially neuroprotective “alternative or M2
activation” (characterized by anti-inflammatory cytokines). M1
activation is characterized by the release of several proinflam-
matory and neurotoxic factors including reactive oxygen species,
nitric oxide, TNF-alpha, Il-6, Il-1beta, Il-12, and monocyte
chemoattractant protein (MCP)-1 (Meda et al., 1996; Ketten-
mann et al., 2011; Qin et al., 2013). Polarization toward classic
activation (M1) can be induced experimentally by exposure to
pro-inflammatory cytokines such as interferon (IFN)-gamma,
tumor necrosis factor (TNF)-alpha and interleukin (Il)-1beta,
as well as bacterial-derived LPS (Lehnardt et al., 2003). Alter-
native M2 (protective) activation of microglia is characterized
by increased expression of the anti-inflammatory cytokines Il-
4, Il-10, and transforming growth factor (TGF)-beta, CD200,
and growth factors such as insulin growth factor (IGF)-1, nerve
growth factor (NGF) or brain-derived neurotrophic factor (BDNF;
Butovsky et al., 2005; Yi et al., 2012). Alternative activation can
be induced experimentally by anti-inflammatory cytokines such
as Il-4 and Il-13 (Butovsky et al., 2006; Colton, 2009). The
regulation of this functional polarization after brain injury is
still not clear and evidence shows that it should be considered
as a dynamic process (Colton, 2009). For example, follow-
ing ischemia-induced injury in the striatum, microglia initially
express the classic activation phenotype, but with time a por-
tion of the cells acquire the alternative activation phenotype
(Thored et al., 2009). Therefore, the link between activated
microglia and neurogenesis is multifaceted, combining both
supportive and detrimental effects dependent upon their phe-
notype and the factors being released (Butovsky et al., 2006;
Figure 1).

PRODUCTION OF NEURONS IN THE INFLAMED
HIPPOCAMPUS
Proliferation, differentiation, and survival of neurons in the adult
brain has been shown to be modulated in pathological condi-
tions associated with inflammation (Cho and Kim, 2010; Mu
and Gage, 2011; Kohman and Rhodes, 2013). Animal models
of brain irradiation typically display a significant loss of neu-
ral precursor cells that occurs within a few hours (Mizumatsu
et al., 2003) and is still present several months after relatively low
radiation doses (Tada et al., 2000; Raber et al., 2004a,b; Belarbi
et al., 2013). Similarly, neuroinflammation induced by central
or systemic administration of LPS significantly reduces basal
neurogenesis (Ekdahl et al., 2003; Monje et al., 2003; Fujioka and
Akema, 2010), although this is not observed when very low doses
of LPS are chronically infused in the ventricular system (Belarbi
et al., 2012a). In contrast, increased neuronal production has been

Frontiers in Cellular Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 145 | 2

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


“fncel-07-00145” — 2013/9/5 — 15:31 — page 3 — #3

Belarbi and Rosi Neurogenesis in the inflamed hippocampus

FIGURE 1 | Schematic drawing representing the impact of classical

(depicted in red) and alternative (depicted in blue) activation of micro-

glia on adult-born neurons (depicted in green) in the hippocampus.
In response to changes in the microenvironment microglia can undergo
to a potentially neurotoxic “classical activation” (characterized by the
release of proinflammatory factors) or a potentially neuroprotective
“alternative activation” (characterized by the release of anti-inflamatory
cytokines). Polarization toward classical activation can be induced
experimentally by exposure to pro-inflammatory cytokines such as

(IFN)-gamma, tumor necrosis factor (TNF)-alpha and interleukin (Il)-1beta, as
well as bacterial-derived LPS. Classically activated microglia has been shown
to: (1) decrease the production of neurons, (2) alter their migration pattern,
and (3) reduce their recruitment into neuronal networks (red arrows).
Alternative activation of microglia can be induced experimentally by
anti-inflammatory cytokines such as Il-4 and Il-13 and can increase the
production of neurons (blue arrow). The impact of alternative activation of
microglia on the migration and the integration of new neurons remains
unknown.

reported in animal models of experimental traumatic brain injury
(Dash et al., 2001; Kernie et al., 2001; Chirumamilla et al., 2002;
Emery et al., 2005; Sun et al., 2007), brain ischemia (Liu et al.,
1998; Kee et al., 2001; Yagita et al., 2001; Nakatomi et al., 2002;
Choi et al., 2003), and kainic acid-induced or pilocarpine-induced
status epilepticus (Parent et al., 1997; Choi et al., 2007). Differ-
ent animal models of Alzheimer’s disease, provided equivocal
data, demonstrating both increased and decreased hippocampal
neurogenesis (as reviewed in Mu and Gage, 2011). While differ-
ences in many parameters (bromodeoxyuridine administration,
cell markers, etc.) could be the cause for these discrepancies,
such data provide strong evidence that the modulation of hip-
pocampal adult-born neurons is dependent on the nature of the
injury and the time following injury. The initial work investigat-
ing the role of activated microglia on neurogenesis found an acute
detrimental role for these cells. Classic activation of microglia
induced through administration of LPS, either centrally or periph-
erally, has been shown to block hippocampal neurogenesis (Ekdahl
et al., 2003; Monje et al., 2003; Butovsky et al., 2006). In addi-
tion, inhibition of microglial activation through administration of
minocycline or indomethacin was shown to rescue hippocampal
neurogenesis after LPS-induced inflammation (Monje et al., 2003),
cranial irradiation (Ekdahl et al., 2003), or focal cerebral ischemia
(Hoehn et al., 2005; Liu et al., 2007). In contrast, alternative
microglia activation through Il-4 or low level of IFN-gamma

could promote neurogenesis (Butovsky et al., 2006). Proinflam-
matory cytokines released by classically activated microglia can
specifically inhibit neural precursor generation, neuronal differen-
tiation, and survival. These include TNF-alpha (Cacci et al., 2005;
Heldmann et al., 2005; Iosif et al., 2006), Il-1beta (Goshen et al.,
2008; Koo and Duman, 2008; Kuzumaki et al., 2010; Wu et al.,
2012), and Il-6 (Vallieres et al., 2002). Conversely, factors released
by alternative activation of microglia seem to support the pro-
duction of neurons as shown for Il-4 (Kiyota et al., 2010), Il-10
(Kiyota et al., 2012), TGF-beta (Battista et al., 2006; Mathieu et al.,
2010), and IGF-1 (Choi et al., 2008; Annenkov, 2009). Taken
together, these findings suggest that classically activated microglia
generally impair neurogenesis whereas alternatively activated
microglia promote it, and that these opposite effects are
likely dependent upon the specific factors being released
(Figure 1).

DISTRIBUTION OF ADULT-BORN NEURONS IN THE
INFLAMED HIPPOCAMPUS
In the normal hippocampus neuronal precursors migrate a few
micrometers into the granule cell layer where they differentiate
into new neurons during the first 2 weeks after production (Kem-
permann et al., 2003; Seki et al., 2007; Sandoval et al., 2011; Belarbi
et al., 2013). Comparative analyses of the distribution of adult-
born neurons in different animal models of brain injury suggest
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that the migration process is altered during pathological condi-
tions. Parent and colleagues first reported ectopic destinations of
neural progenitor cells after pilocarpine-induced seizure. Mature
neurons were detected not only inside the granule cell layer but
also in the molecular layer and inside the hilus of the DG (Par-
ent et al., 1997, 2006). Altered distribution of new neurons within
the hippocampus has been also reported in murine models of
stroke (Kernie and Parent, 2010), traumatic brain injury (Rosi
et al., 2012), cranial-irradiation (Belarbi et al., 2013), and LPS-
induced chronic inflammation (Belarbi et al., 2012a). In these
models, new neurons were distributed in average a longer distance
from the subgranular zone into the granule cell layer. Additional
evidence for modified migration of new neurons in the inflamed
hippocampus comes from the work of Belmadani et al. (2006)
who demonstrated that small cytokine signaling proteins, named
chemokines, regulate the migration of neural progenitors to sites
of neuroinflammation. In that study neural progenitor cells were
grafted into the DG of cultured hippocampal slices and inflamma-
tion was achieved by injecting a solution, containing TNF-alpha,
IFN-gamma, LPS, glycoprotein 120, or a beta-amyloid-expressing
adenovirus, into the area of the fimbria. In control slices, neu-
ral progenitors showed little tendency to migrate, while in slices
injected with inflammatory stimuli, neural progenitors migrated
toward the site of the injection. However, when neural pre-
cursors from mice lacking the C–C chemokine receptor type 2
(CCR2 knock-out) were transplanted into slices, they exhibited
a greatly reduced migration toward sites of inflammation (Bel-
madani et al., 2006). CCR2 and its primary ligand MCP-1 are
considered to be critical for macrophage trafficking and activa-
tion in the brain (Prinz and Priller, 2010). CCR2 has also been
shown to be expressed by neural progenitors (Tran et al., 2007).
Therefore, these data further support a role for chemokines in
the migration of neural progenitor during inflammation. In line
with these findings, we recently reported that CCR2 deficiency,
through genetic manipulation in mice, was sufficient to prevent the
aberrant migration of new neurons observed in vivo following irra-
diation (Belarbi et al., 2013). Similarly, in the pilocarpine-induced
status epilepticus rat model, the blockade of the MCP-1/CCR2
interaction with a selective CCR2 antagonist attenuated the ectopic
migration of neuronal progenitors into the hilus (Hung et al.,
2013). Collectively, these findings indicate that adult-born neu-
rons have the capacity to migrate to the site of damage in response
to the chemokine MCP-1/CCR2 signaling pathway. Currently, it is
not known whether the change in migration induced by inflam-
mation is beneficial, as, for example, increased migration would
allow new neurons to replace dying or lost neurons, or deleteri-
ous, as altered migration could reflect the formation of aberrant
circuits disrupting hippocampal functions.

RECRUITMENT OF ADULT-BORN NEURONS INTO
BEHAVIORALLY RELEVANT NEURAL NETWORKS IN THE
INFLAMED HIPPOCAMPUS
It is widely accepted that induction of effective synaptic plas-
ticity associated with learning and memory requires de novo
protein synthesis (Miyashita et al., 2008). The IEG Arc and its
protein are dynamically regulated in response to neuronal activ-
ity, and are directly involved in plasticity processes that underlie

memory consolidation (Guzowski et al., 2000). The expression
of behaviorally induced Arc can be used to study the recruit-
ment of adult-born mature neurons into functional neural net-
works. Using plasticity-related Arc expression, Ramirez-Amaya
and coworkers demonstrated that the proportion of mature new
neurons that expressed Arc in response to exploration was sig-
nificantly higher than the proportion of cells that expressed Arc
in the already existing population of granule cells. These data
indicate that new neurons are preferentially recruited into hip-
pocampal networks encoding spatial and contextual information
(Ramirez-Amaya et al., 2006). In a rat model of LPS-induced
chronic neuroinflammation 2-month-old neurons retained the
capacity to express behaviorally induced Arc in response to spa-
tial exploration. However, the proportion of new neurons that
expressed behaviorally induced Arc was significantly lower than
that from sham control animals, indicating that chronic inflamma-
tion decreased the recruitment of new neurons into hippocampal
networks (Belarbi et al., 2012a). These findings are consistent
with the work of Jakubs et al. (2008) that reported an increased
inhibitory synaptic drive of new neurons that developed during
LPS-induced neuroinflammation. Although adult-born neurons
likely contribute to the encoding of recent spatial and contex-
tual information, it is difficult to determine whether decreased
excitability of new neurons is beneficial or deleterious to brain
function during inflammatory conditions. Indeed, because neu-
roinflammation was shown to increase the proportion of granule
cells expressing behaviorally induced Arc (Rosi et al., 2005), the
decrease in new neurons expressing behaviorally induced Arc may
be a compensatory mechanism to maintain an optimal level of
neuronal activation and ensure the maintenance of pattern sep-
aration using a very sparse coding strategy (McNaughton et al.,
1996; Rosi, 2011). Arc expression in new neurons as response
to behavioral exploration was also reported in mice following
exposure to low-dose irradiation combined or not with a subse-
quent traumatic brain injury in the presence of activated microglia
(Rosi et al., 2012). Collectively, these findings show that while
new neurons retain the capacity to be recruited into behav-
iorally relevant neural networks following brain injury, their
recruitment is significantly decreased following classical microglia
activation.

The chemokine receptor CX3CR1 is present in microglia
and circulating monocytes and its unique ligand fractalkine
(CX3CL1) is expressed in neurons and peripheral endothelia cells
(Bazan et al., 1997; Mizoue et al., 1999). CX3CL1 signaling in
the brain promotes microglial survival and controls microglial
neurotoxicity through its receptor CX3CR1 under certain neu-
rodegenerative and inflammatory conditions (Garcia et al., 2013).
CX3CL1/CX3CR1 signaling is regulated in the inflamed brain,
and CX3CR1 is a key regulator of microglia activation contribut-
ing to adaptive immune responses (Garcia et al., 2013). Recent
evidence demonstrates that in the uninjured brain microglia
play a critical role in monitoring and maintaining synapses by
directly interacting with synaptic elements (Wake et al., 2009;
Tremblay et al., 2010; Paolicelli et al., 2011). Using CX3CR1 knock-
out mice, Paolicelli et al. (2011) reported a transient reduction in
microglial numbers paralleled by a delay in synaptic pruning with
consequent excess of dendritic spines and a delayed maturation of
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excitatory transmission in the developing brain. These results,
together with recent data (Rogers et al., 2011; Hoshiko et al., 2012)
suggest that CX3CL1/CX3CR1 is an important neuron-microglia
signaling pathway necessary for synaptic pruning and maturation
(Paolicelli et al., 2011). In light of the role of CX3CL1/CX3CR1
signaling in synaptic maturation together with its involvement
in inflammation, it is possible that in the inflamed hippocam-
pus the alteration of this signaling pathway may lead to delayed
maturation and/or integration of adult-born neurons. Further
studies are needed to better understand how microglia may
impact the maturation of adult-born neurons depending of
their activation phenotype and the different signaling mole-
cules.

PERSPECTIVES AND CONCLUDING REMARKS
Available data indicate that the generation, migration, and func-
tional integration of adult-born neurons can be modulated in
the inflamed hippocampus, and this modulation appears to dif-
fer depending on the activation phenotype of microglia and
the specific factors that they release. It is now clear that the
range of impact of microglia on adult-born neurons is wider
than previously thought, as demonstrated by the anti-neurogenic
and pro-neurogenic effects of opposite pro-inflammatory and
anti-inflammatory polarized microglia. Previous strategies aimed

to maintain functional neurogenesis have mainly focused on
decreasing microglia activation. While recent data highlight
the potential neuroprotective role of microglia following brain
injury, it appears that transforming their phenotype toward
alternative activation states could optimize the production, migra-
tion, and integration of neurons. Future studies are needed
to: (i) characterize the phenotype of microglia activation and
the microglia-released factors following brain injury, taking into
account the nature of the injury and the timing following the
injury; (ii) understand how specific microglia activation states
and microglia-released factors impact functional neurogenesis,
including migration and functional integration; (iii) identify
ways to induce activation of microglia that would support func-
tional neurogenesis in the injured brain. These steps are of
critical importance to develop immune-mediated strategies to
promote efficient adult-born neurons integration for the main-
tenance or improvement of hippocampus-dependent cognitive
function.
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