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In the last decade, our group has intensively studied the annual fish Nothobranchius
furzeri as a new experimental model in Biology specifically applied to aging research. We
previously studied adult neuronal stem cells of N. furzeri in vivo and we demonstrated an
age-dependent decay in adult neurogenesis. More recently we identified and quantified the
expression of miRNAs in the brain of N. furzeri and we detected 165 conserved miRNAs and
found that brain aging in this fish is associated with coherent up-regulation of well-known
tumor suppressor miRNAs, as well as down-regulation of well-known onco miRNAs – In
the present work we characterized the expression of miR-15a, miR-20a, and microRNA
cluster 17–92 in the principal neurogenic niches of the brain of young and old subjects of N.
furzeri, by using in situ hybridization techniques, together with proliferating-cell nuclear
antigen immuno-staining for a simultaneous visualization of the neuronal progenitors.
We found that: (1) the expression of miR-15a is higher in the brain of old subjects and
concentrates mainly in the principal neurogenic niches of telencephalon and optic tectum,
(2) the expression of miR-20a is higher in the brain of young subjects, but more widespread
to the areas surrounding the neurogenic niches, (3) finally, the expression of the microRNA
cluster 17–92 is higher in the brain of young subjects, concentrated mainly in the principal
neurogenic niches of telencephalon and cerebellum, and with reduced intensity in the
optic tectum. Taken together, our data show that these microRNAs, originally identified in
whole-brain analysis, are specifically regulated in the stem cell niche during aging.

Keywords: microRNA regulation, Nothobranchius furzeri, adult neurogenesis, aging, neuronal stem cells,

maturation, in situ hybridization

INTRODUCTION
MicroRNAs (miRNAs) are abundant non-coding RNAs around
20–22 nucleotides in length, which are emerging as important
key players in the regulation of gene expression. miRNAs are
transcribed by RNA Polymerase II (i.e., the same Polymerase
which transcribes protein-coding RNAs) as long transcripts called
primary transcripts and undergo a complex processing before
being included in a ribonucleic complex. Several miRNAs can
be grouped in a genomic cluster and co-transcribed, and may
be hosted within an intron of a protein-coding gene. MiRNAs
bind, due to sequence complementarity, to specific sites in the
3′ untranslated region of their target mRNAs, thereby silencing
expression of the gene product via translational repression and/or
mRNA degradation. Indeed, they represent a new level of gene
regulation acting at the post-transcriptional level. Up to now, sev-
eral thousands of miRNAs have been predicted and identified in
animals, plants and viruses (www.mirbase.org).

A feature of miRNAs is their combinatorial regulation: a given
miRNA can target a multitude of different mRNAs and a given
target might similarly be targeted by multiple miRNAs; for this
reason, they frequently represent the central nodes of several

regulatory networks and may act as rheostat to provide stability
and fine-tuning to gene expression networks (Osella et al., 2011;
Siciliano et al., 2013). Moreover, they are promising candidates
for functional studies by genome-wide transcriptional analysis,
thanks to some specific features: (i) miRNAs are highly conserved
in vertebrates (cases of 100% identity between fish and mam-
mals are not uncommon) and are thought to be an evolutionarily
ancient component of genetic regulation; (ii) in a single tissue,
relatively few miRNAs are expressed (hundreds vs. tenths of thou-
sands mRNAs); (iii) they represent in their context the biologically
active molecule, since they directly bind and control the target
mRNAs: measurements of miRNA concentrations allow a more
direct inference of a biological function.

In the last decade, our group has intensively studied the annual
fish Nothobranchius furzeri as a new experimental model in Biol-
ogy. This fish inhabits ephemeral pools in semi-arid bushveld
of Southern Mozambique characterized by scarce and erratic
precipitations and have adapted to the seasonal drying of their
environment by producing desiccation-resistant eggs which can
remain dormant in the dry mud for one and maybe more years
by entering into diapause (Genade et al., 2005). Due to very short
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duration of the rain season, the natural lifespan of these animals is
limited to a few months (Terzibasi Tozzini et al., 2013). They rep-
resent the vertebrate species with the shortest captive lifespan and
also the fastest maturation (Genade et al., 2005; Blazek et al., 2013).
In addition, they express a series of conserved aging markers and
are amenable to genetic manipulations, making them an attractive
model system for aging research (Valenzano et al., 2006; Hartmann
et al., 2009, 2011; Terzibasi et al., 2009; Di Cicco et al., 2011; Valen-
zano et al., 2011; Hartmann and Englert, 2012; Allard et al., 2013).
Fish brains are characterized by a very active adult neurogenesis
with stem cell niches distributed along the entire rostro–caudal
extent of the ventricular surface (Zupanc and Horschke, 1995;
Adolf et al., 2006; Grandel et al., 2006; Kuroyanagi et al., 2010).
Adult neurogenesis in mammals is known to decrease dramati-
cally with age (Kuhn et al., 1996; Pekcec et al., 2008; Ben Abdallah
et al., 2010; Knoth et al., 2010). Adult neurogenesis in mammals
is restricted to two neurogenic niches in the telencephalon (TEL).
Adult neurogenesis in teleosts, on the other hand, is widespread
along the entire rostro–caudal axis and it is therefore unclear
whether the same age-dependent decay is observed as in mam-
mals. We therefore studied adult neuronal stem cells of N. furzeri
in vivo and demonstrated an age-dependent decay in adult neu-
rogenesis in terms both of incorporation of nucleotide analogs
and expression of specific markers. In addition, RNA-seq experi-
ments revealed age-dependent down-regulation of cell cycle genes
during aging of N. furzeri brain (Petzold et al., 2013). We also
observed a dramatic up-regulation of GFAP protein in the radial
(neurogenic) glia of aged N. furzeri brains. All these data indicate
a drastic reduction of neuronal stem cell activity during N. furzeri
aging (Terzibasi Tozzini et al., 2012).

In the present paper, we use N. furzeri to model age-dependent
decay of neurogenesis. We specifically analyzed the telencephalic
neurogeneic niches that share the same embryonic origin with the
mammalian adult niches (Adolf et al., 2006) and in particular the
ventral niche that is homologous to the subventricular (subpallial)
zone and the dorsal region that is homologous to pallial zone. For
comparisons, we also analyzed the germinal zone of the optic
tectum (OT), that is specific to teleosts and its stem cells do not
show a glial phenotype (Terzibasi Tozzini et al., 2012). This would
allow us to differentiate between conserved expression patterns in
the telencephalic niches from possible teleost-specific expression
pattern detectable only in the OT.

We previously used small RNA sequencing to identify and
quantify expression of miRNAs in the brain of N. furzeri using
miRBase as reference. We could detect 165 conserved miRNAs
and found that brain aging in N. furzeri is associated with
coherent up-regulation of well-known tumor suppressor miR-
NAs (such as miR-15a) that show positive interactions with TP53
and negative interactions with MYC, while the opposite is true
for down-regulated miRNAs, such as miR-20a and other miR-
NAs belonging to the miRNA cluster 17–92 (Baumgart et al.,
2012). Further, several of these miRNAs are regulated in the
primate brain as well (Somel et al., 2010). This regulation is prob-
ably linked to the age-dependent reduction in adult neurogenesis
observed in Nothobranchius species, as it would be suggested also
by down-regulation of miR-9, a miRNA enriched in adult neuronal
precursors (Terzibasi Tozzini et al., 2012).

The prototypic miRNA let-7 was originally shown to regu-
late the timing of developmental events in Caenorhabditis elegans
(Reinhart et al., 2000) and later to regulate the age-dependent
loss of regeneration in C. elegans (Zou et al., 2013). Stud-
ies in Vertebrates have indicated that the timing of miRNAs
expression can regulate the timely generation of neurons with
different cell-fates (Cremisi, 2013). Aim of the present work
was to characterize the expression pattern for some miRNAs
which are regulated during aging of N. furzeri brain, focus-
ing on miRNAs known to be regulators of the cell cycle, since
it has been previously demonstrated (Terzibasi Tozzini et al.,
2012) that neuronal stem cells (NSCs) decrease with age. The
miRNA cluster 17–92 is the prototypical oncogenic miRNA
locus and it is up-regulated in a variety of cancers. It codes
for six miRNAs: miR-17a, miR-18a, miR-19a, miR-20a, miR-
19b, and miR-92a (Mogilyansky and Rigoutsos, 2013) and this
organization is conserved in teleost fish (Guo et al., 2013). Its
expression is controlled by the prototypical oncogene MYC and
it targets known oncosuppressors such as PTEN and CDKN1A
and pro-apoptotic genes such as BCL2L11 thereby contribut-
ing to oncogenic transformation (Mogilyansky and Rigoutsos,
2013). The miRNA cluster 17–92 is also associated to aging,
as it is down-regulated during senescence of human cells both
in vitro and in vivo (Hackl et al., 2010), cardiac aging in mice
(van Almen et al., 2011) and aging of N. furzeri brain (Baum-
gart et al., 2012). Recent studies have shown that miR-17–92
cluster also regulates neuronal stem cell expansion and axonal
elongation of embryonic neuronal precursors via targeting of
PTEN (Bian et al., 2013; Zhang et al., 2013). On the other side,
miR-15a is a known oncosuppressor that is regulated by TP53
and targets cell-cycle and anti-apoptotic proteins (Finnerty et al.,
2010). Action of miR-15a in the nervous system is unknown,
but during normal development of the heart miR-15a induces
mitotic cycle exit of postnatal cardiomyocytes (Porrello et al.,
2011). Expression of miR-15a increases during aging of N. furzeri
(Baumgart et al., 2012) and may contribute to reduced activ-
ity of neuronal stem cells. We therefore decided to analyze
miR-15a and, on the other side, miR-20a and cluster 17–92,
for more in-depth investigations and analyzed their expression
at the cellular level in the neurogenic niches of young- and
old-fish.

RESULTS
We analyzed the expression of miR-15a, miR-20a and miRNA clus-
ter 17–92 in the brain of young and old subjects of N. furzeri, by
using in situ hybridization techniques, together with proliferating-
cell nuclear antigen (PCNA) immuno-staining for a simultaneous
visualization of the neurogenetic niches.

CLONING OF THE GENOMIC microRNA CLUSTER 17–92 From N. furzeri
In order to isolate the miRNA cluster 17–92 from N. furz-
eri, we designed primers covering the sequences of miR-17-5p
and miR-92a-3p (Figure 1). The primers amplified a fragment
of 857 bp. Alignment of this fragment with the correspond-
ing genomic regions of Oryzias latipes, Tetraodon nigrovirids
and Danio rerio revealed the expected conservation in the
regions of all the pre-miRNA of the cluster. Alignment of the
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FIGURE 1 | Alignment of the microRNA cluster 17–92 from the four teleost species. The genomic regions of D. rerio, T. nigroviridis, and O. latipes were
aligned to the fragment amplified in N. furzeri. The blue vertical bars indicate identical nucleotides. The localization of the mature miRNA sequences is indicated
by a red horizontal bar.

sequences corresponding to the mature miRNAs of the cluster
revealed 100% conservation in teleosts of miR-17, miR-18a,
miR-20a, miR-19b, and miR-92a. The sequence of miR-19a
showed a single position variation both in N. furzeri compared
with the other three species (13 T > C, Figure 2) and in
O. latipes compared with the other three species (19 A > G,
Figure 2).

EXPRESSION OF miR-15a IS HIGHER IN THE BRAIN OF OLD SUBJECTS
AND CONCENTRATES MAINLY IN THE PRINCIPAL NEUROGENETIC
NICHES OF TEL AND OT
To visualize expression of miR-15a in N. furzeri brain we used
a probe for fru-miR-15a whose sequence is identical to that of
N. furzeri. Figures 3A,B show an overview of miR-15a distri-
bution in young- and old-subjects, respectively, in a low-power
overview and double labeling. The neurogenic activity is detected
by immunohistochemistry for PCNA and visualized as a green
fluorescence staining and labeling for the miRNA obtained using
and LNA probe is shown as red fluorescence. Three regions
of interest are indicated in the hemi-brains horizontal section,
and represent areas were some of the most active neuroge-
netic niches are located (Terzibasi Tozzini et al., 2012): TEL and
relative sub-regions (acTEL, antero-central TEL; lpTEL, latero-
posterior TEL), OT and Cerebellum (CRB). As expected from
previous results (Terzibasi Tozzini et al., 2012), PCNA positive
cells (green) are more numerous in all neurogenic areas of the
young brains (Figures 3A,C,E) as compared to the old ones
(Figures 3B,D,F). Expression of miR-15a is overlapping with the
neurogenic niches but is weaker in the young-subject (Figure 3A)
as compared to the old-subject (Figure 3B). This is in line with
the up-regulation of miR-15 detected by qPCR and miRNA-
seq (Baumgart et al., 2012). The distribution of miR-15a can

FIGURE 2 | Alignment of the miR-19a-3p from the four teleost species.

The non-conserved sites are indicated in color.

be appreciated more in detail in the magnifications of the dif-
ferent regions (Figures 4–6): in the TEL, miR-15a expression is
primarily concentrated in the acTEL (Figures 4Bi,ii) and in the
lpTEL (Figures 5Bi,ii) neurogenetic niches, and staining is clearly
more prominent in the old, as compared to the young subject
(Figures 4Ai,ii and 5Ai,ii for acTEL and lpTEL, respectively). In
the old OT, miR-15a expression is concentrated in the posterior
margin (Figures 6Bi,ii, red), co-localizing with the proliferative
niche of PCNA positive cells (Figures 6Bi,ii, green). Notably, the
young subject presents a weaker miR15a expression in the same
area.

EXPRESSION OF miR-20a IS HIGHER IN THE BRAIN OF YOUNG
SUBJECTS, BUT MORE WIDESPREAD TO THE AREAS SURROUNDING
THE NEUROGENIC NICHES
To visualize expression of miR-20a in N. furzeri a LNA probe
designed against dre-miR-20a was used. An overview of miR-20
expression into young and old brain is shown in Figures 3C,D,
respectively, and its presence is clearly higher in the young tis-
sue with respect to the old one, in line with previous results
of qPCR and miRNA-seq (Baumgart et al., 2012). Unlike miR-
15a, which results highly concentrated into the neurogenic
niches, miR-20a shows a more widespread distribution through
acTEL, CRB, and OT regions of young subjects. MiR-20a
expression can be appreciated more in detail in the magnifica-
tion panels (Figures 4–6): in the acTEL region of the young
brain (Figures 4Ci,ii) red fluorescence indicates a strong expres-
sion of miR-20a into the centro-ventricular neurogenetic niche
(evidenced by the green fluorescence of PCNA positive cells)
and, at a lower level, in the surrounding areas. Its expres-
sion is radically reduced in the same regions of the old brain
(Figures 4Di,ii). A similar situation can be observed for the lpTEL
region (Figures 5C,D rows) and the OT (Figures 6C,D rows),
where the young tissue shows in both cases a stronger and more
diffuse miR-20a expression (Figures 5 and 6C rows), compared to
the old one (Figures 5 and 6D rows).

EXPRESSION OF THE microRNA CLUSTER 17–92 IS HIGHER IN THE
BRAIN OF YOUNG SUBJECTS, CONCENTRATED MAINLY IN THE
PRINCIPAL NEUROGENIC NICHES OF TELENCEPHALON AND
CEREBELLUM, AND WITH REDUCED INTENSITY IN THE OPTIC TECTUM
Finally, we performed an ISH in young- versus old-brains to
evaluate the expression of the primary transcript (pri-miRNA)
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FIGURE 3 | Overviews of Nothobranchius furzeri hemi-brain. In situ
Hybridization (ISH, in red) for miR15 (A,B), miR20 (C,D) and Cluster17–92
(E,F), double stained with PCNA (in green) by immunohistochemistry (IHC), in

young (A,C,E, 7 weeks old) versus old (B,D,F, 25 weeks old) subjects. TEL,
telencephalon; acTEL, antero-central telencephalon; lpTEL, latero-posterior
telencephalon; OT, optic tectum; CRB, cerebellum.

for the miRNA cluster 17–92 during aging. The overview of
its expression in young and old hemi-brains is represented in
Figures 3E,F, respectively. Similarly to miR-20a, the pri-miRNA
is more expressed in the young brain as compared to the old one,
but in this case its distribution results mainly concentrated into
the neurogenic niches of the TEL (better appreciated in the mag-
nifications of the acTEL and lpTEL of Figures 4 and 5, respectively,
E and F rows) and CRB (magnifications not shown). Compared
to these regions, the young OT is characterized by a weaker, but
still present, expression of miRNA cluster 17–92 (magnifications
of Figures 6E,F rows) partially extended to the region adjacent to
the proliferative niche of the posterior margin (Figure 6E), and
expression is undetectable in the old OT.

DISCUSSION
The action of miRNA was widely investigated in the context of
tumor biology. The role of miRNAs on the context of brain
aging and neurogenesis until recently concentrated on miR-9

and miR-124 (Leucht et al., 2008; Cheng et al., 2009; Maiorano
and Mallamaci, 2010; Coolen et al., 2012). Here, we used in
situ hybridization to localize the cells expressing one prototypi-
cal oncogenic miRNA cluster (miR-17–92) and one prototypical
oncosuppressor miRNA (miR-15a) in the brain of N. furzeri
during aging. Both miRNAs were detected preferentially in the
neurogenic niches and the sites of expression did not change dur-
ing aging. However, at a qualitative level, opposing temporal
patterns were apparent: during aging, the intensity of label-
ing for miR-17–92 primary transcripts and miR-20a decreases
while the intensity of labeling for miR-15a increases. This is
consistent with previous quantitative analysis of miRNA-seq and
qPCR of whole brain extracts showing that, during aging, the
expression of the miR-17–92 miRNA cluster decreases and the
expression of miR-15a increases (Baumgart et al., 2012). The
brain of N. furzeri contains widespread neuronal stem cells and
is characterized by a drastic age-dependent reduction of neuro-
genesis (Terzibasi Tozzini et al., 2012). It is therefore likely that
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FIGURE 4 | Magnification of the central region of the telencephalon

(cTEL) stained in green for PCNA by IHC, and in red for miR15 (A,B

strips), miR20 (C,D strips) and Cluster17–92 (E,F strips) by ISH. The
upper inset on A shows an overview of a horizontal brain section: the
location of the cTEL is indicated by the red rectangle. The left column of
the panel (A–F) shows the merged channels for the double staining; A,B

refer to ISH for miR15a, respectively, in a young versus an old
representative subject. C,D refer to ISH for miR20a, respectively, in a young
versus an old representative subject. E,F refer to ISH for Cluster17–92,
respectively, in a young versus an old representative subject. Central (Ai–Fi)
and right (Aii–Fii) columns show the green and red single channel of the
respective image on the left.
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FIGURE 5 | Magnification of the latero-posterior region of the

telencephalon (lpTEL) stained in green for PCNA by IHC, and in red for

miR15 (A,B strips), miR20 (C,D strips), and Cluster17–92 (E,F strips) by

ISH. The lower inset on Aii shows an overview of a horizontal brain section:
the location of the lpTEL is indicated by the red rectangle. The left column of
the panel (A–F) shows the merged channels for the double staining; A,B refer

to ISH for miR15a, respectively, in a young versus an old representative
subject. C,D refer to ISH for miR20a, respectively, in a young versus an old
representative subject. E,F refer to ISH for Cluster17–92, respectively, in a
young versus an old representative subject. Central (Ai–Fi) and right (Aii–Fii)
columns show the green and red single channel of the respective image on
the left.
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FIGURE 6 | Magnification of the posterior margin of the optic tectum

(pOT) stained in green for PCNA by IHC, and in red for miR15 (A,B

strips), miR20 (C,D strips) and Cluster17–92 (E,F strips) by ISH. The
upper inset on A shows an overview of a horizontal brain section: the
location of the pOT is indicated by the red rectangle. The left column of the
panel (A–F) shows the merged channels for the double staining; A,B refer

to ISH for miR15a, respectively, in a young versus an old representative
subject. C,D refer to ISH for miR20a, respectively, in a young versus an old
representative subject. E,F refer to ISH for cluster17–92, respectively, in a
young versus an old representative subject. Central (Ai–Fi) and right (Aii–Fii)
columns show the green and red single channel of the respective image on
the left.
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regulation of these miRNAs in the stem cell niche generates a
signal that is detected by quantitative techniques in whole-brain
extracts.

The miRNA cluster 17–92 is down-regulated during aging in
a variety of models (Hackl et al., 2010; van Almen et al., 2011;
Baumgart et al., 2012), but no data are present as to the site of
expression of miRNA cluster 17–92 in the brain. We could specif-
ically show that this gene is expressed in the neurogenic nice
but also cells surrounding it. This indicates that miRNA clus-
ter 17–92 is important for adult neuronal stem cell function, but
remains activates also in newborn neurons. Indeed recent studies
have shown that miR-17–92 cluster regulates neuronal stem cell
expansion and axonal elongation of embryonic neuronal precur-
sors via targeting of PTEN (Bian et al., 2013; Zhang et al., 2013).
In young animals, the expression of miR-20a (one of the mem-
bers of the cluster) is more widespread that the expression of the
primary transcript. This is expected, since primary transcripts
have very short half-life while mature miRNAs are thought to be
long-lived.

miRNA-15a act as a general negative regulator of the cell cycle
(Finnerty et al., 2010) and induces mitotic cycle exit of postnatal
cardiomyocytes (Porrello et al., 2011). Therefore, increased expres-
sion of miR-15a in the aged neuronal stem cells is consistent with
reduced cell cycle activity.

Our data suggest that miR-17–92 cluster and miR-15a play
opposing roles in the regulation of stem cell activity and that their
age-dependent imbalance is part of the mechanisms responsible
for age-dependent reduction of adult neurogenesis.

MATERIALS AND METHODS
FISH BREEDING AND HOUSING CONDITIONS
All experiments were performed on group-house N. furzeri of
the MZM-04/10 strain. The protocols of fish maintenance were
carried out in accordance with all animal use practices established
by the Italian Ministry of Health (Number 96/2003a).

Eggs were maintained on wet peat moss at room temperature
in sealed Petri dishes. When embryos had developed, eggs were
hatched by flushing the peat with tap water at 16–18◦C. Embryos
were scooped with a cut plastic pipette and transferred to a clean
vessel. Fry were fed with newly hatched Artemia nauplii for the
first 2 weeks and then weaned with finely chopped Chironomus
larvae. Starting at the fourth week of life, fish were moved to 40-l
tanks at a maximum density of 20 fish per tank equipped with
air-driven sponge filters. The aquarium room’s temperature was
set at a constant 26◦C. Twice a week the bottom of the tanks was
siphoned and 50% of the water was exchanged with tempered tap
water.

TISSUE COLLECTION AND PREPARATION
Fish were euthanized with MS-222 and cooled on crushed ice
for 5 min before dissection. Whole brains from young (7 weeks)
and old (25 weeks) animals were dissected and fixed by immer-
sion in 4% paraformaldehyde/0.1 M phosphate buffer (pH 7.4),
and then cryoprotected with a two-step immersion at 20% and
then 30% sucrose solution for at least 12 h each. Finally the tis-
sues were embedded at −20◦C in Neg50 crio-embedding medium
(Thermo Scientific); series of 16 μm thick sections were cut with

a Leica cryostat and collected on Superfrost plus slides® (Thermo
Scientific).

CLONING OF miR-17–92 Locus of N. furzeri AND PROBE PREPARATION
PCR was performed on cDNA using GoTaq polymerase
(Promega), 56 degrees for annealing temperature, and 60 s
elongation time using the following primers:

Forward: CAAAGTGCTTACAGTGCAGGT
T7-Reverse: GTAATACGACTCACTATAGGG-GGCCGGGACA
AGTGCAATACC
0.5 μg of PCR products that contain T7 RNA polymerase

promoter at the 3′ ends were used as templates for in vitro
transcription. Probes were transcribed using DIG RNA label-
ing kit (SP6/T7) (Roche), according to the manufacturer’s
protocol.

The sequence of the N. furzeri miR-17–92 locus was deposited
in GeneBank (Accession Number: KF986732). LNA probes for
the mature form of fru-miR-15a (MI0003469) and dre-miR-20a
(MI0001907) were directly ordered from Exiqon (Denmark)

IN SITU HYBRIDIZATION
We performed in situ Hybridization using two different probes:
classical RNA probes, to detect transduction products expression
of specific genes, and LNA probes, to detect the expression of
several mature miRNAs (functional form) of our interest.

All in situ Hybridization protocols has been performed on
16 μm thick cryo-sections of fish brain. Slides were dried for
2 h at 37◦C, washed in PBS twice for 3 min, and then treated for
8 min with Proteinase K (diluted 1:80000 starting from stocks of
20 mg/mL). After that, slides were washed in Glycine (2 mg/mL
in PBT) twice for 5 min, to stop the reaction. Then, sections
were fixed with PFA 4% for 20 min at room temperature, and
washed in PBT (three times for 3 min). Pre-hybridization were
performed covering the slides with 200 μl of hybridization buffer
under parafilm coverslips (to avoid evaporation) at hybridization
temperature (60◦C for classic RNA probes; 37◦C for LNA probes)
for 30 min. Hybridization was performed covering each slide with
a solution of the specific antisense probe, or LNA 3′ DIG labeled
exiqon probe diluted in both cases in 200 μl of hybridization
buffer to a final concentration of 1 μg/mL. Parafilm coverslips were
used and slides incubated at hybridization temperature overnight.
Before using them, diluted RNA probes (not LNA) have been
denatured for 5 min at 80◦C. In order to avoid drying out the
slides the whole process has been carried out in wet chamber
with PBS.

After hybridization, 2× SSC has been used to remove the cov-
erslip. Slides were first washed in 1× SSC, twice for 20 min, and
then in 0.2× SSC twice for 20 min, always at hybridization tem-
perature. A final washing step was done in PBT three times for
5 min at room temperature.

For the probe revelation slides were incubated with blocking
solution for 30 min at room temperature and then with Anti-Dig-
AP Fab Fragments Ab [1/2000] in blocking solution overnight
at 4◦C.

Washings in PBT, 3 times for 5 min, and in NMNT, 3 times for
5 min at room temperature, have been conducted before adding
Fast Red solution (Roche Tablets; 1 in 2 mL Tris-HCl 0.1 M,
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pH = 8.2). To avoid the formation of precipitate, Fast Red tablets
have been vortexed for 5 min in Tris-HCl and then filtered. Obser-
vation has been conducted every 20 min with a Zeiss fluorescence
microscope until the signal detection (1–10 h depending on the
probe used). The staining has been stopped washing well in PBS
(at least 3 times for 5 min) at room temperature.

HISTOLOGY: PCNA STAINING
After ISH procedure, slides were processed to stain the popula-
tion of proliferating cells in the neurogenetic niches, following the
standard procedures of immunohistochemistry: we used the pri-
mary antibody against PCNA commercially available from DAKO
(mouse monoclonal, clone PC10, code: M0879) diluted 1:500.
Visualization of the primary antibody was performed with the
secondary antibody Alexa Fluor®488 (goat anti-mouse, Life Tech-
nologies, code: A10680) diluted 1:400. The staining has been
stopped washing well in PBS (at least 3 times for 5 min) at room
temperature. Then slides were closed with a specific mounting
(Fluoroshield, Sigma) and analyzed with a confocal microscope
(Leica TCS).
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