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Drug abuse and addiction cause widespread social and public health problems, and
the neurobiology underlying drug actions and drug use and abuse is an area of
intensive research. Drugs of abuse alter synaptic transmission, and these actions
contribute to acute intoxication as well as the chronic effects of abused substances.
Transmission at most mammalian synapses involves neurotransmitter activation of two
receptor subtypes, ligand-gated ion channels that mediate fast synaptic responses
and G protein-coupled receptors (GPCRs) that have slower neuromodulatory actions.
The GPCRs represent a large proportion of neurotransmitter receptors involved in
almost all facets of nervous system function. In addition, these receptors are targets
for many pharmacotherapeutic agents. Drugs of abuse directly or indirectly affect
neuromodulation mediated by GPCRs, with important consequences for intoxication,
drug taking and responses to prolonged drug exposure, withdrawal and addiction.
Among the GPCRs are several subtypes involved in presynaptic inhibition, most of
which are coupled to the Gi/o class of G protein. There is increasing evidence that
these presynaptic Gi/o-coupled GPCRs have important roles in the actions of drugs
of abuse, as well as behaviors related to these drugs. This topic will be reviewed,
with particular emphasis on receptors for three neurotransmitters, Dopamine (DA; D1-
and D2-like receptors), Endocannabinoids (eCBs; CB1 receptors) and glutamate (group
II metabotropic glutamate (mGlu) receptors). The focus is on recent evidence from
laboratory animal models (and some evidence in humans) implicating these receptors
in the acute and chronic effects of numerous abused drugs, as well as in the control
of drug seeking and taking. The ability of drugs targeting these receptors to modify
drug seeking behavior has raised the possibility of using compounds targeting these
receptors for addiction pharmacotherapy. This topic is also discussed, with emphasis
on development of mGlu2 positive allosteric modulators (PAMs).

Keywords: addiction, self-administration, presynaptic, GPCR, dopamine receptor, CB1 receptor, metabotropic
glutamate receptor, allosteric modulator

INTRODUCTION

Drug and alcohol use disorders are prominent neuropsychiatric conditions that create substantial
economic, health and societal costs. Substance abuse definitions have evolved over time, but
key features include relapse to drug use even after prolonged abstinence, escalation of drug
intake, tolerance to the effects of drugs, craving, and continued use despite adverse consequences to
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health, financial status and relationships (American Psychiatric
Association, 2013; Hasin et al., 2013; Koob and Volkow,
2016). Repeated drug exposure produces neuroadaptations that
contribute to pathological drug-related behaviors. These include
long-term alterations in gene expression, protein regulation,
anatomy, and synaptic function that collectively influence neural
circuits that govern reward, motivation, and action control
to produce maladaptive behaviors. In particular, abused drugs
produce adaptations in limbic, associative, and sensorimotor
cortico-basal ganglia circuits that alter responses to drugs and
contribute to inflexible drug taking and seeking behaviors (for
review see Gremel and Lovinger, 2016; Scofield et al., 2016).
Drug-associated changes in the activity of the dorsal and ventral
striatum (nucleus accumbens, NAc) heavily contribute to various
aspects of drug intake. In addition, inputs to the NAc from
regions such as the amygdala and bed nucleus of the stria
terminalis (BNST) provide information about environmental
stimuli associated with drug intake that contributes to relapse
to drug seeking following abstinence (Stamatakis et al., 2014).
Plasticity of glutamatergic neurotransmission in these circuits
has been implicated as a major neurobiological process
underlying addictive behaviors (Kalivas, 2009; Scofield et al.,
2016). Therefore, it is critical to understand the cellular
processes that contribute to drug-induced plasticity. Moreover,
a reversal of synaptic dysfunction in these circuits could
correct pathological behaviors and represents a promising
approach to designing new therapeutic strategies for drug
use disorders. In this context, neurotransmitter receptors
that are poised to influence synaptic transmission in key
addiction-relevant circuits are likely to play critical roles
in the effects of abused drugs and as novel therapeutic
targets.

G protein-coupled receptors (GPCRs; also known as
7 transmembrane domain or 7TM receptors) are a large class
of metabotropic receptors for neurotransmitters and hormones
that couple to heterotrimeric G proteins. G proteins mediate
a wide variety of cellular functions, including, but not limited
to, altering the production of second messengers such as
cyclic adenosine monophosphate (cAMP), mobilizing internal
calcium stores, modulating ion channel function, altering
neurotransmitter release, and influencing gene expression. Upon
activation of a GPCR, the heterotrimeric G protein dissociates
into α and βγ subunits, which then modulate the function of
a diverse array of effector proteins to simultaneously influence
many cellular functions (Latek et al., 2012). GPCRs are often
classified by the G protein α subunits with which they prefer
to interact. This review will primarily focus on Gαi/o-coupled
GPCRs, which are well-known modulators of neurotransmitter
release (Figure 1). These receptors inhibit adenylyl cyclase to
reduce production of the second messenger molecule cAMP. In
addition to Gα-mediated effects, the Gβγ subunits liberated by
GPCR activation can influence neuronal physiology via direct
interactions with voltage-gated calcium channels, G protein-
activated inward-rectifying potassium (GIRK) channels, and
vesicular release machinery. In the context of the presynaptic
axon terminal, each of these mechanisms can contribute to the
inhibition of neurotransmitter release in response to GPCR

FIGURE 1 | Presynaptic G protein-coupled receptors (GPCRs)
modulate neurotransmitter release via several mechanisms.
Presynaptic Gi/o-coupled GPCRs such as mGlu2, cannabinoid type 1 (CB1)
and D2 can reduce the probability of neurotransmitter release by inhibiting
calcium influx through voltage-gated calcium channels, by directly modulating
the function of vesicle release machinery, and possibly by activating inwardly
rectifying potassium channels to hyperpolarize or shunt the presynaptic
terminal. These receptors also reduce cyclic adenosine monophosphate
(cAMP) levels and protein kinase A (PKA) activity via inhibition of adenylyl
cyclase, which may contribute to long-term regulation of neurotransmitter
release. Conversely, presynaptic D1 receptors, which are coupled to Gs/Golf

and activate PKA signaling, can increase neurotransmitter release. There are
likely many other mechanisms involved in the regulation of neurotransmitter
release by GPCRs, including activation of other signaling pathways and
stimulation of protein synthesis (see Atwood et al., 2014b for further
discussion).

activation (Kretz et al., 1986; Herlitze et al., 1996; Ikeda, 1996;
Seino and Shibasaki, 2005).

Preclinical models of drug abuse including investigator-
administered passive drug exposure, conditioned place
preference (CPP) and operant drug self-administration have
been used to evaluate the multifaceted relationships between
presynaptic GPCRs and drugs of abuse (for reviews of common
animal models, see Belin-Rauscent et al., 2016; Scofield et al.,
2016). Based on these studies, several prominent themes have
emerged. First, GPCRs, particularly Dopamine (DA) receptors,
are important mediators of the neurochemical and behavioral
effects of drugs of abuse. Second, modulation of presynaptic
GPCRs can alter neurochemical and behavioral responses to
acute drug exposure in ways that would be predicted to either
promote or constrain the rewarding and stimulating effects of a
variety of abused drugs. Third, repeated exposure to drugs such
as alcohol, cocaine, and nicotine produce long-lasting changes
in the ability of some presynaptic GPCRs to modulate the release
of neurotransmitters, particularly glutamate, in addiction-
relevant circuits. Such drug-induced neuroadaptations are
likely to play key roles in the transitions to problematic
drug-related behaviors including escalation of drug taking
and relapse following abstinence. Finally, pharmacological
manipulation of presynaptic GPCRs can reduce seeking and
taking of self-administered drugs in both rodent and non-human
primate models, suggesting that targeting these receptors could
be a viable therapeutic approach for treating addiction. The
present review will highlight these themes using the examples
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of three well-known classes of GPCRs: DA receptors, which
are important mediators of the CNS effects of abused drugs;
cannabinoid type 1 (CB1) receptors; and group II metabotropic
glutamate receptors (mGlus). We will then discuss recent
progress towards translating preclinical findings into clinical
therapeutics.

DOPAMINE RECEPTORS

DA is one of the few small molecule neurotransmitters that
exclusively activate GPCRs in the mammalian brain, and thus
only has modulatory neurophysiological and neurochemical
effects. There are five different DA receptor subtypes (D1–5) with
the D1 and −5 subtypes generally coupled to Gs/olf G proteins,
and the D2, −3 and −4 coupled to Gi/o (for review see Beaulieu
and Gainetdinov, 2011). DA receptors are found on both pre-
and postsynaptic elements of many CNS neuronal subtypes.
In some neurons, such as striatal medium spiny projection
neurons (MSNs), it is likely that DA receptors mediate effects
that are considered postsynaptic (e.g., changes in intracellular
signaling, gene expression, and modulation of postsynaptic
ionotropic glutamate receptor function) as well as effects
that are presynaptic (i.e., modulating neurotransmitter release
onto neighboring MSNs or neurons in striatal target regions
such as the globus pallidus/ventral pallidum). The anatomical
distribution of dopaminergic neurons is well circumscribed
within the brain. The large majority of dopaminergic neuronal
somata reside within the A9 and A10 ventral midbrain areas, also
known as the substantia nigra pars compacta (SNc) and ventral
tegmental area (VTA), respectively. Efferent projections from
these nuclei give rise to dense axonal fields in the dorsal striatum
(from SNc) and ventral striatum/NAc (from VTA). Sparser DA
projections innervate areas in the frontal cortex and allocortical
areas such as the amygdala and hippocampus (Scatton et al.,
1980; Gasbarri et al., 1997; Bjorklund andDunnett, 2007; Lammel
et al., 2008). These non-striatal projections mainly arise from the
VTA (Gasbarri et al., 1997), although the SNc does give rise to
a small hippocampal projection (Scatton et al., 1980). Midbrain
dopaminergic neurons have crucial roles in movement initiation
and control, signaling reward and salience of environmental
events, and several other brain functions (Schultz, 2007; Wickens
et al., 2007; Palmiter, 2008; Yin, 2016). A second, lesser known
source of dopaminergic neurons is the ventral periaqueductal
gray (PAG)/dorsal raphe nucleus (DRN) border region (Dougalis
et al., 2012). This projection may have important roles in central
processing of pain- and stress-related stimuli, but will not be
discussed in detail in this review article.

Dopaminergic transmission is the direct target of a number
of drugs of abuse, and is secondarily affected by virtually
all abused drugs (reviewed in Volkow and Morales, 2015).
The ‘‘stimulant’’ drugs such as cocaine, amphetamines
and methylphenidate produce many of their CNS actions
via molecular interactions with the dopamine transporter
(DAT). This transporter is the main conduit for clearance of
extracellular DA, strongly controlling effective concentrations
of the neurotransmitter. Cocaine and methylphenidate inhibit
transporter function, effectively blocking the reuptake of

extracellular DA. The stimulant drugs thus prolong the time
course and increase the extracellular spread of DA following
vesicular release. Amphetamines can activate the reverse
transport of intracellular DA to increase the extracellular
content. This action also prevents uptake via the transporter,
leading to large increases and spread of extracellular DA. The
net effect of all these stimulant drug effects is to produce
longer-lasting and more widespread activation of DA receptors,
with subtle but important differences between the pure uptake
blockers and amphetamines. The impact of these DAT-targeted
drug effects are largest in the striatum, as the transporter is
most highly expressed in the terminal fields in this structure.
However, lesser effects can occur in cortical regions and even in
the midbrain itself. Little is known about stimulant drug effects
on PAG neurons and their axon terminals.

Other drugs of abuse increase dopaminergic synaptic
transmission via distinct processes. One prominent mechanism
is the disinhibition of midbrain dopaminergic neurons due to
decreased activity or synaptic transmission from GABAergic
neurons. This mechanism likely accounts for the DA enhancing
effects of, benzodiazepines, cannabinoids, and opiates (Johnson
and North, 1992; Szabo et al., 2002; Lupica and Riegel,
2005; Tan et al., 2010), and plays a part in the actions of
nicotine (Pidoplichko et al., 2004). In the case of cannabinoids,
Gi/o-coupled GPCRs activated by these drugs are present on
GABAergic presynaptic terminals that synapse onto midbrain
dopaminergic neurons (Szabo et al., 2002; Lupica and Riegel,
2005). Activation of these GPCRs inhibits GABA release,
effectively removing inhibition of DA neurons and allowing
for greater firing and more DA release. Ethanol also appears
to disinhibit dopaminergic neurons via effects on the firing of
GABAergic neurons (Stobbs et al., 2004; Tateno and Robinson,
2011; but see Theile et al., 2011), although ethanol can also
directly excite midbrain dopaminergic neurons via more direct
effects on the neurons themselves (Melis et al., 2009; Morikawa
and Morrisett, 2010).

As with the stimulant drugs, the main impact of other drugs
of abuse on dopaminergic transmission occurs in target regions
of the dopaminergic afferents (i.e., striatum and frontal cortex).
All of these drugs increase extracellular DA in the dorsal and
ventral striatum (Di Chiara and Imperato, 1988; Benwell and
Balfour, 1997; Mathews et al., 2006). Early reports indicated
that these effects were larger in the ventral striatum, and this
region has been implicated in several aspects of drug use, abuse
and relapse (Di Chiara and Imperato, 1988). However, drug
effects in the dorsal striatum should not be ignored, as they
likely contribute to the learning of goal-directed and habitual
actions related to drug seeking and continued use (Gremel and
Lovinger, 2016). Despite all that is known about the increases in
extracellular DA produced by drugs of abuse, less is known about
which receptors are responsible for translating this increase into
intoxication and other acute drug actions. This subject clearly
requires considerable additional research, but is outside the focus
on presynaptic receptors in the present review article.

The roles of DA receptors in the effects of stimulant
drugs have been examined in electrophysiological experiments.
Application of amphetamine generally increases the firing of
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striatal neurons (e.g., Rebec et al., 1997; Glynn and Ahmad,
2003). Cocaine and amphetamine reliably inhibit afferent
excitability and synaptic transmission in ventral striatum
(Garcia-Munoz et al., 1991; Harvey and Lacey, 1996; Nicola
et al., 1996; Glynn and Ahmad, 2003; Adrover et al., 2014;
Dobbs et al., 2016), the globus pallidus and ventral pallidum
(Floran et al., 1997; Dobbs et al., 2016), and the amygdala
(Huang et al., 2003). In the ventral striatum, this effect appears
to involve presynaptic suppression of neurotransmitter release
and D1 receptor activation (Harvey and Lacey, 1996; Nicola et al.,
1996). Although many physiological and behavioral effects of
stimulant drugs cannot currently be attributed to specific pre-
or postsynaptic receptor populations, a recent report by Dobbs
et al. (2016) begins to shed light on this important question. This
study found that cocaine increases firing of D1-expressing MSNs
by reducing collateral inhibition via activation of D2 receptors
on D2-expressing MSNs, and that presynaptic MSND2 receptors
are critical mediators of acute locomotor responses to cocaine
(Dobbs et al., 2016).

Changes in DA receptor expression and function have been
examined following chronic exposure to both stimulant and
non-stimulant drugs of abuse. For example, chronic cocaine

exposure leads to D1 supersensitivity in NAc (Nestler and
Aghajanian, 1997), and increases in D2 receptor antagonist
binding sites in the DS and NAc (Goeders and Kuhar, 1987).
Increased sensitivity to behavioral effects of D2 agonists have also
been observed (Ujike et al., 1990). However, reduced sensitivity
of presynaptic autoreceptors, DA receptors on the dopaminergic
neurons themselves, has also been observed following repeated
cocaine administrations (Yi and Johnson, 1990). Imaging studies
in both animals and humans reveal that decreased D2 receptor
availability is a striking common feature of chronic exposure to
drugs of abuse including cocaine, alcohol, methamphetamine,
heroin, nicotine, and cannabis (for review see Volkow et al.,
2009). Importantly, reduced D2 function following long-term
drug abuse is thought to underlie reduced motivation for natural
reinforcers.

The extent to which DA receptor ligands can mimic or
alter behavioral actions of drugs of abuse has been widely
studied (Table 1). Ligands for both D1 and D2 have cocaine-like
effects when given acutely, and antagonists can block acute
cocaine actions (Spealman et al., 1992; Baik, 2013). Activation
of D2 receptors has been shown to blunt cocaine sensitization
(Beyer and Steketee, 2002), while D2 antagonists or receptor

TABLE 1 | Behavioral effects of drugs targeting dopamine receptors.

Pharmacological
manipulation

Behavioral effect Reference(s)

D1 agonist cocaine-like effects reviewed in Baik (2013)

D1 antagonist ↓ cocaine locomotor activation Cabib et al., 1991; Ushijima et al., 1995
↔ cocaine sensitization Kuribara and Uchihashi, 1993; Mattingly et al., 1994; Steketee, 1998; White et al., 1998; Karlsson et al.,

2008
↓ methamphetamine sensitization Kuribara and Uchihashi, 1993
l cocaine SA Woolverton, 1986; Britton et al., 1991; Corrigall and Coen, 1991a; Hubner and Moreton, 1991; Caine and

Koob, 1994
↓ amphetamine SA Phillips et al., 1994; Pierre and Vezina, 1998
↓ MDMA SA Brennan et al., 2009
↓ nicotine SA Corrigall and Coen, 1991b; Kutlu et al., 2013; Hall et al., 2015
↓ cocaine seeking Brown et al., 2012
↓ MDMA seeking Schenk et al., 2011
↓ nicotine seeking Liu et al., 2010
↓ heroin seeking Shaham and Stewart, 1996

D2 agonist cocaine-like effects reviewed in Baik (2013)
↓ cocaine sensitization Beyer and Steketee, 2002
↓ cocaine CPP Hummel and Unterwald, 2002
↑ cocaine seeking Self et al., 1996; De Vries et al., 1999; Spealman et al., 1999; Khroyan et al., 2000; De Vries et al., 2002;

Fuchs et al., 2002

D2 antagonist ↔ cocaine CPP Spyraki et al., 1982; Cervo and Samanin, 1995; Nazarian et al., 2004
↔ cocaine locomotor activation Cabib et al., 1991; Ushijima et al., 1995
↔ cocaine sensitization Kuribara and Uchihashi, 1993; Mattingly et al., 1994; Shippenberg and Heidbreder, 1995; White et al., 1998
↓ methamphetamine sensitization Kuribara and Uchihashi, 1993
↓ cocaine SA (mPFC) Goeders and Smith, 1983
l cocaine SA Woolverton, 1986; Britton et al., 1991; Hubner and Moreton, 1991; Corrigall and Coen, 1991a; Caine and

Koob, 1994
↓ amphetamine SA Phillips et al., 1994
↑ MDMA SA Brennan et al., 2009
↓ nicotine SA Corrigall and Coen, 1991b
↓ nicotine seeking Liu et al., 2010
↓ heroin seeking Shaham and Stewart, 1996

SA, self-administration.
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knockout generally does not greatly alter acute locomotor
activation, sensitization, or CPP (Spyraki et al., 1982; Cabib
et al., 1991; Kuribara and Uchihashi, 1993; Mattingly et al.,
1994; Cervo and Samanin, 1995; Shippenberg and Heidbreder,
1995; Ushijima et al., 1995; Vanderschuren and Kalivas, 2000;
Nazarian et al., 2004; Welter et al., 2007; Sim et al., 2013).
Deleting only those D2 receptors expressed on dopaminergic
neurons themselves increases CPP for cocaine (Bello et al.,
2011), highlighting the fact that antagonists or global knockout
may not have any net effect due to different physiological
roles of receptors expressed by different neuronal subtypes.
Substantial literature indicates that D1 receptor activation has
crucial roles in psychostimulant-induced behaviors, including
locomotor activation, sensitization, CPP and self-administration
(Kalivas, 1995; Baik, 2013). Generally, inhibiting or knocking
out D1 receptors will attenuate locomotor activation, and CPP
for cocaine (Cabib et al., 1991; Ushijima et al., 1995; Hummel
and Unterwald, 2002). However, cocaine sensitization is not
greatly altered by D1 antagonists or knockout (Kuribara and
Uchihashi, 1993; Mattingly et al., 1994; Steketee, 1998; White
et al., 1998; Vanderschuren and Kalivas, 2000; Karlsson et al.,
2008), although it is reduced by inactivation of D1-MSNs in
NAc (Hikida et al., 2010; Chandra et al., 2013). Recent data
from the Luscher laboratory provides compelling evidence that
important aspects of the drug use disorder profile can be initiated
by selective activation of the mesolimbic dopaminergic system,
and that D1 receptors play a crucial role in these effects (Pascoli
et al., 2015).

Studies evaluating the effects of manipulating DA receptor
function on drug self-administration have revealed critical roles
for these receptors in drug taking. Notably, blockade of D2
receptors in the medial prefrontal cortex has been shown to
attenuate cocaine self-administration (Goeders and Smith, 1983).
Systemic administration of D2 antagonists can enhance MDMA
self-administration (Brennan et al., 2009). However, peripheral
antagonist injections do not have consistent effects, due in part
to biphasic effects at different doses (Woolverton, 1986; Britton
et al., 1991; Corrigall and Coen, 1991a; Hubner and Moreton,
1991; Witkin et al., 1991; Caine and Koob, 1994). The literature
on D1 antagonist effects on cocaine self-administration shows
similar variability (Woolverton, 1986; Britton et al., 1991; Hubner
and Moreton, 1991; Vanover et al., 1991; Caine and Koob, 1994).
Other factors that may have influenced these outcomes were
species and strain differences, differences in self-administration
protocol, and differential impact of blocking D1 receptors on
different neuronal targets at different drug doses. Knocking out
all D1 receptors eliminates cocaine self-administration (Caine
et al., 2007). Self-administration of MDMA is also prevented
by a D1 antagonist (Brennan et al., 2009). Intra-accumbens D1
or D2 antagonist injection reduces amphetamine and nicotine
self-administration (Corrigall and Coen, 1991b; Phillips et al.,
1994), and D1 antagonists also reduce drug-induced facilitation
of amphetamine self-administration (Pierre and Vezina, 1998).
In addition to the NAc shell subregion, the insular and parietal
association cortices appear to be brain regions where D1
receptors control self-administration (Kutlu et al., 2013; Hall
et al., 2015).

DA receptors are also involved in the reinstatement of
drug seeking following abstinence. For example, cue-induced
reinstatement of nicotine seeking is reduced by both D1 and
D2 antagonists (Liu et al., 2010), and reinstatement of MDMA
seeking is prevented by D1 antagonists (Schenk et al., 2011).
Stress-induced reinstatement of heroin seeking is partially
reduced by both D1 and D2 antagonists, with a larger effect of
a non-selective DA receptor antagonist (Shaham and Stewart,
1996), whereas stress-induced reinstatement of cocaine seeking
is only prevented by a D1 antagonist (Brown et al., 2012).
Conversely, activation of D2 enhanced reinstatement of both
cocaine and heroin seeking (De Vries et al., 1999). It has
been shown in several studies that D2 agonists can induce
reinstatement of cocaine seeking behavior (Self et al., 1996;
De Vries et al., 1999, 2002; Spealman et al., 1999; Khroyan
et al., 2000; Fuchs et al., 2002). Mice lacking D2 receptors show
increased cocaine self-administration (Caine et al., 2002), but
reinstatement of seeking induced by stress is attenuated in these
mice (Sim et al., 2013). These seemingly conflicting results may
be attributable to differences in the neurobiology of drug seeking
for different drugs of abuse and different circuitry engaged by
various stimuli that produce reinstatement of drug seeking.

CB1 RECEPTORS

Endocannabinoids (eCBs) are lipid metabolites that act as
juxtacrine and paracrine modulators throughout the nervous
system and body. Within the brain, eCBs produce their actions
predominantly through activation of CB1, a class A GPCR
that is almost exclusively localized to presynaptic terminals.
The eCB name is obviously derived from the term cannabis,
and this is due to the fact that CB1 is also the primary
CNS molecular target for ∆9-tetrahydrocannabinol (∆9THC),
the major psychoactive ingredient in preparations of Cannabis
sativa, which acts as a partial agonist at these receptors.
The two major eCBs with synaptic actions are 2-arachidonoyl
glycerol (2-AG) and arachidonoyl ethanolamide (AEA, also
known as anandamide; for review see Lu and Mackie, 2016).
The eCBs can be produced by virtually any cell in the brain,
and the CB1 receptor shows widespread expression throughout
the nervous system. The best known actions of CB1 involve
presynaptic depression of neurotransmitter release, mediated via
Gi/o activation. Downstream effectors involved in this inhibition
include voltage-gated calcium channels, as-yet unidentified
components of vesicle fusion machinery, and perhaps certain
potassium channels (Chevaleyre et al., 2006).

A ‘‘retrograde’’ signaling mechanism in which eCBs are
released from postsynaptic elements and act on presynaptic
CB1 receptors, appears to be the predominant means for
this neuromodulatory intercellular signaling. Both short-
and long-term synaptic depression result from eCB signaling
(Chevaleyre et al., 2006). The eCB-mediated short-term
depression (STD) appears to persist only as long as eCBs
occupy CB1 receptors (Heinbockel et al., 2005). The long-term
depression (LTD) outlasts receptor occupancy and activation
(Chevaleyre and Castillo, 2003).
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Since the discovery of CB1 and eCBs in the early 1990s,
literature on the actions of drugs of abuse on this system has
become vast. The most obvious interactions are with ∆9-THC
derived from phytocannabinoids. As it is a partial agonist at
CB1, ∆9-THC can mimic the synaptic depressant effects of
eCBs (Hoffman and Lupica, 2013). Synthetic CB1 agonists have
also been developed (e.g., WIN 55, 212–2, HU 210, CP55,
940), and these generally have high efficacy and produce strong
synaptic depressant effects. Acute treatment with ∆9-THC
or synthetic CB1 agonists produce well-characterized signs of
intoxication and anti-nociception in humans and laboratory
animals through CB1 activation (Wiley and Martin, 2003).
Presynaptic CB1 receptors present on GABAergic terminals in
the midbrain reduce inhibition of dopaminergic neurons (for
additional discussion see Wang and Lupica, 2014; Covey et al.,
2015). This mechanism is thought to account for the rewarding
effects of∆9-THC and other cannabinoid drugs, and is also likely
to be a prominent mechanism through which eCBs contribute to
brain mechanisms of reward.

Chronic exposure to ∆9-THC produces tolerance to many
of the behavioral effects seen during initial drug exposure,
but it has been harder to pin down signs of withdrawal and
dependence, especially in laboratory animal models (Compton
et al., 1990). Humans that regularly use cannabis preparations
in large doses report craving, heightened anxiety, increased
irritability, decreased food intake and sleep disruption following
discontinuation of use (Haney et al., 1999; Budney et al., 2001;

Singleton et al., 2002; Gates et al., 2014). Other withdrawal
signs are not apparent, but this is due mainly to the high
lipophilicity of ∆9-THC which causes the drug to accumulate in
fatty tissues, allowing for slow release and continuous low-level
receptor activation. Following chronic ∆9-THC or synthetic
CB1 agonist exposure, treatment with synthetic CB1 antagonists
elicits signs of withdrawal including turning, chewing, digging,
paw tremors and head shakes in laboratory animals (Cook et al.,
1998; Rubino et al., 1998), supporting the idea these symptoms
are largely suppressed by this continued post-withdrawal
receptor activation. It has been hard to develop methods
for self-administration of ∆9-THC and other CB1 agonists
in laboratory animals, in part due to aversive effects of the
compound. Intravenous self-administration has been reported,
particularly in squirrel monkeys (Tanda et al., 2000; Justinova
et al., 2003, 2005; Zangen et al., 2006), and CB1 antagonists
reduce ∆9-THC self-administration as well as cue- and priming-
induced reinstatement following extinction (Justinova et al.,
2008). CPP for ∆9-THC and other CB1 agonists has also been
demonstrated (Valjent andMaldonado, 2000; Braida et al., 2001).
Notably, cannabinoid agonists can induce conditioned place
aversion (CPA) in rodents, while CB1 antagonists can also induce
CPP (Cheer et al., 2000). The net agonist-induced preference or
aversion is critically dependent on dose. Thus, CB1 activation has
mixed aversive and rewarding effects that could affect the abuse
potential in different individuals. Administration of ∆9-THC
also lowers the threshold for rewarding brain stimulation

TABLE 2 | Behavioral effects of drugs targeting cannabinoid type 1 (CB1) receptors.

Pharmacological
manipulation

Behavioral effect Reference(s)

CB1 inverse
agonist

↓ cocaine, morphine, nicotine,
morphine, methamphetamine CPP

Chaperon et al., 1998; Le Foll and Goldberg, 2004; Forget et al., 2005; Azizi et al., 2009; Biala et al., 2009;
Yu et al., 2009; Fang et al., 2011; Rezayof et al., 2011; Hashemizadeh et al., 2014

↔ alcohol CPP Pina and Cunningham, 2014
↔ cocaine SA Cossu et al., 2001; Lesscher et al., 2005; Caillé et al., 2007; Xi et al., 2008; Schindler et al., 2016
↓ MDMA SA Sala and Braida, 2005; Touriño et al., 2008
↓ nicotine SA Cohen et al., 2002; Shoaib, 2008; Simonnet et al., 2013; Schindler et al., 2016
↓ heroin/morphine SA Cossu et al., 2001; Navarro et al., 2001; Solinas et al., 2003
↓ alcohol drinking reviewed in Pava and Woodward (2012)
↓ alcohol SA Freedland et al., 2001; Navarro et al., 2001; Caillé et al., 2007
↓ THC SA Tanda et al., 2000; Schindler et al., 2016
↓ cocaine seeking De Vries et al., 2001; Xi et al., 2008; Orio et al., 2009; Ward et al., 2009; Vaughn et al., 2012; Jing et al.,

2014; McReynolds et al., 2016; Schindler et al., 2016
↓ nicotine seeking Cohen et al., 2005; Kodas et al., 2007; Schindler et al., 2016
↓ heroin seeking Fattore et al., 2005; Caillé and Parsons, 2006; Alvarez-Jaimes et al., 2008
↓ alcohol seeking de Bruin et al., 2011
↓ THC seeking Justinova et al., 2008; Schindler et al., 2016

CB1 neutral
antagonist

↔ cocaine SA Schindler et al., 2016

↓ nicotine SA Gueye et al., 2016; Schindler et al., 2016
↓ THC SA Schindler et al., 2016
↓ cocaine seeking Schindler et al., 2016
↓ nicotine seeking Gueye et al., 2016; Schindler et al., 2016
↓ THC seeking Schindler et al., 2016

CB1 agonist ↑ nicotine SA Gamaleddin et al., 2012
↑ nicotine seeking Gamaleddin et al., 2012

CB1 allosteric
modulator

↓ cocaine seeking Jing et al., 2014
↓ methamphetamine seeking Jing et al., 2014
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(reviewed in Gardner, 2002). Thus, there is some evidence for
cannabis reward and withdrawal signs, and ∆9-THC clearly has
abuse and dependence liability.

The eCB system is strongly implicated in the rewarding
effects of a variety of abused drugs (Table 2; Justinova et al.,
2009; Covey et al., 2015). Antagonists of CB1 impair acquisition
or reinstatement of CPP for cocaine, morphine, and nicotine
(Chaperon et al., 1998; Le Foll and Goldberg, 2004; Forget et al.,
2005; Biala et al., 2009; Fang et al., 2011), but not ethanol
(Pina and Cunningham, 2014). In contrast, CB1 knockout mice
show reduced ethanol CPP (Houchi et al., 2005). Interestingly,
CB1 knockout mice are not resistant to cocaine CPP, and in
fact display a facilitation of CPP acquisition following stress
(Miller et al., 2008). Consolidation, retrieval and reconsolidation
of methamphetamine CPP are also disrupted by CB1 antagonists
(Yu et al., 2009). The antagonist effects on morphine CPP are
also observed with antagonist injection into the NAc (Azizi
et al., 2009), and CB1 receptors in the central amygdala
may also be involved (Rezayof et al., 2011). Nicotine CPP
may also involve CB1 receptors in the basolateral amygdala
(Hashemizadeh et al., 2014). ECBs and CB1 also contribute to
the intake of several drugs of abuse in animal models. Both
CB1 antagonist treatment and CB1 knockout decrease ethanol
intake and preference in a standard two-bottle choice paradigm
(reviewed in Pava and Woodward, 2012). Operant ethanol
self-administration is also altered by antagonists (Freedland
et al., 2001; Navarro et al., 2001; Caillé et al., 2007), and
in CB1 knockout mice (Thanos et al., 2005). Considering
other drugs of abuse, similar results have been obtained for
self-administration of heroin (Navarro et al., 2001; Solinas et al.,
2003), morphine (Cossu et al., 2001), MDMA (Sala and Braida,
2005; Touriño et al., 2008), and nicotine (Cohen et al., 2002;
Shoaib, 2008). Modulation of drug-taking by CB1 receptors
appears to be bidirectional, as CB1 agonist administration
potentiates nicotine seeking and taking (Gamaleddin et al.,
2012). Direct infusions of a CB1 antagonist into the VTA,
but not the NAc, reduce nicotine self-administration (Simonnet
et al., 2013), suggesting a pivotal role for VTA CB1 receptors.
Different regions may be involved in reinstatement of nicotine
seeking following extinction, as CB1 antagonists injected into
the NAc shell, BLA, or mPFC impair reinstatement (Kodas
et al., 2007). Similarly, cue-induced reinstatement of heroin
seeking is inhibited by systemic injection of a CB1 antagonist
or by direction infusion into the NAc core region or the
PFC (Fattore et al., 2005; Caillé and Parsons, 2006; Alvarez-
Jaimes et al., 2008). Systemic injections of CB1 antagonists also
reduce drug-priming or cue-induced reinstatement of ethanol
and nicotine seeking (Cohen et al., 2005; Forget et al., 2009;
de Bruin et al., 2011). Collectively, these findings indicate that
CB1 receptors in a variety of addiction-relevant brain regions
contribute to various aspects of drug taking and seeking behavior,
and that the receptors involved may vary between drugs of
abuse.

The situation appears to be more complex for cocaine, as
CB1 antagonists or knockout do not prevent self-administration
of this drug (Cossu et al., 2001; Lesscher et al., 2005; Caillé
et al., 2007; Xi et al., 2008). However, these antagonists

reduce reinstatement of cocaine seeking produced by stress,
drug-associated stimuli, or priming with the drug itself (De
Vries et al., 2001; Ward et al., 2009; Vaughn et al., 2012; Jing
et al., 2014; McReynolds et al., 2016), and also reduce cocaine
seeking in a progressive ratio task and cocaine enhancement of
intracranial self-stimulation (aka rewarding brain stimulation;
Xi et al., 2008; Orio et al., 2009). ‘‘Impulsive’’ responding
for cocaine in a delay-discounting task is also reduced by a
CB1 antagonist (Hernandez et al., 2014). It is not fully clear if
decreased intake is the result of one common eCB/CB1 action, or
if several mechanisms are involved. Cocaine treatment mobilizes
eCB production in the VTA, and thus suppresses GABAergic
inhibition of DA neurons, resulting in enhanced DA release in
theNAc (Wang et al., 2015). Inhibition of drug-induced increases
in DA levels in the NAc is one consequence of CB1 antagonist
treatment that could reduce the rewarding effects of drugs as
well as drug intake (Cheer et al., 2007; Li et al., 2009; Wang
et al., 2015). The DA-dampening effect of CB1 antagonists
has been seen when CB1 antagonists are co-administered with
several different drugs of abuse (Polissidis et al., 2014). However,
other interactions with the eCB/CB1 system could alter drug
reward and intake. Indeed, one recent study demonstrated that
deletion of CB1 from forebrain GABAergic neurons (including
striatal MSNs) enhances DA release (Martín-García et al., 2016),
indicating that CB1 receptors at multiple synapses regulate the
neurochemical effects of cocaine, and perhaps other abused drugs
(Miller et al., 2007).

The ability of CB1 antagonists such as rimonabant to reduce
the rewarding properties of several drugs of abuse and inhibit
reinstatement of drug seeking following abstinence led to the
idea that CB1 receptor blockade could be a viable therapeutic
approach for treating drug use disorders (reviewed in Justinova
et al., 2009). However, clinical evaluation of rimonabant, which
is an inverse agonist of CB1 receptors, revealed substantial
adverse effects including production of psychiatric symptoms
(e.g., depression, anxiety) as well as gastrointestinal symptoms
(Kaur et al., 2016). Interestingly, recent efforts have focused on
the development of CB1 receptor neutral antagonists rather than
inverse agonists (e.g., AM4113; Kirilly et al., 2012). Importantly,
recent preclinical studies demonstrate that, like rimonabant,
neutral antagonists of CB1 reduce self-administration of
∆9-THC and nicotine, and can also prevent cue-induced
reinstatement of ∆9-THC, nicotine, and cocaine seeking (Gueye
et al., 2016; Schindler et al., 2016). These results suggest that
development of neutral antagonists could represent a renewed
opportunity to therapeutically target CB1 receptors.

In addition to neutral antagonists, efforts have been made to
develop allosteric modulators of CB1 receptors as an alternative
to inverse agonists. For example, ORG27569 binds to an
allosteric site on CB1 receptors and enhances agonist binding but
reduces agonist efficacy, thereby acting as a functional negative
allosteric modulator (Price et al., 2005; Picone and Kendall,
2015). Importantly, ORG27569 reduces both drug-priming and
cue-induced reinstatement of cocaine and methamphetamine
seeking behavior (Jing et al., 2014), suggesting that allosteric
modulation provides an additional alternative strategy for
drug development. Intriguingly, the steroid hormone precursor
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pregnenolone was recently identified as a putative endogenous
negative allosteric modulator of CB1 receptors (Vallée et al.,
2014). Accordingly, pregnenolone reduces behavioral and
physiological effects of ∆9-THC administration. Additional
studies will be necessary to determine if negative allosteric
modulators of CB1 have improved safety and tolerability profiles
when compared with inverse agonists.

Chronic exposure to several different drugs of abuse
results in different molecular and functional changes in the
eCB/CB1 system. Perhaps the easiest to understand are the effects
of ∆9-THC and other CB1 agonists on CB1 expression and
function. Injection of ∆9-THC in rodents once (Mato et al.,
2004), or over several days (Mato et al., 2005; Nazzaro et al.,
2012), results in loss of synaptic depression induced by eCBs
and CB1 agonists. This loss of plasticity has been observed at
glutamatergic synapses in dorsal and ventral striatum (Mato
et al., 2005; Nazzaro et al., 2012; Hoffman and Lupica, 2013), as
well as GABAergic synapses in hippocampus (Mato et al., 2004).
Measurements of CB1 radioligand binding have provided mixed
results, with some studies indicating that receptor numbers are
diminished by this chronic drug exposure, while others report no
change (Abood et al., 1993; Rodríguez De Fonseca et al., 1994;
Romero et al., 1997; Mato et al., 2005). Measuring biochemical
signals very proximal to CB1 activation using GTPγS binding
supports the idea that receptor coupling to G proteins is
compromised following chronic ∆9-THC treatment (Breivogel
et al., 1999; Mato et al., 2005). This may signal internalization
of receptors leading to alterations in G protein interaction. Until
very recently it was difficult to measure CB1 internalization in
presynaptic terminals, but a recent study using super resolution
microscopy in hippocampal GABAergic terminals indicated that
chronic ∆9-THC treatment does indeed produce internalization
of CB1 (Dudok et al., 2015). Receptor localization returns to
normal only several weeks after the end of drug exposure. It
is also not clear if chronic ∆9-THC effects on CB1 are the
consequence of direct ligand-receptor interactions, or occur
secondarily to other molecular changes induced by the drug.

Use of cannabis-derived drugs have also been associated with
decreased CB1 receptor availability in human ventral striatum,
as determined with positron emission tomography using new
CB1 ligands (Ceccarini et al., 2015). Other changes in human
striatum have been noted in regular cannabis users, including
decreased drug-induced DA release (Volkow et al., 2014). One
report indicated that chronic cannabis drug use was associated
with increased gray matter in young adult human NAc (Gilman
et al., 2014), but a subsequent report indicated that most of this
effect could be attributed to co-morbid alcohol use (Weiland
et al., 2015). Thus, there is more work needed to elucidate
cannabis drug effects on the human brain.

Among the non-cannabinoid drugs shown to alter
eCB/CB1 function are alcohol, cocaine, nicotine and opiates.
Acute alcohol inhibition of the firing of NAc neurons appears
to involve an interaction with eCB/CB1 effects on afferents from
the basolateral amydala (BLA; Perra et al., 2005). Interactions
between acute alcohol exposure and eCB/cannabinoid actions
have been observed in the BLA (Talani and Lovinger, 2015)
and the central amgydala (CeA; Roberto et al., 2010). Chronic

non-contingent alcohol exposure has been shown to eliminate
eCB-dependent LTD at corticostriatal synapses in rodents (Xia
et al., 2006; DePoy et al., 2013), and similar effects were observed
following alcohol drinking (Adermark et al., 2011). Inhibition of
GABAergic synapses by CB1 is also decreased following chronic
ethanol exposure in both BLA and CeA (Varodayan et al.,
2016a,b). A single in vivo exposure to cocaine also eliminates
eCB-dependent LTD in the NAc (Fourgeaud et al., 2004),
and effects of cocaine self-administration on glutamatergic
synapses in the NAc shell involves an eCB-mediated mechanism
(Ortinski et al., 2012). Following withdrawal after cocaine
self-administration, the mGlu receptor/eCB-dependent LTD
in the NAc is lost, and a different form of LTD develops that
involves mGlu receptor-induced AMPA receptor trafficking
(McCutcheon et al., 2011). Conversely, CB1 modulation of
GABAergic transmission is sensitized following repeated
cocaine exposure (Centonze et al., 2007). Reduced CB1 receptor
expression has been observed in postmortem brain samples from
human cocaine addicts (Álvaro-Bartolomé and García-Sevilla,
2013), and this was recapitulated in mice exposed to cocaine.
Some studies report increased CB1 receptor expression levels
despite reduced function, and this is likely due to the decreased
eCB tone producing a compensatory upregulation of receptor
levels (Blanco et al., 2014). A single in vivo exposure to the
opiate drug oxycodone eliminates eCB-LTD in the dorsal
striatum (Atwood et al., 2014a). It is clear that the effects of
drugs of abuse on CB1 receptor function may be synapse-
specific, drug-specific, and affect multiple aspects of the system
including expression or function of enzymes that produce
or degrade eCBs and the function of the CB1 receptor itself
(Figure 2).

The effects of chronic exposure to cannabinoid drugs that
produce addiction-related changes in behavior other than those
discussed previously are not fully understood. An intriguing
report of studies in mouse indicated that repeated injections
of ∆9-THC leads animals to change their learned instrumental
behavioral from goal-directed to habitual control (Nazzaro et al.,
2012). This behavioral change is associated with the loss of striatal
LTD discussed in the previous paragraph. Development of habits
related to cannabis seeking and taking may well contribute
to disorders associated with long-term heavy use of the drug.
Determining the molecular and cellular mechanisms underlying
habitual cannabis use will be an important subject of future
research.

GROUP II METABOTROPIC GLUTAMATE
RECEPTORS

Glutamate is the major fast excitatory neurotransmitter in
the CNS. It exerts its neurophysiological effects through both
ionotropic and neuromodulatory metabotropic receptors. The
mGlu receptors (mGlus) are a group of class C GPCRs comprised
of eight subtypes that are divided into three subgroups based on
sequence homology, G protein-coupling specificity, and ligand-
binding profiles (for review see Niswender and Conn, 2010). The
group I mGlu receptors (mGlu1 and mGlu5) couple to Gq family
G proteins and are predominantly located postsynaptically,
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FIGURE 2 | Drug exposure disrupts presynaptic GPCR function. A variety of mechanisms may be involved in drug-induced reductions in presynaptic inhibition
of neurotransmitter release. These include reduced receptor expression or surface levels and impaired coupling to G proteins or activation of intracellular signaling
cascades. CB1 receptor signaling may also be reduced due to deficits in postsynaptic endocannabinoid (eCB) production. In addition, reduced cystine/glutamate
exchange leads to decreased tonic activation of perisynaptic mGlu2/3 in the nucleus accumbens (NAc). Finally, chronic drug exposure could cause long-term
depression (LTD) of neurotransmitter release that occludes further synaptic modulation by GPCRs.

whereas the group II (mGlu2 and mGlu3) and group III
(mGlu4, mGlu6, mGlu7 and mGlu8) mGlu receptors couple to
Gi/o family G proteins and frequently act as presynaptic auto-
and heteroreceptors. Although the group III mGlu receptors,
particularly mGlu7, have received attention in the addiction field,
the current review will focus on the preclinical evidence that
group II mGlu receptors (mGlu2/3) modulate the actions of
drugs of abuse and represent potential therapeutic targets for
the treatment of drug use disorders. Group II mGlu receptors
are widely expressed in brain regions relevant to drug-related
behaviors. Although physiological actions of postsynaptic group
II mGlu receptors have been identified (for example see Otani
et al., 2002; Walker et al., 2015; Jin et al., 2016), they are best
known for their ability to inhibit presynaptic neurotransmitter
release at glutamatergic terminals. Group II mGlu receptor
activation depresses glutamate release in critical regions such
as the mPFC (Otani et al., 1999, 2002; Huang and Hsu,
2008; Walker et al., 2015), dorsal striatum (Lovinger and
McCool, 1995; Kahn et al., 2001), NAc (Manzoni et al., 1997;
Robbe et al., 2002a,b), central amygdala (Neugebauer et al.,
2000), and BNST (Grueter and Winder, 2005). A variety of
mechanisms might contribute to inhibition of neurotransmitter
release by group II mGlu receptors, including inhibition of
voltage-gated calcium channels (Anwyl, 1999; Robbe et al.,
2002a; Kupferschmidt and Lovinger, 2015), interference with
vesicle fusion and release machinery (Kupchik et al., 2008,
2011), and activation of presynaptic potassium channels (Anwyl,
1999).

Because group II mGlu receptors modulate glutamate release
in key addiction-related brain circuits, it stands to reason
that reduced expression and/or function of these receptors

following drug exposure could contribute to dysregulated
glutamate transmission. To test this hypothesis, a variety
of anatomical and functional approaches have been used to
assess the effects of drug exposure on mGlu2/3 expression
and activity. Experiments evaluating drug- and withdrawal-
induced changes in mGlu2 mRNA and protein levels have
yielded somewhat conflicting results, and variables such as
the drug of abuse, brain region, species, subject age and
time point relative to drug exposure and withdrawal may
contribute to such discrepancies. Multiple reports suggest that
nicotine increases mGlu2 expression in the striatum during
chronic exposure, but that receptor levels are normalized
or decreased by abstinence (Counotte et al., 2011; Pistillo
et al., 2016). No nicotine-induced changes in mGlu2 expression
were observed in the PFC or midbrain (Pistillo et al., 2016).
Cocaine exposure does not cause any change in mGlu2 or
mGlu3 mRNA levels in cortical regions or the extended
amygdala (Cannella et al., 2013), but increases mGlu2/3 density
in the dorsal striatum of rhesus monkeys (Beveridge et al.,
2011). In rats, alcohol dependance reduces mGlu2 mRNA
levels in the mPFC (Meinhardt et al., 2013). Evaluation of
mGlu2 and mGlu3 mRNA levels in postmortem samples from
human alcoholics has revealed decreased GRM2 levels in
the anterior cingulate cortex (ACC; Meinhardt et al., 2013)
and upregulation of GRM3 transcript in the hippocampus
(Enoch et al., 2014). Conversely, human cocaine abusers show
lower GRM3 transcript in the hippocampus (Enoch et al.,
2014). In rats, methamphetamine self-administration followed
by abstinence decreases mGlu2 protein levels in the PFC,
dorsal striatum, and NAc (Schwendt et al., 2012). Intriguingly,
extinction of methamphetamine self-administration reverses the
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downregulation of mGlu2 in striatal regions, whereas the effect
persists in the case of abstinence. This finding suggests that active
learning processes, and not the mere absence of drug exposure,
can regulate plasticity of mGlu2 expression. Such observations
of learning-induced plasticity in receptor expression provide
potential neurobiological mechanisms for successful behavior-
based addiction interventions.

Studies employing GTPγS binding, electrophysiological
measures of synaptic transmission, and in vivo microdialysis to
assess the impact of drugs of abuse on group II mGlu receptor
function have yielded similarly varied results, and sometimes
contrast with predictions based on changes in expression
levels. For example, a history of nicotine exposure produces
long-term decreases in mGlu2/3 function in the VTA, PFC, NAc,
amydala, hippocampus and hypothalamus (Liechti et al., 2007;
Counotte et al., 2011) despite a lack of evidence of widespread
downregulation of mGlu2/3 expression (Pistillo et al., 2016).
Repeated cocaine exposure (either investigator-administered
or self-administered) impairs mGlu2/3-mediated depression of
excitatory transmission in the PFC (Huang et al., 2007; Xie
and Steketee, 2008; Kasanetz et al., 2013) and central amygdala
(Neugebauer et al., 2000), whereas mGlu2/3-mediated LTD of
excitatory transmission in the NAc remains intact following
cocaine self-administration (Kasanetz et al., 2010). In conflict
with these findings, Hao et al. (2010) reported that cocaine
self-administration increases agonist-induced GTPγS binding
in the medial PFC and central amygdala as well as the VTA,
BNST, and hippocampus. Interestingly, in this study increases in
receptor efficacy were only observed using a long access model
of cocaine self-administration, indicating that the experimental
paradigm may also contribute to seeming discrepancies between
studies. In alcohol-exposed rats, no change in agonist-induced
GTPγS binding was observed (Kufahl et al., 2011), whereas
the ability of the same mGlu2/3 agonist to reduce extracellular
glutamate levels in vivo was reduced (Meinhardt et al., 2013).
Importantly, studies interrogating the effects of drug exposure on
both expression and function suggest that increased expression
does not necessarily correlate with functional readouts of
receptor activity. For example, Xi et al. (2002) found that repeated
cocaine exposure increases mGlu2 and mGlu3 protein levels
in the PFC, but that agonist-stimulated GTPγS binding and
efficacy for reducing extracellular glutamate levels were reduced.
Such disparities between expression and function emphasize the
importance of experimentally assessing receptor activity to clarify
the functional effects of drug exposure.

Activation of group II mGlu receptors can modulate the
neurochemical and behavioral effects of acute exposure to drugs
of abuse, which commonly increase extracellular DA levels
in both the dorsal striatum and NAc. Interestingly, cocaine
exposure elicits higher levels of DA release in the NAc of
mice lacking mGlu2 (Morishima et al., 2005). Conversely, group
II mGlu receptor agonists attenuate DA release in the rat
NAc following administration of amphetamine (Kim et al.,
2005; Pehrson and Moghaddam, 2010). mGlu2/3 activation also
reduces amphetamine-induced DA release in the rat dorsal
striatum (Pehrson and Moghaddam, 2010) and cocaine-induced
DA release in the caudate nucleus of squirrel monkeys (Bauzo

et al., 2009). The mechanism for mGlu2/3 modulation of
amphetamine-induced DA release is unclear, as a group II
mGlu receptor agonist does not modulate DA release evoked
by in vivo electrical stimulation of the VTA or by L-DOPA
administration (Pehrson and Moghaddam, 2010). Interestingly,
the effects of mGlu2/3 agonists on neurochemical responses
to drug exposure are not limited to DA; the mGlu2/3 agonist
MGS0028 also reduces the increase in PFC serotonin levels
following methamphetamine administration (Ago et al., 2011).
Importantly, one study demonstrated that mGlu2/3-mediated
attenuation of nicotine-induced DA release in the NAc shell
only occurs in rats with a history of nicotine exposure, and only
when the rats are in a context previously associated with nicotine
exposure (D’Souza et al., 2011). This finding provides intriguing
evidence that prior drug exposure induces plasticity in the ability
of group II mGlu receptors to modulate the effects of drugs on
DA transmission.

Group II mGlu receptor modulation of the neurochemical
effects of exposure to psychostimulants correlates with decreased
locomotor responses to amphetamine (Table 3, Cartmell and
Schoepp, 2000; Pehrson and Moghaddam, 2010; Hanna et al.,
2013; Arndt et al., 2014), methamphetamine (Ago et al., 2011;
Hiyoshi et al., 2014), and phencyclidine (PCP; Hanna et al.,
2013). Activation of both striatal and PFC mGlu2/3 may be
involved in the observed suppression of psychomotor effects
of stimulants, as intrastriatal mGlu2/3 agonist administration
reduces locomotor responses to amphetamine (Mao and
Wang, 1999) and intra-PFC injection of the mGlu2/3 agonist
APDC attenuates locomotor activation by cocaine (Xie and
Steketee, 2009). Administration of the mGlu2/3-selective agonist
LY379268 also blocks the acquisition and expression of
behavioral sensitization to amphetamine (Kim and Vezina, 2002;
Kim et al., 2005). On the other hand, locomotor sensitization
to cocaine is enhanced in mGlu2 knockout mice (Morishima
et al., 2005). The synaptic mechanisms of mGlu2/3-modation
of neurochemical and behavioral responses to drugs of abuse
remain unclear, and may not be mediated by heteroreceptor
activity on the terminals of dopaminergic neurons (Pehrson and
Moghaddam, 2010). Future work could elucidate specific circuit-
level mechanisms by which presynaptic GPCRs such as mGlu2/3
modulate the pharmacodynamics of drugs of abuse.

Multiple lines of evidence support the idea that group
II mGlu receptors regulate drug taking across a variety of
paradigms and drugs of abuse. In rats, mGlu2/3 activation
reduces motivation to self-administer cocaine as determined by
a reduced breakpoint under a progressive ratio reinforcement
schedule (Hao et al., 2010; Karkhanis et al., 2016). Studies
evaluating self-administration of many drugs of abuse in rats
have demonstrated that mGlu2/3 activation by LY379268 reduces
intake of amphetamine (Kim et al., 2005), methamphetamine
(Crawford et al., 2013), alcohol (Sidhpura et al., 2010),
and nicotine (Liechti et al., 2007). Conversely, the group
II mGlu receptor-preferring antagonist LY341495 increases
alcohol self-administration in rats (Zhou et al., 2013). In
squirrel monkeys, LY379268 has been shown to reduce
cocaine self-administration (Bauzo et al., 2009). However, a
more recent report demonstrated a reduction in nicotine
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TABLE 3 | Behavioral effects of drugs targeting mGlu2/3.

Pharmacological
manipulation

Behavioral effect Reference(s)

mGlu2/3 agonist ↓ locomotor response to cocaine Xie and Steketee, 2009
↓ locomotor response to methamphetamine Ago et al., 2011; Hiyoshi et al., 2014
↓ locomotor response to amphetamine Mao and Wang, 1999; Cartmell and Schoepp, 2000; Pehrson and Moghaddam, 2010; Hanna

et al., 2013; Arndt et al., 2014
↓ amphetamine sensitization Kim and Vezina, 2002; Kim et al., 2005
↓ locomotor response to PCP Hanna et al., 2013
↓ cocaine SA Bauzo et al., 2009; Hao et al., 2010; Lu et al., 2012; Karkhanis et al., 2016
↔ cocaine SA Justinova et al., 2016
↓ methamphetamine SA Crawford et al., 2013
↓ amphetamine SA Kim et al., 2005
↓ nicotine SA Liechti et al., 2007; Justinova et al., 2016
↓ alcohol SA Sidhpura et al., 2010
↓ cocaine seeking Lu et al., 2007; Bauzo et al., 2009; Lu et al., 2012; Martin-Fardon and Weiss, 2012; Cannella

et al., 2013; Justinova et al., 2016
↓ methamphetamine seeking Kufahl et al., 2013
↓ nicotine seeking Liechti et al., 2007; Justinova et al., 2016; Moro et al., 2016
↓ heroin seeking Bossert et al., 2004
↓ alcohol seeking Zhao et al., 2006; Sidhpura et al., 2010

mGlu2 PAM ↓ cocaine SA Jin et al., 2010; Dhanya et al., 2011, 2014
↓ nicotine SA Justinova et al., 2015; Li et al., 2016
↓ alcohol SA Augier et al., 2016
↓ cocaine seeking Jin et al., 2010
↓ methamphetamine seeking Caprioli et al., 2015
↓ nicotine seeking Justinova et al., 2015; Li et al., 2016
↓ alcohol seeking Augier et al., 2016

mGlu2/3

antagonist
↑ alcohol SA Zhou et al., 2013

self-administration by LY379268, but no effect on cocaine
self-administration (Justinova et al., 2016). Although few studies
have examined the circuitry by whichmGlu2/3 activation reduces
drug self-administration, experiments evaluating cocaine and
nicotine self-administration have implicated both VTA and NAc
receptor populations as potential mediators of reduced drug
intake (Liechti et al., 2007; Lu et al., 2012).

Recent studies assessing the effects of genetic alteration of
mGlu2 receptors provide further support for the notion that
mGlu2 can regulate the reinforcing effects of repeated drug
exposure. For example, genetic deletion of mGlu2 enhances both
locomotor sensitization and CPP in response to repeated cocaine
exposure (Morishima et al., 2005). In addition, mice lacking
mGlu2 display increased alcohol consumption and preference in
a two-bottle choice paradigm (Zhou et al., 2013). Interestingly, a
naturally occurring mutation that introduces a stop codon in the
gene for mGlu2 (Grm2 ∗ 407) was recently identified in multiple
lines of rats that are commonly employed in alcohol studies.
Selectively bred alcohol-preferring (P) rats, which consume
large amounts of alcohol and display relapse-like behaviors, are
homozygous for Grm2 ∗ 407. Intercrossing studies suggest that
this allele is directly linked to increased alcohol consumption
and preference in P rats (Zhou et al., 2013). Further investigation
of lines of rats selectively bred for alcohol-related behaviors has
also revealed an association between Grm2 ∗ 407 and alcohol
consumption (Wood et al., 2016). Importantly, this mutation is
also present in many commercially available rat lines; therefore,

extreme care must be taken when choosing strains and sources of
rats for studying drug seeking and taking, particularly in regards
to evaluating the effects of mGlu2 on drug-related behaviors.
Conversely, rats lacking mGlu2 can serve as valuable controls for
the specificity of mGlu2-targeted drug effects (Augier et al., 2016;
Wood et al., 2016).

Following extinction of drug self-administration,
pharmacological activation of group II mGlu receptors can
reduce reinstatement of drug-seeking behavior. Experiments in
rats evaluating the effects of mGlu2/3 activation on reinstatement
of drug seeking by cues previously associated with drug
self-administration show that mGlu2/3 activation attenuates
reinstated seeking of cocaine (Lu et al., 2007; Cannella et al.,
2013), methamphetamine (Kufahl et al., 2013), alcohol (Zhao
et al., 2006) and nicotine (Liechti et al., 2007; Moro et al.,
2016). LY379268 also reduces context-induced reinstatement of
heroin seeking (Bossert et al., 2004) and drug priming-induced
reinstatement of methamphetamine seeking (Kufahl et al., 2013).
Because stress is a significant factor contributing to relapse
in human addictive disorders, mGlu2/3 activation has also
been evaluated in models of stress-induced reinstatement of
drug seeking. LY379268 blocks stress-induced reinstatement of
cocaine (Martin-Fardon and Weiss, 2012) and alcohol seeking
(Zhao et al., 2006; Sidhpura et al., 2010) in rats. Recent studies
evaluating the effects of LY379268 on reinstatement of drug
seeking in squirrel monkeys highlight the concept that activation
of group II mGlu receptors may differentially reduce drug
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seeking depending on the specific drug of abuse and the type of
reinstatement paradigm. Interestingly, LY379268 blocked both
priming- and cue-induced reinstatement of nicotine seeking, but
blocked cue-induced but not priming-induced reinstatement of
cocaine seeking (Bauzo et al., 2009; Justinova et al., 2016). This
finding may have intriguing implications for the therapeutic
utility of group II mGlu receptor activation because efficacy
in non-human primates could more closely predict human
responses to drug treatments. On the whole, the most consistent
finding is that mGlu2/3 activation could be useful for preventing
relapse induced by environmental cues across a wide range of
drugs of abuse.

Several studies have evaluated the potential contributions
of mGlu2/3 receptors in various addiction-related circuits
to inhibition of reinstated drug seeking. Numerous lines
of evidence suggest that presynaptic mGlu2/3 receptors on
excitatory terminals in the NAc play key roles. Producing an
alcohol-dependent state in rats reduces mGlu2/3 expression
and function in mPFC-NAc circuitry, and selectively restoring
mGlu2 expression using a viral strategy reduces cue-induced
reinstatement of alcohol seeking (Meinhardt et al., 2013).
In addition, intra-NAc infusion of mGlu2/3 agonists reduces
context-induced reinstatement of heroin seeking in rats (Bossert
et al., 2004). Interestingly, the eugeroic drug modafinil, which
has also been implicated as an anti-relapse drug (Soyka and
Mutschler, 2016), reduces priming-induced reinstatement of
cocaine seeking in rats by raising extracellular glutamate levels
and indirectly activating group IImGlu receptors in the NAc core
(Mahler et al., 2014). Further mechanistic insight into the role of
NAc group II mGlu receptors in reinstatement of drug seeking
comes from a series of studies evaluating the effects of repeated
cocaine exposure on glutamate homeostasis. Cocaine decreases
extrasynaptic glutamate levels in the NAc by decreasing the
function of the glial cystine/glutamate exchange system (Baker
et al., 2003). In turn, reduced tonic activation of presynaptic
group II mGlu receptors disinhibits synaptic glutamate release,
causing strengthened glutamatergic transmission at PFC-NAc
synapses and disruption of several forms of synaptic plasticity
(Moussawi et al., 2009). Treatment with N-acetylcysteine (NAC),
which boosts cystine/glutamate exchange, corrects cocaine-
induced adaptations in NAc glutamatergic transmission and
prevents cue- and priming-induced reinstatement of cocaine
seeking in an mGlu2/3-dependent manner (Moussawi et al.,
2009, 2011). These studies provide insight into the involvement
of group II mGlu receptors in drug-induced neuroadaptations
as well as a potential mechanism by which mGlu2/3 could be
targeted for therapeutic purposes.

Additional evidence implicates group II mGlu receptors
in both the VTA and the CeA as targets for blocking
reinstatement of drug seeking. Infusion of LY379268 into the rat
VTA reduces context-induced reinstatement of heroin seeking
(Bossert et al., 2004) and priming-induced resintatement of
cocaine seeking (Lu et al., 2012). In addition, activation of
group II mGlu receptors in the CeA prevents cue-induced
reinstatement of cocaine seeking following prolonged extinction
training (incubation of craving; Lu et al., 2007). It is possible
that mGlu2/3 receptors (and particularly mGlu2) in various

addiction-related circuits regulate drug seeking elicited by
different stimuli. However, this hypothesis has not been
exhaustively tested and may also vary between drugs of
abuse.

It is worthwhile to consider that several studies have found
that activation of group II mGlu receptors can also reduce
instrumental responding for natural rewards (i.e., palatable
foods) and/or inhibit reinstatement of extinguished food seeking
in both rats and squirrel monkeys. However, this effect is
typically less robust than reduction of drug self-administration
and is observed with higher doses of agonist than the minimal
effective dose required to reduce drug self-administration (Peters
and Kalivas, 2006; Liechti et al., 2007; Jin et al., 2010; Kufahl
et al., 2011, 2013; Lu et al., 2012; Justinova et al., 2016). Other
studies have not observed a reduction in food self-administration
following treatment with mGlu2/3 agonists (Baptista et al.,
2004; Bossert et al., 2006; Zhao et al., 2006). A variety of
factors could account for the observed impairment of food self-
administration, including a general reduction in motivation, a
lessening of the rewarding properties of the food reinforcer,
generation of an aversive state (e.g., nausea) by the mGlu2/3
agonist, or mild sedation. These potential non-specific effects
of mGlu2/3 activation could limit the clinical utility of mGlu2/3
agonists or mGlu2 positive allosteric modulators (PAMs) for
the treatment of drug abuse in humans; however, the common
finding that lower doses of agonist are required to reduce
drug self-administration vs. food self-administration suggests
that a sufficient therapeutic window may exist to avoid adverse
effects. Moreover, clinical studies of the mGlu2/3 agonist prodrug
LY2142003 in schizophrenic patients suggest that activation
of mGlu2/3 is generally safe and well-tolerated (Patil et al.,
2007).

CHALLENGES AND PROGRESS TOWARDS
NOVEL PHARMACOTHERAPIES FOR
ADDICTION: THE EXAMPLE OF mGlu2

Given the extensive evidence from preclinical models that
activation of group II mGlu receptors can reduce seeking and
taking of a variety of drugs of abuse, both academic groups
and pharmaceutical companies have pursued drug discovery
programs aimed at developing ligands that can be tested
clinically to treat human drug use disorders. However, traditional
approaches to developing drugs targeting these receptors have
encountered a variety of challenges. For example, successful
efforts to develop ligands targeting the orthosteric (glutamate)
binding site of mGlu receptors have produced amino acid
analogs, which often do not possess pharmacokinetic properties
suitable for human dosing (Conn et al., 2014; however, see
Mezler et al., 2010). Additionally, a common goal of drug
discovery programs is to achieve high selectivity for a specific
receptor subtype. This serves multiple purposes, including the
creation of preclinical tools to validate specific targets for a
given disorder. Moreover, subtype-selective drugs should be less
prone to adverse effects mediated by off-target activity. Because
the glutamate binding site is highly conserved between mGlu
receptor subtypes, the development of highly selective ligands
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targeting this site has proven difficult. In recent years, discovery
efforts have shifted to focus on allosteric modulators, which bind
to a site on the receptor distinct from the orthosteric binding
site and either enhance or inhibit the activity of the endogenous
agonist.

PAMs potentiate the effects of endogenous agonists via
multiple mechanisms that include enhancing the affinity of the
receptor for the endogenous ligand and increasing efficiency
of receptor coupling to downstream effectors (i.e., G proteins).
Thus, PAMs of mGlu receptors can increase the potency of
glutamate, as well as increase the maximal efficacy of receptor
activation in the context of low receptor expression levels.
Because allosteric binding sites are less conserved among GPCR
families, many drug discovery campaigns have successfully
created subtype-selective ligands (Conn et al., 2014). From a
preclinical perspective, this success has permitted evaluation
of specific mGlu receptor subtypes for treating drug use
disorders. The development of several PAMs that are highly
selective for mGlu2 and have properties suitable for in vivo
testing has enabled the identification of mGlu2 as the major
group II mGlu receptor subtype that could be pursued as a
therapeutic strategy for reducing drug taking and seeking across
a variety of classes of drugs. For example, the mGlu2 PAM
BINA, as well as other novel mGlu2-selective PAMs, reduce
cocaine self-administration in rats (Jin et al., 2010; Dhanya
et al., 2011, 2014). Similarly, the recently developed mGlu2-
selective PAM AZD8529 modestly reduces self-administration
of alcohol in rats (Augier et al., 2016) and reduces nicotine
self-administration in both rats and squirrel monkeys (Justinova
et al., 2015; Li et al., 2016). mGlu2 has also been implicated as a
therapeutic target for relapse, as mGlu2 PAMs block cue-induced
reinstatement of cocaine (Jin et al., 2010), methamphetamine
(Caprioli et al., 2015), nicotine (Li et al., 2016), and alcohol
(Augier et al., 2016) seeking in rats as well as cue- and
priming-induced reinstatement of nicotine seeking in squirrel
monkeys (Justinova et al., 2015). Interestingly, AZD8529 failed to
block stress-induced reinstatement of alcohol seeking, suggesting
that the effect of mGlu2 PAMs on reinstatement of drug
seeking may be specific to particular stimuli (Augier et al.,
2016).

A common challenge associated with the use of traditional
agonists to treat CNS disorders is that agonists persistently
activate the receptor, which can lead to desensitization,
internalization, and thus tolerance to the drug effect. In
support of this concept, a study by Liechti et al. (2007)
evaluating the effects of the mGlu2/3 agonist LY379268 on
nicotine self-administration found an initial robust decrease
in self-administration; however, over the course of 14 days of
treatment, rats gradually returned to their previous levels of
responding for nicotine, indicating tolerance to the effects
of LY379268. Because PAMs enhance responses to glutamate
derived from synaptic or other endogenous sources, and typically
do not directly activate the receptor in the absence of the
endogenous agonist, they are more likely to maintain normal
spatial and temporal receptor activation patterns, and thus
are less likely to promote tolerance. Recent studies evaluating
repeated dosing of the mGlu2 PAMAZD8529 demonstrated that

this PAM persistently suppressed nicotine self-administration
in rats (Li et al., 2016) and squirrel monkeys (Justinova
et al., 2015), providing substantial support for the hypothesis
that PAMs may possess an advantage over agonists with
regards to tolerance. In contrast, Li et al. (2016) found that
the ability of another mGlu2-selective PAM, AZD8418, to
reduce nicotine self-administration in rats was susceptible
to tolerance. These findings highlight the fact that not all
PAMs of a given receptor behave similarly in vivo, which
must be taken into account when designing studies evaluating
their therapeutic potential. Interestingly, divergent results
such as those noted here could provide insight into the
pharmacological properties that are necessary for maintained
suppression of drug intake, and thus provide an opportunity
to optimize drugs for clinical use with these profiles in
mind.

One potential drawback of therapeutic approaches that
rely on pharmacological enhancement of presynaptic receptor
function stems from multiple lines of evidence that the
function of presynaptic GPCRs is impaired following chronic
drug exposure. Particularly in cases in which the apparent
loss of auto- or heteroreceptor activity could be caused by
downregulation of receptor expression, it is possible that
pharmacological activation of the remaining receptor population
would be insufficient to restore modulation of neurotransmitter
release. This concept was postulated by Meinhardt et al. (2013),
who reported decreased mGlu2 mRNA levels in the prefrontal
cortex of alcohol-dependent rats (Meinhardt et al., 2013). In
this study, lentiviral rescue of mGlu2 expression in infralimbic
PFC-NAc circuitry prevented cue-induced reinstatement of
alcohol-seeking; however, the ability of pharmacological agents
to mimic this rescue was not reported. As discussed above,
numerous studies have reported efficacy of both agonists and
PAMs of mGlu2 to decrease taking and seeking of various
drugs of abuse, lending support to the idea that despite
adaptations in mGlu2 function caused by chronic drug exposure,
pharmacological interventions remain a viable strategy for
correcting drug-related behaviors.

Recent progress towards the development of clinically useful
drugs targeting mGlu2 creates an exciting opportunity to test the
hypothesis that enhancing mGlu2 function will decrease drug
seeking and taking in humans. Two mGlu2 PAMs, AZD8529
(AstraZeneca) and JNJ-40411813 (Janssen Pharmaceuticals, Inc.,
in collaboration with Addex Therapeutics), have been evaluated
in small clinical trials (Cross, 2013; Salih et al., 2015). To date,
no major safety or tolerability concerns have been reported.
A small trial assessed the ability of JNJ-40411813 to reduce
cigarette craving and smoking in male smokers, and found a
trend towards reduced craving but not a reduction of the number
of cigarettes smoked (Salih et al., 2015). The U.S. National
Institute on Drug Abuse is currently sponsoring a multi-site
clinical trial to evaluate AZD8529 for smoking cessation in
females (Clinicaltrails.gov identifier: NCT02401022). The results
of this study will provide insight into the potential for translating
preclinical evidence for the beneficial effects of mGlu2 PAMs
into efficacy in human populations. Interestingly, clinical studies
using NAC have shown a modest ability to promote abstinence
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from cocaine, cannabis, and nicotine (reviewed in McClure et al.,
2014), providing additional, albeit indirect, support for the idea
that increasing mGlu2 activity could reduce drug seeking in
humans. Additional clinical trials examining the ability of drugs
targetingmGlu2 to prevent relapse and reduce the use of a variety
of drugs will be necessary to more thoroughly interrogate the
specific human addictive behaviors that are most likely to be
impacted by mGlu2 activation.

CONCLUDING REMARKS

Substantial research using preclinical models of drug abuse
has demonstrated key roles for presynaptic Gi/o-coupled
GPCRs as mediators of the effects of abused drugs, substrates
for neuroadaptations that impact behavior, and promising
therapeutic targets for reducing drug intake and preventing
relapse. These receptors include the three examples discussed
above; however, this list is by no means exhaustive. For example,
mu opioid receptors are important mediators of the rewarding
effects of opiates such as heroin, and also undergo adaptations
in function in response to drug exposure (Atwood et al., 2014a).
Naltrexone, one of the few currently approved drugs for treating
opioid and alcohol dependance, targets these opioid receptors.
In addition, other mGlu receptors such as mGlu7 have been the
subject of substantial preclinical investigation and may provide
alternative targets for future drug discovery efforts (Li et al.,
2013; Mao et al., 2013). In addition, many mechanistic questions
remain regarding the discrete synapses and circuits that are
impacted by presynaptic GPCRs to modify drug intake and
seeking. As the use of contemporary neuroscience techniques
such as optogenetics and circuit-specific genetic manipulations
become more widespread, enhanced understanding of how
specific circuits control behaviors will provide opportunities to
target GPCRs that modulate critical addiction circuitry to correct
pathological drug use.

Advances in the ability to assess neuroadaptations in
human patient populations will provide exciting opportunities
to test the translational potential of the preclinical work

highlighted here. For example, the increasing availability of
PET ligands suitable for human testing will allow interrogation
of drug-induced changes in receptor availability that could
confirm preclinical observations of reduced presynaptic GPCR
expression following repeated drug exposure without relying
on the use of postmortem brain samples. In addition, methods
such as magnetic resonance spectroscopy that can be used
to study neurotransmitter dynamics in humans create the
opportunity to assess the impact of long-term drug abuse
on glutamate transmission and to test the ability of clinical
drug candidates that target presynaptic GPCRs to modulate
glutamate transmission in the addicted brain (Hillmer et al.,
2015; Volkow et al., 2015). Ultimately, variables such as
the abused drug(s) and history of drug taking will likely
play a role in the efficacy of pharmacological interventions
targeting presynaptic GPCRs. When designing clinical trials, it
will be important to consider how the temporal relationship
of the experimental intervention to drug taking (current or
after short or prolonged abstinence) affects efficacy, and how
time-dependent adaptations in receptor expression and function
may impact the ability of novel drugs to reduce drug taking or
seeking behaviors.
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