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Bipolar disorder (BD) is a chronic and progressive psychiatric illness characterized
by mood oscillations, with episodes of mania and depression. The impact of BD on
patients can be devastating, with up to 15% of patients committing suicide. This
disorder is associated with psychiatric and medical comorbidities and patients with
a high risk of drug abuse, metabolic and endocrine disorders and vascular disease.
Current knowledge of the pathophysiology and molecular mechanisms causing BD
is still modest. With no clear biological markers available, early diagnosis is a great
challenge to clinicians without previous knowledge of the longitudinal progress of illness.
Moreover, despite recommendations from evidence-based guidelines, polypharmacy
is still common in clinical treatment of BD, reflecting the gap between research and
clinical practice. A major challenge in BD is the development of effective drugs with
low toxicity for the patients. In this review article, we focus on the progress made
and future challenges we face in determining the pathophysiology and molecular
pathways involved in BD, such as circadian and metabolic perturbations, mitochondrial
and endoplasmic reticulum (ER) dysfunction, autophagy and glutamatergic
neurotransmission; which may lead to the development of new drugs.

Keywords: bipolar disorder, mitochondrial dysfunction, endoplasmic reticulum stress, oxidative stress,
glutamate, hyperexcitability, disease modeling

INTRODUCTION

In his 1889 lecture ‘‘Zur Diagnose und Prognose der Dementia praecox’’, Emil Kraepelin proposed
separating psychiatric disorders with psychotic features into two major categories. Based on
the observations of the long-term outcome and the nosological principles of Kahlbaum (1863),
the famous diagnostic dichotomy was born: the ‘‘Manisch-depressives Irresein’’ which was
later reclassified to bipolar disorder (BD) and major depression, and the ‘‘Dementia-praecox-
Gruppe’’ which became schizophrenia. BD is a complex syndrome with 2% prevalence worldwide
(Merikangas et al., 2011). The impact of BD on patients can be devastating; 9%–15% of patients
commit suicide (Rihmer and Kiss, 2002; Medici et al., 2015). This disorder is associated with
psychiatric comorbidities including personality disorder, anxiety disorder and substance abuse
disorder and medical comorbidities such as diabetes, obesity and hyperlipidemia (Leboyer et al.,
2012; Blanco et al., 2017).

Even with typical symptoms of BD, the disease is difficult to diagnose accurately and promptly
in clinical practice. Both BD types I and II patients spend most of the duration of their illness
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in a depressive phase (Hirschfeld et al., 2003) and they often
fail to recognize hypomanic or manic symptoms as pathological,
which results in a mean delay of 5–10 years between the onset
of illness and diagnosis (Baldessarini et al., 2007). There are
also subtle differences between the two major diagnostic criteria
used throughout the world today, the DSM and the International
Classification of Disease (ICD). According to DSM-5 criteria,
BD type I is diagnosed when there has been at least one
episode of full-blown mania, with or without one or more
major depressive or hypomanic episodes (American Psychiatric
Association, 2013). A diagnosis of BD II is based on several
protracted episodes and at least one hypomanic episode but no
manic episodes. The ICD-10 does not discriminate between BD
types I and II (WHO, 1993). While one episode of mania or
one episode of hypomania plus major depressive episodes is
sufficient for diagnosis according to DSM-5, the ICD-10 requires
at least two distinct mood episodes, one of which must be manic
or hypomanic for the diagnosis of BD. With no clear clinically
relevant biological markers available, early diagnosis is a great
challenge for clinicians without knowledge of the longitudinal
progress of illness (Phillips and Kupfer, 2013).

Treatment of BD usually consists of two stages: acute
stabilization and relapse prevention. Acute stabilization entails
the conversion of a manic or depressive phase to an euthymic
state; relapse prevention consists of maintaining the euthymic
status while minimizing subthreshold symptoms and enhancing
general function (Geddes and Miklowitz, 2013; Goodwin
et al., 2016). Acute treatment of BD is complex, as one
mood phase may spill over into the opposite mood phase
before the euthymic status can be achieved, complicating
the various aspects of clinical decisions e.g., the choice
of psychotropics and the dosage. Also teasing out the
therapeutic effects from the possible adverse effects such as
somnolence, psychomotor retardation and akathisia, all of
which may mimic a change in the mood status, is one of
the biggest challenges during the initial phase of BD drug
treatment. A meta analysis of short-term randomized control
trials of medications showed that aripiprazole, asenapine,
carbamazepine, cariprazine, haloperidol, lithium, olanzapine,
paliperdone, quetiapine, risperidone, tamoxifen, valproate and
ziprasidone were effective as acute anti-manic agents (Yildiz
et al., 2011). The same study also showed that responses to
various antipsychotics were somewhat greater or more rapid
than lithium, valproate, or carbamazepine and that lithium
did not differ from valproate in a direct comparison between
the drugs (Yildiz et al., 2011). Relapse prevention usually
necessitates long-term treatment that calls for drugs that have
minimal long-term side effects. Lithium is the best-established
long-term treatment compound for BD, reducing both relapse
and suicide (Geddes et al., 2004; Nivoli et al., 2010; Rybakowski,
2014). However, the incidence of adverse effects and a low
therapeutic index restrict its benefits. Despite recommendations
from evidence-based guidelines, polypharmacy is still common
in clinical practice of BD, reflecting the gap between research and
routine clinical practice (Fornaro et al., 2016).

The reduced understanding of the underlying
pathophysiology and neurobiology of the disorder hampered

the development of effective drugs. Neuroimaging studies have
consistently revealed structural changes in the brain of BD
patients (Maletic and Raison, 2014). In addition, observation of
post-mortem tissue showed histopathologic features in neurons
and glia in BD (Rajkowska, 2000; Uranova et al., 2004). These
findings encouraged moving the research from monoamine
neurotransmission to the synaptic and neural plasticity and
the cellular processes that control the physiology of brain cells.
In this review article, we will focus on how alterations in the
energetic metabolism and mitochondrial dysfunction contribute
to the vulnerability of BD cells, which we expect may lead to
future therapies.

CIRCADIAN AND METABOLIC
PERTURBATIONS IN BD

The clinical manifestations and the pathogenesis of BD are
linked to circadian rhythm alteration (Melo et al., 2016a,b;
Figure 1). Circadian disruptions and sleep complaints can
be both precipitating factors and consequences of mood
disorders (Bechtel, 2015; Cretu et al., 2016; Grierson et al.,
2016). One of the main characteristics of manic episodes
is the reduced need for sleep, whereas depressive episodes
are frequently characterized by insomnia and hypersomnia
(American Psychiatric Association, 2013). Circadian disruption
and ‘‘eveningness’’ (being more active during the evening) have
been associated with mood episodes, functional impairment,
poor quality of life and treatment resistance (Duarte Faria
et al., 2015; Pinho et al., 2015; Cudney et al., 2016; Ng
et al., 2016). Moreover, sleep deprivation and light therapy
are therapeutic approaches that have been used effectively
as adjuncts to the more standard pharmacological therapies
(Lewy et al., 1982; Benedetti et al., 2014; Tseng et al.,
2016).

Existing hypotheses for the biological mechanism underlying
dysregulation of circadian rhythm in BD include changes in
melatonin levels, in expression of melatonin receptors in the
central nervous system and in daily cortisol profiles (Wu
et al., 2013). Genetic evidence also links circadian rhythm
dysregulation with BD. Two polymorphisms on the CLOCK
gene that control circadian rhythm—aryl hydrocarbon receptor
nuclear translocator-like (ARNTL) and timeless circadian clock
(TIMELESS)—have been linked to lithium responsiveness in
BD (Rybakowski et al., 2014). In addition, Per2, Cry1 and Rev-
Erbα expression, all components of the circadian clock, increased
the individual susceptibility to the therapeutic effects of lithium
(Schnell et al., 2015).

It is interesting to note that circadian rhythm dysregulation
and molecular clock mechanism are observed across psychiatric
diagnoses, including schizophrenia and depression (Lamont
et al., 2007). In a genome-wide association analysis of UK
biobank, genetic correlation between longer sleep duration and
schizophrenia risk was observed (Lane et al., 2017). In addition,
a SNP analysis showed CLOCK gene T3111C polymorphism in
Japanese schizophrenia patients compared to healthy controls
(Takao et al., 2007), although the same polymorphism was not
observed in patients with major depressive disorder (MDD)
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FIGURE 1 | Integrated view of clinical and fundamental research interventions in bipolar disorder (BD). BD patients have neuropsychiatric symptoms and
metabolic comorbidities that can be associated to mitochondrial dysfunction and low energetic status. Oxidative stress, endoplasmic reticulum (ER) stress, reduced
autophagy and changes in glutamatergic neurotransmission are consequences of mitochondrial dysfunction and altered glucose metabolism contributing to the
vulnerability of BD cells. Clinical and cellular features can be used to inform and validate cellular phenotypes useful in the construction of new research model
systems (mouse models and induced pluripotent stem cells- iPSCs technology). Elucidation of pathways involved in BD pathology can lead to the development of
novel therapies.

or BD in another study of the Japanese population (Kishi
et al., 2011). Recently, it was observed in primary fibroblasts
from schizophrenic patients with poor sleep, a loss of rhythmic
expression of CRY1 and PER2 when compared to healthy
controls (Johansson et al., 2016). Increased sleep latency, poor
sleep quality and reduced latency to first rapid eye movement
sleep are well documented in MDD, but there is no data
supporting the role of circadian rhythm genes in the disorder
(Thase, 2006).

Metabolic cues contribute to the regulation of circadian
clocks and circadian rhythm impact the cardiovascular and
metabolic systems (Morris et al., 2012; Gamble and Young,
2013; Bailey et al., 2014). Indeed it has long been known that
BD patients present energetic metabolism changes (Altschule
et al., 1956; Kato and Kato, 2000) and that they have a higher
risk of obesity (Boudebesse et al., 2015) and type 2 diabetes
mellitus compared to the general population (McElroy et al.,
2002; Keck and McElroy, 2003; McIntyre et al., 2005). Systemic
analysis have shown that natural causes like cardiovascular
illness contribute significantly to the decrease in the life
expectancy of BD patients compared to the general population
(Kessing et al., 2015). Circadian disturbance appears to be
independently associated with increased lipid peroxidation

in BD patients but not in controls (Cudney et al., 2014).
An association between evening chronotype and a higher
percentage of body fat composition among patients with
BD has been suggested (Soreca et al., 2009). Many cellular
metabolic sensors act directly on core components of the
clock, adjusting biological timing with metabolic status. Leptin,
which is produced by adipocytes, regulates appetite and
modulates sleep duration. Increased levels of leptin have been
described previously in overweight patients with BD as compared
with overweight controls (Barbosa et al., 2012). Adipose
tissue-derived hormones, or adipokines, regulate appetite and
metabolism and have activity in limbic brain regions; mood
episodes and medication treatment both contribute to adipokine
abnormalities in BD and adipokines influence the course
of psychiatric illness and changes in BMI (Bond et al.,
2016).

The mechanisms underlying weight gain and metabolic
imbalance in BD patients are poorly understood. Genetic
susceptibility, recurrent depressive episodes, low activity levels,
poor dietary habits, poor medical care, and side effects of
antipsychotics/mood-stabilizers medication have been suggested
(McElroy et al., 2002). Sleep disturbance is a core symptom
of BD and may contribute to the association of BD with
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metabolic disturbances. Evidence indicates that shorter sleep
duration is associated with low HDL cholesterol (Soreca
et al., 2012) and increased risk of coronary events (Ayas
et al., 2003). However, other studies suggest that comorbid
medical illnesses of BD may not only be due to poor health
behaviors and psychotropic medications, but manifestations
of common biological pathways between the BD and the
comorbid illnesses (Leboyer et al., 2012). The close associations
between metabolic and psychiatric disorders have introduced the
‘‘metabolic mood syndrome’’ hypothesis, which speculates the
existence of common biological mechanisms underlying both
conditions.

The innate energetic glucose-dependent brain metabolism
may be one of the factors that contribute to this phenomena.
Our brain has a very high-energy requirement and will disturb
other parts of the body to acquire its energetic need, which
is the core of the ‘‘selfish brain’’ hypothesis (Peters et al.,
2004). We can hypothesize that some of the metabolic changes
observed in BD may be a compensatory mechanism of the body
trying to offset the pathological energy imbalance during the
initial stages of BD characterized by loss of appetite, increased
energy and lack of sleep, all of which would deplete the body
and brain of energy sources. Maybe it is not a coincidence
that many of the initial side effects of antipsychotics and
mood stabilizers (appetite increase and somnolence) used to
treat manic episodes, point toward the body trying to tip the
scale toward anabolism instead of catabolism. The previous
findings have suggested that high BMI impacts negatively
on clinical and functional outcomes in BD (Kolotkin et al.,
2008), adversely influencing treatment response to mood
stabilizers and remission rate (Kemp et al., 2010). However,
higher weight gain may be a compensatory response to more
severe pathological process than the cause of the negative
clinical outcome and poor drug response. Although a shared
risk and overlapping pathophysiology implicate either shared
biological mechanisms or causal interactions for circadian
rhythm, metabolic disturbances and BD, more research is needed
to study the specific mechanisms in place.

MITOCHONDRIAL DYSFUNCTION AND
ENERGY METABOLISM

Accumulating evidence from imaging, biochemical and genetic
studies support the view that mitochondrial dysfunction is a
central feature in BD (Kato and Kato, 2000), characterized
by impaired oxidative phosphorylation and changes in
mitochondrial morphology and number and in calcium signaling
(Figure 1). Several mitochondrial DNA polymorphisms have
been described (Kato et al., 2001; Munakata et al., 2004),
providing additional support for the association between BD and
mitochondrial impairment.

Magnetic resonance spectroscopy (MRS) studies were the
first to show perturbations in several pathways involved in
energy metabolism in BD patients. In a pioneering study using
phosphorous 31P-MRS, Kato et al. (1994) identified reduced
phosphocreatinine in the frontal cortex of BD patients regardless
of mood phase; this finding was later confirmed by other

studies using a different cohort (Deicken et al., 1995; Frey
et al., 2007). Phosphocreatinine is a cellular reservoir for
ATP synthesis in periods of intense metabolic demand, and a
chronic decrease in phosphocreatinine levels is an indication
of mitochondrial dysfunction and deficient ATP synthesis.
Inorganic phosphate regulates oxidative phosphorylation and
ATP synthesis (Brown, 1992; Bose et al., 2003). Based on
early pioneering studies, Stork and Renshaw (2005) proposed
a model of mitochondrial dysfunction in which a metabolic
shift towards glycolysis occurs in the brain of BD individuals
(Figure 2). A recent 31P-MRS studies in adolescents showed
that inorganic phosphate was decreased in medication-free
patients compared to medicated patients and controls (Shi et al.,
2012), again emphasizing the low energy status of BD brain
cells.

The tricarboxylic acid cycle (TCA) is a fundamental
component of aerobic respiration and is also disturbed in BD
(Figure 2). Metabolomic analysis showed that the serum levels
of pyruvate and α-ketoglutarate were significantly higher in
BD patients than in healthy controls (Yoshimi et al., 2016b).
Pyruvate is an end product of glycolysis and is used to fuel
the TCA cycle in the mitochondria after conversion into acetyl-
CoA. α-Ketoglutarate is a TCA intermediate that results from
the oxidative decarboxylation of isocitrate catalyzed by isocitrate
dehydrogenase. The levels of this enzyme were found to be
significantly higher in the cerebrospinal fluid (CSF) of BD
patients compared to neurotypical controls, possibly accounting
for the α-ketoglutarate increase (Yoshimi et al., 2016a). Studies
using proton 1H-MRS detected decreased intracellular pH
and increased lactate in several brain regions of BD patients
compared to healthy individuals (Kato et al., 1994; Dager et al.,
2004; Chu et al., 2013). Accordingly, the lactate level in the
CSF is higher in BD patients compared to healthy controls
(Regenold et al., 2009). At the transcriptional level, different
studies reported post-mortem decreased expression of genes
encoding numerous subunits of complexes I, III, IV and V
of the electron transport chain in the hippocampus (Konradi
et al., 2004) and prefrontal cortex (Iwamoto et al., 2005; Sun
et al., 2006; Andreazza et al., 2010) of BD patients. All of
these observations converge to support the hypothesis that a
metabolic shift occurs from oxidative phosphorylation to the
less-efficient pathway glycolysis in the brain of BD individuals
(Figure 2).

Mitochondria accomplish other cellular functions, such as the
regulation of calcium homeostasis and of cell death (McBride
et al., 2006; Giacomello et al., 2007; Suen et al., 2008; Bhosale
et al., 2015). At the same time, mitochondria actively participate
in the intracellular regulation of calcium signaling by buffering
the calcium waves. Lethal challenges stimulate calcium release
by the endoplasmic reticulum (ER) and uptake by mitochondria,
which are early steps in the apoptotic cascade, and the capacity of
mitochondria to handle calcium fluxes will determine survival or
death (Giacomello et al., 2007; Bhosale et al., 2015; Raffaello et al.,
2016). In general, an intensification in cellular energy demand
is associated with increased calcium (Bhosale et al., 2015). Since
BD patient cells have impaired oxidative phosphorylation, it
is likely that they also have disturbed calcium homeostasis.
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FIGURE 2 | Mitochondrial dysfunction in BD. In BD cells, impaired oxidative phosphorylation results in a metabolic switch to glycolysis and lactate biosynthesis,
with concomitant intracellular pH decrease. Decreased oxidative phosphorylation also causes an accumulation of reactive species (RS) and calcium in the
mitochondria. Abbreviations: ER, endoplasmic reticulum; ETC, electron transport chain; TCA, tricarboxylic acid cycle; RS, reactive species.

However, only a few studies have addressed these aspects of
mitochondrial function in the context of BD. As expected,
markers of apoptosis and an increase in the intracellular calcium
concentration were found in blood cells from BD patients
compared to healthy individuals (Perova et al., 2008; Dubovsky
et al., 2014; Fries et al., 2014). Underscoring the potential role
for calcium homeostasis in BD pathogenesis is the repeated
identification of CACNA1C, which encodes the α-subunit of the
L-type voltage-gated Ca2+ channel, as a risk gene (Maletic and
Raison, 2014).

Mitochondria undergo continuous fusion and fission events
in physiological conditions. The imbalance of these two processes
has dramatic effects on the morphology, physiology and
distribution of mitochondria in the cells (Detmer and Chan,
2007; Ramos et al., 2016; Schrepfer and Scorrano, 2016).
When the equilibrium is directed towards fusion, mitochondria
are interconnected, net-like or aggregated in small regions of
the cell. When the equilibrium is directed towards fission,
mitochondria are fragmented, respiration-incompetent and tend
to lose mitochondrial DNA. The data from Cataldo et al.
(2010) suggest alterations inmitochondrial morphology, number
and distribution in post mortem prefrontal cortex samples
and primary fibroblasts and lymphocytes from BD individuals
compared to controls. The mitochondria were also smaller
in neurons differentiated from induced pluripotent stem cells
(iPSC) from BD patients compared to healthy controls (Mertens

et al., 2015). Considering that BD is characterized by low
energy status, it is tempting to speculate that these studies
are reporting altered mitochondrial dynamics. In both studies,
treatment with lithium did not cause any change inmitochondria
(Cataldo et al., 2010; Mertens et al., 2015). There is no treatment
strategy targeting metabolism in BD, most studies aim at
finding biomarkers or at better understanding the pathology.
However, drugs commonly used for treatment of metabolic
disease may have beneficial effects on BD metabolism; for
example, quetiapine reduces lactate (Kim et al., 2007) and
lithium increases oxidative phosphorylation (Maurer et al.,
2009).

BD AND OXIDATIVE STRESS

One outcome of oxidative phosphorylation decline is the increase
in the generation of superoxide as a result of electron leak
from the electron transport chain, which may lead to oxidative
stress. A cell is in an oxidative stress state when an imbalance
between the production of reactive species (RS) and antioxidant
activities occurs (Halliwell, 2007). Increasing evidence suggests
the involvement of oxidative stress in the pathology and
progression of BD (Scaini et al., 2016; Data-Franco et al.,
2017).

Twometa-analysis studies have shown that lipid peroxidation
and nitric oxide level were significantly increased in red
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blood cells or serum from BD patients compared to healthy
controls (Andreazza et al., 2008a; Brown et al., 2014). Oxidative
damage of nucleic acids was also repeatedly observed and
was found to be increased in peripheral and post-mortem
patient brain samples (Andreazza et al., 2008a; Che et al., 2010;
Soeiro-de-Souza et al., 2013; Brown et al., 2014). However,
numerous studies have reported contradictory data on the
antioxidant enzymatic activities (e.g., superoxide dismutase,
catalase, glutathione peroxidase) in BD patients (Brown et al.,
2014). In addition, using 1H-MRS, no change was observed
in the levels of glutathione, a major antioxidant in the brain,
in the anterior cingulate cortex of BD patients and healthy
controls (Chitty et al., 2013; Lagopoulos et al., 2013). On the
other hand, a biochemical study of blood samples from patients
with different ages of disease onset showed that glutathione
levels are lower in BD patients and that a negative correlation
was observed with the age at onset (Rosa et al., 2014). The
discrepancies reported could be related to the heterogeneity of
the studies in terms of type of tissue analyzed, age at onset, illness
duration, phase of the disorder, number of manic/depression
episodes and treatment. The cellular effects of oxidative stress
are cumulative and it is predictable to worsen with time and
number of manic episodes. Hatch et al. (2015) observed that
protein carbonyl and lipid hydroperoxide content is higher in
adults compared to adolescents with BD. Another study showed
that, indeed, antioxidant defensesmight oscillate according to the
phase of the disorder; superoxide dismutase activity was higher
in manic and depressed patients compared to euthymic patients
and controls (Andreazza et al., 2007). Notably, numerous reports
have shown the antioxidant properties of mood stabilizers
(Cui et al., 2007; Andreazza et al., 2008b; Bakare et al., 2009;
Jornada et al., 2011; Banerjee et al., 2012; de Sousa et al.,
2014).

The interest of researchers on the effects of oxidative
stress on the pathophysiology of BD is recent; therefore the
available data is limited. Over the years a number of trials with
antioxidants have failed to provide the expected benefits for
patients with various diseases (Casetta et al., 2005; Steinhubl,
2008; Halliwell, 2009; Persson et al., 2014). One of the reasons
is because oxidative stress is frequently a secondary phenotype of
mitochondrial dysfunction, as it is likely the case in BD patients.
Further research is needed to evaluate the therapeutic potential
of antioxidants and it’s efficacy when given as adjunctive
treatments.

LINK BETWEEN MITOCHONDRIAL
DYSFUNCTION, ENDOPLASMIC
RETICULUM STRESS AND AUTOPHAGY

The principal functions of the ER are protein synthesis,
folding and post-translational modifications, but it also interacts
functionally with mitochondria to control calcium signaling
and apoptosis (Pizzo and Pozzan, 2007; Halperin et al., 2014;
Senft and Ronai, 2015; Raffaello et al., 2016). Accumulation of
unfolded proteins, which may be triggered by defaults in protein
folding or post-translational modifications, calcium changes and
by redox imbalance, causes ER stress. The cellular response to

ER stress involves other organelles, such as the mitochondria,
which leads to restoring cell homeostasis or to committing cells
to death. The pathways activated by ER stress are the unfolded
protein response (UPR), ER-associated degradation, autophagy,
hypoxic signaling and mitochondrial biogenesis (Raffaello et al.,
2016). The UPR is mediated by three stress sensors—the inositol-
requiring enzyme 1 (IRE1), the activating transcription factor 6
(ATF6) and protein kinase RNA-like ER kinase (PERK)—that
activate a complex transcriptional cascade that leads to multiple
adaptive responses or cell death (Hetz, 2012; Senft and Ronai,
2015; Figure 3).

Several studies using BD patient-derived lymphoblastoid
cell lines or blood cells showed an impaired response to ER
stress (So et al., 2007; Hayashi et al., 2009; Pfaffenseller et al.,
2014). So et al. (2007) were the first to report decreased
induction of expression of the X-box binding protein 1 (XBP1)
and C/EBP homologous protein (CHOP) genes in response
to ER stress stimulated by thapsigargin and tunicamycin in
B-lymphocytes from BD patients compared to controls. In
agreement with these observations, another study showed an
increase in the amount of several proteins implicated in the
UPR (phosphorylated eukaryotic initiation factor 2 (eIF2α-P),
chaperone GRP78, XBP1 and CHOP) in leucocytes treated
with tunicamycin from controls but not in those from BD
patients (Pfaffenseller et al., 2014). Hayashi et al. (2009)
also reported an attenuation in the expression of XBP1 and
GRP94 in BD patient-derived lymphoblastoid cell lines treated
with thapsigargin compared to the control cell lines. A single
nucleotide polymorphism (SNP; −116C/G; rs2269577) in the
promoter of the XBP1 gene impairs the feedback loop regulation

FIGURE 3 | Cellular response to ER stress. Accumulation of unfolded
proteins in the ER lumen signal the unfolded protein response (UPR). The
activated stress sensor proteins—protein kinase RNA-like ER kinase (PERK),
inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6)
–signal different transduction pathways aiming at restoring cell homeostasis or
committing the cell to death. Abbreviations: ERAD, endoplasmic
reticulum-associated protein degradation; ER, endoplasmic reticulum.
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in the ER response and is associated with BD (Kakiuchi
et al., 2003; Cheng et al., 2014). However, the attenuated
XBP1 induction in patient B-lymphocytes was independent of
the promoter polymorphism (So et al., 2007). Differential gene
analysis of data obtained by RNA sequencing from blood cells
from healthy controls, lithium-responsive patients and lithium-
non-responsive patients identified the response to ER stress as
a lithium-regulated gene network (Breen et al., 2016). Overall,
these data suggest that the adaptive response of BD cells to
ER stress is compromised, which may decrease the resilience
of cells to stress conditions (Figure 3). Interestingly, the most
frequently used mood stabilizers, lithium and valproate, seem to
also have beneficial effects and increase the adaptive response to
ER stress.

Autophagy is a cellular response aiming at restoring
homeostasis or committing cells to death under nutrient
starvation conditions (Klionsky and Emr, 2000; Baehrecke,
2005). During autophagy, protein aggregates, cytoplasmic
components and organelles are degraded and the released
molecules are recycled in biosynthetic pathways. The molecular
mechanisms that regulate autophagy are the activation of ATG
(autophagy-related) genes by phosphatidylinoditol 3-kinase
(PI3K) pathway and the repression of the mTOR (mammalian
target of rapamycin) kinase (Klionsky and Emr, 2000). A
complex interaction exists between autophagy, ER stress
and mitochondria. For instance, the UPR mediators activate
autophagy (Figure 3; Senft and Ronai, 2015; Raffaello et al.,
2016) and affect mitochondrial function by regulating Parkin
(Bouman et al., 2011). On the other hand, Parkin is a regulator
of mitochondrial dynamics and is necessary to target damaged
mitochondria to mitophagy (Narenda et al., 2008; Poole et al.,
2008). Recently, it was shown that autophagy is down regulated
in schizophrenia and MDD (Jia and Le, 2015; Merenlender-
Wagner et al., 2015). No data is available hitherto for patient
cells or animal models of BD. However, since there is evidence
that mitochondrial and ER functions are disturbed in BD,
it is possible that autophagy is also altered and contributes
to the pathophysiology of the disorder. Toker and Agam
(2015) suggested an original hypothesis; they proposed that in
psychiatric disorders mitochondrial dysfunction results from
autophagy impairment.

GLUTAMATERGIC NEUROTRANSMISSION
AND HYPEREXCITABILITY

Glutamate and γ-aminobutyric acid (GABA) are the major
excitatory and inhibitory neurotransmitters in the brain,
respectively. The most abundant neurons in the cortex are the
excitatory pyramidal cells, the inhibitory interneurons account
for only ≈20% of the total neurons (Markram et al., 2004;
Molyneaux et al., 2007). A chronic accumulation of glutamate in
the synaptic cleft causes excitotoxicity and neuronal death due
to excessive stimulation of the postsynaptic glutamate receptors
(Wang and Qin, 2010). A metabolic glutamate-glutamine cycle
between neurons and astrocytes maintain glutamate levels below
toxicity. Neuronal impulses trigger the release of glutamate into
the synaptic cleft, generating postsynaptic currents. Glutamate is

then taken up by astrocytes and converted into the non-toxic
glutamine, which is transported back by the neurons and
converted to glutamate. It is thus predictable that changes in the
astrocyte ability to transport glutamate and synthesize glutamine
will affect neurotransmission and neuronal survival in the brain.

The question of brain glutamate levels in BD patients
has been addressed in numerous studies using MRS. The
magnetic field strengths and signal-to-noise ratio in most studies
using human individuals do not allow a fine resolution of
the peak into glutamate and glutamine, so it is a composite
peak of two metabolites that is quantified (generally named
Glx; Stork and Renshaw, 2005). Since glutamate is in large
supply compared to glutamine, it is assumed that the changes
observed in the Glx signal are correlated with glutamate (Stork
and Renshaw, 2005; Gigante et al., 2012). Adult BD patients
show a consistent increase in glutamate levels in the frontal
brain areas compared to healthy controls; these increases are
independent of the mood phase (Castillo et al., 2000; Michael
et al., 2003; Dager et al., 2004; Yildiz-Yesiloglu and Ankerst,
2006; Hashimoto et al., 2007; Moore et al., 2007; Eastwood
and Harrison, 2010; Gigante et al., 2012; Kondo et al., 2014;
Ehrlich et al., 2015). Treatment of patients with the multi-target
mood stabilizers lithium and valproate restores the Glx levels to
normal (Friedman et al., 2004; Strawn et al., 2012). Findings in
post-mortem brain tissue from BD patients confirmed changes
in glutamatergic neurotransmission. Hashimoto et al. (2007)
reported an increase in the levels of glutamate in BD patient
samples from frontal cortices. Proteomics and transcription
studies showed alterations in N-methyl-D-aspartate (NMDA)
receptors and other intermediates of glutamatergic signaling
(Hashimoto et al., 2007; Rao et al., 2009; Eastwood and Harrison,
2010; Gottschalk et al., 2015). Accordingly, the SLC1A2 gene
that encodes the astrocytic excitatory amino acid transporter
2 (EAAT2, responsible for majority of glutamate re-uptake in
the brain) is a susceptibility locus to BD (Fiorentino et al.,
2014).

A relationship was found between glucose metabolism and
glutamatergic neuronal function in vivo in the rat cortex by
measuring the rates of TCA cycle and glutamate synthesis
using 14C-MRS (Sibson et al., 1998). A stoichiometry close to
1:1 was calculated between glucose metabolism and glutamate
cycling, suggesting that the majority of the glucose consumed
and energy produced in the cortex supports the glutamatergic
synaptic activity (Sibson et al., 1998). In inhibitory neurons,
GABAergic transmission also imposes high energy expense
(Patel et al., 2005). Therefore, the increased levels of excitatory
neurotransmitter glutamate in the brain of BD patients imply
a higher energy demand on the neurons. Dager et al. (2004)
suggested that the increased rate of glycolysis observed in MRS
studies is the metabolic response of BD cells to the increased
energy requirements and to the deficient oxidative metabolism.
Consistent with increased glutamate levels and the pressure
on energy metabolism, Rao et al. (2009) found excitotoxicity
and neuroinflammation in post-mortem frontal cortex from BD
patients.

Studies using transcranial magnetic stimulation paradigms
showed a significant deficit in cortical inhibition in BD patients
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compared to healthy controls (Levinson et al., 2007; Chroni
et al., 2008), which is in agreement with the data showing
increased glutamatergic neurotransmission in BD patients. The
hippocampus, another brain region affected in BD, also is the
site of adult neurogenesis (Vadodaria and Gage, 2014). New
excitatory granule cells are continuously generated in the dentate
gyrus. After maturation and integration in the neural circuit, the
new neurons are indistinguishable from those generated during
embryonic development, but it is their hyperexcitable nature
during maturation that gives the hippocampus its plasticity and
particular cognitive functions (Kempermann et al., 2015). Studies
using several mouse models of psychiatric disorders, such as
the Ca2+/calmodulin-dependent protein kinase II (α-CaMKII)
heterozygous knockout, showed that the dentate gyrus granule
cells were arrested at a stage with similar molecular and
physiological properties to those of the immature neurons
(Yamasaki et al., 2008; Hagihara et al., 2013). This phenotype
was named ‘‘immature dentate gyrus’’ and was proposed to be an
endophenotype of BD and other psychiatric disorders (Hagihara
et al., 2013).

MODELS OF BD AND CLINICAL
TRANSLATION TO DRUG TARGET

The development of novel treatments for psychiatric disorders
has been hindered by the slow progress in our understanding of
the underlying neurobiology, which results from the difficulty of
developing faithful animal and cellular models. The complexity
of psychiatric disorders and the still unknown relationships
between the diagnosis and the etiology, neurobiology, genetics
or response to medication led to the endophenotype concept.
Endophenotypes are simple measurable heritable components
that can be neurophysiological, biochemical, endocrine,
neuroanatomical, cognitive or neuropsychological (Gould
and Gottesman, 2006). Endophenotypes are useful in the
construction of animal models and help dissect genetics and
biological mechanisms of specific features of the disorders.
Using this strategy, numerous rodent models of BD depression
and mania have been constructed using approaches as diverse as
genetic, pharmacological, nutritional and environmental (Nestler
and Hyman, 2010; Kato et al., 2016; Logan and McClung, 2016).
The use of animal models of human disease in research and drug
testing should meet three criteria: construct validity, face validity
and predictive validity (Nestler and Hyman, 2010). These criteria
are useful in the evaluation of how similar is the animal model to
the human disease in terms of shared genetics and mechanisms
(construct validity), symptoms (face validity) and efficiency of
medications on the animal phenotypes (predictive validity). Mice
with a loss of function mutation in the CLOCK gene (Clock∆19
mutant mice) exhibit mania symptoms similar to those observed
in patients, including hyperactivity, decreased sleep, lowered
depression-like behavior, lower anxiety and an increase in the
reward value for cocaine, sucrose, and medial forebrain bundle
stimulation (Roybal et al., 2007). Interestingly, these symptoms
were also reversed by chronic lithium administration. However,
there is no evidence for circadian gene mutations in the majority
of BD patients. To date, none of the BD models have fulfilled the

requirements needed for their use in drug development, but they
contributed to the understanding of the pathophysiology of the
disorder (Nestler and Hyman, 2010; Kato et al., 2016; Logan and
McClung, 2016).

Transgenic mice with overexpression of glycogen synthase
kinase-3β (GSK-3β) show hyperactivity as observed in the
manic phase of BD (Prickaerts et al., 2006). Lithium inhibits
GSK-3β and this effect has been suggested as one possible
mechanism of action in BD patients (Stambolic et al., 1996;
Li et al., 2010). Lithium and valproate also act on the GSK-3β
signaling pathway to reverse the manic-like behavior in an
animal model of mania induced by ouabain (Valvassori et al.,
2016). Ouabain inhibits Na+/K+-ATPase activity, which induces
hyperactivity. Both lithium and GSK-3β knockdown act on
circadian rhythm by producing a lengthening of mPer2 period
in mouse fibroblasts (Kaladchibachi et al., 2007). In addition,
GSK-3β also phosphorylates PER2 (Iitaka et al., 2005) and
REV-ERBα (Yin et al., 2006) regulating localization and stability
of these proteins.

Lithium has numerous molecular targets, such as inositol
monophosphatase (Agam et al., 2002; Harwood, 2005), protein
kinase C pathway (Newberg et al., 2008) and calcium channels
(Andreazza and Young, 2014) just to name a few. It is still an
open question as to which one is responsible for the anti-manic
effect in humans (Shaldubina et al., 2001; Beaulieu et al., 2008);
nevertheless, these molecular pathways are used as targets to
develop novel drugs or repurpose old ones. Long-term treatment
of rats with lithium carbonate decreased membrane associated
PKC in hippocampal structures (Manji et al., 1993) and
treatment with valproate sodium increased cytosol/membrane
ratio of PKC activity (Chen et al., 1994). Tamoxifen, a centrally
acting PKC inhibitor has been shown to demonstrate anti-manic
properties (Yildiz et al., 2008) in a randomized control trials
of humans. More recently, the antioxidant ebselen, which
inhibits inositol monophosphatase and induces lithium-like
effects on mouse behavior, was suggested as a safe alternative
to lithium (Singh et al., 2013). In anterior cingulate region
of the brain, ebselen was shown to reduce glutamate and
inositol levels possibly by inhibiting glutaminase (Masaki et al.,
2016).

The advent of cellular reprogramming technology has allowed
for the generation of iPSCs from somatic tissues (e.g., skin
and blood) from patients with neuropsychiatric disorders
(Takahashi et al., 2007; Brennand et al., 2011; Mertens et al.,
2015). Significant methodological advances in human iPSC
differentiation protocols has enabled iPSC-disease modeling
using specific neuronal subtypes (Maroof et al., 2013; Nicholas
et al., 2013; Zhang et al., 2013; Yu et al., 2014; Vadodaria et al.,
2016a,b).

Chen et al. (2014) reported differences in transcriptional
profiles in iPSC-derived neurons from controls and BD patients.
The expression of transcripts for membrane-bound receptors
and ion channels was significantly increased in BD neurons
(Chen et al., 2014). Control neurons expressed transcripts that
confer dorsal telencephalic fate, whereas BD neurons expressed
transcripts that are involved in the differentiation of ventral
regions (e.g., medial ganglionic eminence). iPSC technology
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allows for the interrogation of cellular phenotypes that
can be detected during neuronal development and are not
directly evident in post-mortem studies. Specifically for BD,
neurodevelopmental deficits have been suggested (O’Shea and
McInnis, 2016), but the lack of access to embryonic tissues has
hindered the confirmation of a neurodevelopmental hypothesis.
Evidence for altered neuronal development in BD has also
been suggested using iPSC-derived neural progenitor cells
(NPCs) from BD patients (Madison et al., 2015). In this
study, the authors derived and characterized a set of 12 iPSC
lines from a quartet of two BD-affected brothers and their
two unaffected parents and found significant differences in
neurogenesis and in expression of genes involved in WNT
signaling and ion channel subunits (Madison et al., 2015).
Subsequent treatment of the NPCs with a pharmacological
inhibitor of GSK-3β (CHIR99021), a known regulator of
WNT signaling, rescued the progenitor proliferation deficit in
the BD patient NPCs. The role of micro RNAs (miRNAs)
was also investigated in BD neuronal tissue and cultures.
Bavamian et al. (2015) showed increased levels of miR-34a in
post-mortem cerebellar tissue from BD patients, as well as in
BD patient iPSC-derived neuronal cultures. miR-34a is predicted
to target multiple genes implicated as genetic risk factors for
BD, and the authors have validated a number of predicted
mir-34a direct targets in the BD cultured neurons (ankyrin-3,
ANK3 and voltage-dependent L-type calcium channel subunit
beta-3, CACNB3; Hunsberger et al., 2013; Bavamian et al.,
2015). In addition, overexpression of miR-34a was shown
to result in abnormalities in neuronal differentiation and
morphology as well as in the expression of synaptic proteins in
control cells (Bavamian et al., 2015). The authors propose that
miR-34a regulates a molecular network essential for neuronal
development and synaptogenesis that is implicated in BD
neuropathology.

A study examined hippocampal DG granule cell neurons
(Prox1 positive) differentiated from six BD patients and four
healthy controls (Mertens et al., 2015). Gene expression studies
were performed and suggested mitochondrial abnormalities
in DG granule cell neurons from BD patients. Interestingly,
electrophysiological functional studies revealed hyperexcitability
in BD neurons that was selectively decreased after lithium
treatment in neurons from lithium-responsive patients, and
not in neurons from the non-responders (Mertens et al.,
2015). This work suggests that clinical information and drug
response patterns can be used to test the validity of cellular
phenotypes in culture. That realization is very powerful since it
could open new avenues to find new drugs and therapies that
ameliorate phenotypes in cultured neurons and could potentially
be translated into patient treatments.

CONCLUSION AND FUTURE
CHALLENGES

The conventional drug development approach for psychotropics
has been through the manipulation of receptor profiles
of existing drugs or purely by an empirical approach.
Neuroscience-based treatment development for psychiatric

disorders has stagnated over the last four decades, withmolecular
and neuroscience research findings often not mapping onto
clinical phenomenological approaches. One of the reasons for
the slow progress is the lack of BD accurate animal and cellular
models for drug testing and pathophysiology investigation. The
expansion of studies using iPSC-derived technologies hopefully
will allow for a better understanding of the affected molecular
pathways and provide an initial platform for drug development.
Despite the fact that it seems impossible to have animal models
of psychiatric illness that fully reproduce the complex neurologic
symptoms and associated comorbidities, animal testing for new
drugs before clinical trials is an obligatory step. The construction
of valid animal disease models is thus a foremost challenge.

The integration of other symptoms observed in BD patients,
besides the neuropsychiatric, and medical comorbidities led to
the exploration of essential cellular functions, not specific to
neurons but shared by multiple cell types. The early observation
of altered brain energetic metabolism encouraged the search for
mitochondrial dysfunction. Mitochondria are central organelles
in a cell and even minor dysfunction can lead to a cascade
of changes and damage. To ensure survival, the cells adapt
to chronic mitochondrial dysfunction coordinating responses
with other organelles, such as the ER. However, survival of
BD cells has a cost on physiology and ultimately causes
perturbations in different tissues and organs. In addition, BD is
a neurodevelopmental disorder and mitochondrial metabolism
modifications are essential during neurogenesis (Zheng et al.,
2016). Following this line of thinking, drugs that target these
pathways are potentially interesting for BD treatment, as primary
or adjuvant medicine. For example the use of minocycline,
which is an antibiotic that can modulate glutamate-induced
excitotoxicity and has antioxidant and anti-inflammatory
properties, showed promising results in clinical trials (Dean
et al., 2012). We believe that a better understanding of the
molecular mechanisms that result in mitochondrial impairment
and oxidative stress together with the regulation of adaptive
UPR and autophagy responses will provide the key pieces of
information that will unlock novel drug treatments for BD
beyond mood stabilizers and antipsychotics.
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