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Brain-state-dependent stimulation (BSDS) combines brain-computer interfaces (BCIs)
and cortical stimulation into one paradigm that allows the online decoding for
example of movement intention from brain signals while simultaneously applying
stimulation. If the BCI decoding is performed by spectral features, stimulation
after-effects such as artefacts and evoked activity present a challenge for a successful
implementation of BSDS because they can impair the detection of targeted brain
states. Therefore, efficient and robust methods are needed to minimize the influence
of the stimulation-induced effects on spectral estimation without violating the real-time
constraints of the BCI. In this work, we compared four methods for spectral estimation
with autoregressive (AR) models in the presence of pulsed cortical stimulation. Using
combined EEG-TMS (electroencephalography-transcranial magnetic stimulation) as well as
combined electrocorticography (ECoG) and epidural electrical stimulation, three patients
performed a motor task using a sensorimotor-rhythm BCI. Three stimulation paradigms
were varied between sessions: (1) no stimulation, (2) single stimulation pulses applied
independently (open-loop), or (3) coupled to the BCI output (closed-loop) such that
stimulation was given only while an intention to move was detected using neural data.
We found that removing the stimulation after-effects by linear interpolation can introduce
a bias in the estimation of the spectral power of the sensorimotor rhythm, leading to
an overestimation of decoding performance in the closed-loop setting. We propose the
use of the Burg algorithm for segmented data to deal with stimulation after-effects.
This work shows that the combination of BCIs controlled with spectral features and
cortical stimulation in a closed-loop fashion is possible when the influence of stimulation
after-effects on spectral estimation is minimized.

Keywords: brain-computer interfaces, cortical stimulation, spectral estimation, brain-state-dependent stimulation,

autoregressive models

1. INTRODUCTION
Cortical stimulation is being used to study cortical function, e.g.,
(Matsumoto et al., 2007). In clinical settings, it is employed for
surgical planning (Lefaucheur and de Andrade, 2009) and ther-
apy (Tsubokawa et al., 1991). Furthermore, preliminary studies
on the use of cortical stimulation for stroke rehabilitation which
used stimulation together with physiotherapy in order to modu-
late cortical excitability have been conducted (Brown et al., 2008;
Levy et al., 2008). Taking the current brain activity of the patient
into account when selecting stimulation parameters has been
proposed as a possible improvement (Plow et al., 2009). Such
an activity-dependent stimulation paradigm has been used by
Jackson et al. (2006), who were able to show that cortical micros-
timulation associated in time with brain activity during a motor

task can induce neural reorganization lasting for several days after
stimulation in primates.

The effects of transcranial magnetic stimulation (TMS) as
well depend on brain states of the stimulated person (Mitchell
et al., 2007). Recently, Bergmann et al. (2012) applied TMS
coupled to electroencephalography (EEG) to investigate the
dependency of stimulation effects on the phase of slow EEG
oscillations during sleep. In general, such activity-dependent
or brain-state-dependent stimulation (BSDS) paradigms allow
to investigate cortical networks at specific activation levels,
making BSDS a potentially useful tool in cognitive neuro-
science (Jensen et al., 2011) as well as in clinical studies
improving consistency of the stimulation effects (Plow et al.,
2009).
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For effective BSDS, reliable decoding of the brain-state from
the ongoing brain activity is necessary. Over the last decades in the
field of brain-computer interfaces (BCIs) several different strate-
gies were investigated (Birbaumer et al., 1999; Birbaumer and
Cohen, 2007). Especially in the case of movement-related brain
states during active or imagined limb movements, spectral power
has been shown to be useful for their decoding. In particular,
event-related (de-) synchronization of sensorimotor rhythms is
an informative measure for discriminating movement and resting
states (Wolpaw et al., 2002). Therefore, if one wants to combine
BSDS with a movement task, one has to minimize the interfer-
ence of the stimulation on the estimation of the spectral features
to detect the brain-state properly.

The stimulation effects involve problems with spectral estima-
tion caused by the stimulation artefact and the evoked neural

activity. A stimulation pulse evokes an artefact in the signal
(Figure 1A) with an amplitude in the range of several hun-
dred millivolts or even volts, thus often exceeding the dynamic
range of the amplifier (Veniero et al., 2009). In the vicinity of
stimulation, evoked potentials are recorded (Figure 1B) which
can reach amplitudes of several hundred microvolts (Matsumoto
et al., 2007). Thus, if an analyzed window contains a stim-
ulation pulse, the estimation of the spectrum of this win-
dow is difficult, because it is not stationary. This is evident
in Figure 1C, showing that each stimulation pulse results in
strong jumps in the estimated spectral power. Waiting long
enough after the pulse is one solution. This approach results
in non-continuous brain-state decoding with waiting periods
after a stimulus of at least several hundred milliseconds. It dic-
tates a longer inter-stimulus interval (ISI), because a robust
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FIGURE 1 | The effect of stimulation pulses on time-frequency analysis

(TFA) with AR models. (A) Example trace of ECoG data with intermittent
stimulation pulses. Each pulse is visible as a sharp, strong artefact in the
signal. The lower part of the illustrates the phases of the trial over the
course of the recording: cue: an auditory cue, movement: patient attempts
to move the hand, and rest: patient relaxes. (B) A zoom on the last
stimulation pulse visible in (A), also displaying an evoked potential, peaking
13 ms after the pulse. If the gray-shaded area up to the dashed line is
defined as a gap, both the stimulation artefact and the strongest evoked

components are covered. (C) Time-course of the power at 12 Hz of the
signal displayed in (A), resulting from a time-frequency analysis with
auto-regressive models (order 16) when a window of 500 ms is shifted in
40 ms steps over the data. Hence, a single stimulation pulse distorts the
spectrum for the next 500 ms because it remains in the data window.
(D) Zoom on the region of the last stimulation pulse. Power at 12 Hz
without stimulus processing (solid line) and when the gap is defined as in
(B) and either MEMgap (dashed line) or AR modeling with order 16
(dashed-and-dotted line) are applied to deal with it.
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estimate of the brain-state is needed before the next pulse can be
applied.

If small ISIs and/or continuous decoding of the brain-state is
necessary, methods that enable spectral estimation of data con-
taining stimulation after-effects are mandatory. One potential
solution for this, which has been used mainly in offline stud-
ies (no BSDS), is to separate the stimulation effects from the
signal, as for example in Litvak et al. (2007). This places restric-
tions on the recording setup, such as the need for an amplifier
with high dynamic range to cover the entire amplitude of the
artefact and it is unclear whether such a procedure can be per-
formed online without resulting in residual artefacts which would
still lead to distortions of the spectrum. We present in this paper
another solution suitable for online BSDS: we ignore the short
segment of data dominated by the after-effects of stimulation
when estimating the spectrum, leaving us with the challenge to
estimate the spectrum when portions of the data are missing
from a continuous data flow. We term such an excluded data
segment a gap. In online experiments, using either signals syn-
chronized with the stimulator or a peak detection algorithm, one
can mark a sample before the stimulation pulse as the begin-
ning of the gap. The number of following samples marked as
belonging to the gap (i.e., the gap size) should be chosen in
advance such that the gap, ideally, encloses just the stimulation
artefact, and the largest evoked components. The dashed line and
the dashed-and-dotted line in Figure 1D show the results of two
approaches introduced in this work to extract the spectral power
when the artefacts are masked by the gap shown in Figure 1B.
They are much closer to the power before and after the stimulus,
compared to the power without any processing of the stimulus
(solid line).

In this paper we compare different online brain-state decod-
ing methods on their suitability to perform spectral estimation
using autoregressive (AR) models on data containing stimulation
pulses and gaps. We consider here only stimulation paradigms
with pulsed stimuli and restrict ourselves to data acquired with
EEG or electrocorticography (ECoG) and stimulation performed
using TMS or epidural electrodes. First, we introduce the meth-
ods for spectral estimation in the presence of gaps and investigate

the effects of parameter estimates such as AR model order and
gap size on the resulting spectrum. We present results from a
simulation study in which gaps are artificially inserted into a
BCI data set recorded without stimulation. We then show the
different results of the algorithms on short data segments of
two BCI training experiments, one with simultaneous TMS and
one with simultaneous epidural electrical stimulation to illus-
trate the effects of cortical stimulation on spectral estimation
and the results of correcting stimulation after-effects. Finally,
we investigate the separability of intended hand movement
and rest for different experimental paradigms (no stimulation,
open-loop, or closed-loop stimulation) using non-invasive and
invasive data during BCI experiments in three chronic stroke
patients.

2. METHODS
2.1. PARTICIPANTS
Data was recorded from three chronic stroke patients (Table 1)
suffering from paresis of the left hand. None of the patients was
able to produce voluntary finger movements with the left hand.
All procedures were approved by the local ethics committee of
the medical faculty of the university hospital in Tübingen. Each
stroke patient was implanted with 16 epidural platinum iridium
disk electrodes (Resume II, Medtronic, Fridley, USA) with a con-
tact diameter of 4 mm placed over the ipsilesional S1, M1, and
pre-motor cortex on four strips with an inter-electrode center-to-
center distance of 10 mm. They were arranged in a 4 × 4 grid-like
pattern (Figure 2). During pre-surgical evaluation, all subjects
completed the task described below with combined EEG-TMS
(non-invasive case) and repeated the same task after the surgery
using electrical epidural stimulation and recordings from the
implanted electrodes (invasive case). The BCI and stimulation
experiments were conducted during a period of 4 weeks following
the implantation.

2.2. TASK
The patient was facing a 19′′ monitor. The left upper limb of the
patient was fixed using two straps, one at the forearm and one
around the wrist and magnets fixed the fingertips to the actuators

Table 1 | Patient characteristics.

Patient Age (y) Sex Months lapsed Paralysis Infarct side Lesion Affected area

since injury

P1 56 M 80 Left Right subcortical and
cortical

Basal ganglia
hemorrhage

Putamen, internal capsule,
insula, opercular part of inferior
frontal gyrus

P2 52 M 159 Left Right subcortical and
cortical

MCA territory infarct
(frontal)

Frontal lobe including motor
cortex (M1), parietal lobe
including somatosensory cortex
(S1)

P3 63 F 71 Left Right subcortical and
cortical

Basal ganglia
hemorrhage

Head of striate body, lentiform
nucleus, thalamus, whole
internal capsule, insula, frontal
lobe
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FIGURE 2 | ECoG electrode positions from overlay of MRI and

post-surgical CT for the three patients. From left to right: P1–P3.

of a mechatronic hand orthosis (Tyromotion Amadeo HTS, Graz,
Austria). This device was controlled by a BCI and moved the
fingers of the paralyzed hand between an opened and a closed
position. The range of the movement was adjusted in each session
(Ramos-Murguialday et al., 2012) because it was limited by the
spasticity of the patient. Each trial of the task consisted of three
phases: preparation (2 s), feedback (6 s), and rest (8 s). During
preparation, the subject received an auditory cue (“Left Hand”)
but was instructed to wait with the execution until the next audi-
tory command (“Go!”) was given at the start of the feedback
phase. During the feedback phase starting with a closed position
of the left hand, the patient had to try to open the left hand until
the end of the feedback phase. At that point, another auditory
cue (“Relax!”) was given. During the rest period, the left hand
of the patient was returned to its original closed position (2–3 s)
and the patient was instructed to relax. An experimental session
was divided into a 4–16 runs, each of these consisting of 11 trials.
Runs with clear non-stimulation-related artefacts (e.g., amplifier
saturation) on the analyzed channels were excluded from further
analysis, resulting in a minimum of three runs per session for
analysis and an average of 8.7 ± 4.3.

2.3. ELECTROPHYSIOLOGICAL RECORDING
Both EEG and ECoG were recorded with monopolar 32-
channel amplifiers (BrainAmp MR plus, BrainProducts, Munich,
Germany) with a sampling rate of 1000 Hz. The data was acquired
in a packet-wise fashion, where the recording computer received
every 40 ms one packet of data consisting of 40 samples per
channel. The same behavior was modeled in our simulations
of an online BCI. A high-pass filter with a cutoff frequency at
0.16 Hz and a low-pass filter with a cutoff frequency at 1000 Hz
were applied. We recorded 32 channels of EEG in the stan-
dard 10–10 system, referenced to FCz, using circular Ag-AgCl
electrodes. ECoG data was referenced to an electrode at the
medio-frontal corner of the electrode grid over pre-motor cortex.
Signal acquisition, signal processing and control of the ortho-
sis and (if present in the experiment) the TMS or electrical
stimulator were performed using the general-purpose BCI frame-
work BCI2000 (http://www.bci2000.org) (Schalk et al., 2004)
extended with custom-developed features for the control of these
devices.

2.4. STIMULATION
We applied stimulation in the non-invasive case over the hotspot
for extensor digitorum communis (EDC) activity, identified by a

standard mapping paradigm (Wassermann et al., 2008). TMS was
applied with a figure-of-eight coil (NeXstim, Helsinki, Finland)
with single biphasic pulses (sinusoidal coil current, positive phase
first, pulse width 280 μs) and an intensity of 110% of the resting
motor threshold. The ISI of successive pulses was set to 3 s.

For epidural electrical stimulation we used single biphasic
anodal square-wave pulses with a length of 500 μs. Stimulation
intensity was selected individually per patient and session and
chosen to reliably evoke MEPs on the paretic upper limb of
the patient. The minimum ISI was set to 2 s in most experi-
ments except when stimulation was applied coupled with the
BCI output. In this case, a minimum ISI of 500 ms was cho-
sen. The pulses were applied using a constant current stimulator
(STG4008, Multichannel systems, Reutlingen, Germany) with the
anode as the epidural electrode that evoked the strongest MEPs
on the left upper limb and the cathode being a 50 × 90 mm adhe-
sive electrode placed on the left clavicle of the patient. The current
source of the stimulator was switched off 2 s after the last stimula-
tion pulse if no other pulse was triggered before due to a software
error, leading to a small but visible step in the recorded signal
(Figure 1B).

2.5. AUTOREGRESSIVE (AR) MODELS
A popular choice for spectral estimation in BCI research is to use
an AR model for which the coefficients are estimated with the
maximum entropy method (Krusienski et al., 2006; McFarland
and Wolpaw, 2008). An AR model can be viewed as a linear
predictor of the signal samples x(tk), defined as:

x(tk) =
p∑

i = 1

cix(tk − i) + e

where p is the order of the model and e a sample of a white
noise process. If one uses a continuous window of length N with
N � p consisting of samples x(t0) to x(tN−1), one could solve
the following equations with a least-squares procedure to get the
coefficients ci:

x(tk) =
p∑

i = 1

cix(tk − i) (1)

x(tk−p) =
p∑

i = 1

cix(tk − p + i) for all k = p, . . . , N − 1

However, the resulting coefficients do not guarantee a stable AR
model (de Waele and Broersen, 2000). Burg proposed a recur-
sive algorithm for the solution of this system that provides stable
models with less variance compared to least squares solutions
and the Yule-Walker algorithm (Kay and Marple, 1981; de Waele
and Broersen, 2000). The Burg algorithm computes the AR coef-
ficients in p steps by evaluating in the i-th step the residuals
of forward and backward prediction of the samples using the
coefficients obtained in the (i − 1)-th step. It is described in
Appendix 1.1 in more detail. Spectral estimation with AR models
is briefly introduced in Appendix 1.2.
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The Burg algorithm requires that the input data is sampled
continuously without gaps, a condition which is shared by most of
the other algorithms for AR model estimation. Therefore, we need
to either fill or remove the gaps before applying one of these algo-
rithms to our data or modify the AR model estimation algorithms
to be usable for data with gaps.

2.6. SPECTRAL ESTIMATION IN THE PRESENCE OF GAPS
This section contains a short description of the different algo-
rithms we compare in this paper that deal with the pre-processing
of data containing gaps for spectral estimation with AR models.
The input for these algorithms are a segment of data and a vector
that contains for each sample in the segment either a 1 (sample
belongs to a gap, it has to be excluded from spectral estimation)
or a 0 (sample is “clean”).

Four methods for dealing with gaps in the data are described
below: (1) linear interpolation, (2) AR modeling which fill the
gap with generated data, (3) the joining of data segments that
removes the gap, and (4) a modified Burg algorithm for segmented
data. After application of the methods (1)–(3), the standard Burg
algorithm is used to estimate the AR model and the spectrum.

2.6.1. Linear interpolation
We can bridge gaps in the data by linear interpolation between the
last sample before and the first sample after the gap:

x̂(tg + k)= x(tg − 1) + k + 1

l + 1
· (

x(tg + l) − x(tg − 1)
)
, 0 ≤ k ≤ l − 1

(2)
where x are the signal samples recorded at times ti, l is the length
of the gap in samples and tg−1 is the index of the last sample
before the gap.

While this might work for offline analysis of a data set, in the
case of online analysis during a BCI experiment, in which data is
received in a sample- or packet-wise system, one might have not
yet received the first clean sample after the gap when trying to
produce an estimate for x(tg + k) within the gap. We used a sim-
ple approach to solve this problem which consists of filling the
gap with the value of the last sample before the gap (x̂(tg + k) =
x(tg − 1)) as long as we have not received the packet containing the
end of the gap and using linear interpolation for the rest of the
gap otherwise. We term this approach on-line compatible linear
interpolation.

2.6.2. AR modeling
As a somewhat more sophisticated technique compared to linear
interpolation, we generated data from an AR model to fill the gap.
For this we used the coefficients ci of the AR model estimated for
the data window directly before the gap to predict the missing
samples x̂:

x̂(tg + k) =
p∑

i = 1

cix
′(tg+k−i) + σ · e(tg+k), 0 ≤ k ≤ l − 1, (3)

x′(tg+j) =
{

x(tg+j) if j < 0

x̂(tg+j) otherwise

x′ can refer to either actually recorded samples before the gap or
estimated samples by the AR procedure. σ is the standard devia-
tion of the white noise component in the estimated AR model and
e(t) one value of a white noise process. While this approach has
the property to generate data for the gap consistent with the pre-
viously measured data, one might prefer to use a mixture of AR
modeling and linear interpolation for the online case. This would
avoid jumps in the data when merging generated data within the
gap with new samples acquired after the gap. These jumps occur
for all AR model orders we have tested in our simulations (see
Appendix 1.4 for details). We have used this combination here by
performing AR extrapolation when information about the first
sample after the gap was not available and using linear interpola-
tion otherwise. The signal was received in packets with a length
of 40 ms and for each packet, one of three actions were taken:
(1) if a packet contained the start and the end of a gap, then lin-
ear interpolation was used to fill the gap. (2) If it contained only
the start or if the whole packet was part of the gap, then the AR
model was used as a linear predictor to fill the gap. (3) If it con-
tained only the end of the gap, then the last sample of the last
packet and the first sample after the gap were connected by linear
interpolation.

2.6.3. Joining two segments
If one chooses to ignore the information of the gap altogether
when estimating the model, one might consider simply joining
the two segments around the gap, therefore sacrificing informa-
tion about the timing in the vicinity of the gap. In practice, this
means that we update the data window only with those samples
from a newly acquired data packet that do not belong to a gap.
In order to keep the window size for spectral estimation con-
stant, this has the consequence that older samples are used to
compute the spectrum with this method compared to the other
algorithms.

2.6.4. Burg algorithm for segments (MEMgap)
For standard algorithms that compute the AR coefficients, the
samples within the data window need to be continuous. We can
make the least-squares estimation of the AR coefficients compat-
ible with data containing gaps by eliminating all equations from
(Equation 1) that contain samples from within a gap and then
solving the rest of the equations for the coefficients ci. As the
Burg algorithm (see Appendix 1.1) yields more stable AR mod-
els than the least-squares estimation, we modified it to work with
gaps based on the Burg algorithm for segmented data proposed
in de Waele and Broersen (2000). This was achieved by limiting
the computation of forward and backward prediction errors in
each step of the algorithm to those samples that are far enough
away from a gap. In the remainder of this paper, this algorithm is
called MEMgap (Maximum Entropy Method for data with gaps)
for brevity. A detailed description of the algorithm is given in
Appendix 1.3.

2.7. SIMULATIONS ON CLEAN DATA
To study empirically the influence of gaps on the estimated
spectrum, we performed simulations on 12 data sets that were
recorded without stimulation by artificially inserting gaps, then
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applying the methods described above to estimate the spectrum.
The results of the different methods were compared with a ref-
erence time-frequency analysis obtained when using the original
data set without gaps. Each data set has a length of 182 s. These
data sets, each containing 11 trials, were recorded with ECoG in
patient P1 in one experimental session. For clarity reasons, we
restrict ourselves to one channel (an electrode over right M1).
For spectral computation we kept the length of the window con-
stant at 500 ms and the update rate at 25 Hz = 40 samples. We
estimated the power at frequencies between 5 and 99 Hz in 2 Hz
increments and varied for each method the gap size (0–100 ms in
steps of 5 ms) and the model order (values: 16, 32, and 64). We
computed the normalized bias, root mean squared error (RMSE)
and variance (var) of the stimulus processing algorithms as
follows:

bias(f ) =
1
n

∑
i(P(f , i) − P0(f , i))

P0(f )

RMSE(f ) =
√

1
n

∑
i(P(f , i) − P0(f , i))2

P0(f )

var(f ) = Var

(
P(f ) − P0(f )

P0(f )

)

P(f , i) is the spectral power of data window i for frequency bin
f , P0(f , i) is the power of the original data window without
gaps and P0(f ) is the average power of the full original record-
ing without gaps for frequency bin f . n is the number of data
windows that are affected by gaps (i.e., data windows where
P(f , i) − P0(f , i) is not zero). var(f ) is the variance of the dif-
ference between the power values of the original data and the
power values of the data with gaps for all data windows affected
by gaps and frequency bin f , divided by the average power for
frequency bin f in the data set without gaps. For example, a
normalized bias of −0.1 means that the estimated power after
application of the stimulus processing algorithm is on average
10% smaller than the power of the original data set if a gap is
present.

The statistical evaluation of the spectral bias results in the
simulations was performed as follows: we obtained the bias for
each data set, resulting in 12 values, and performed a non-
parametric Wilcoxon signed-rank test for zero median. If the
p-value for this test was below 0.01, we regarded the bias as
significant.

3. RESULTS
First we show results of simulated gaps on data without stimula-
tion to assess the influence of gaps and the stimulation-processing
algorithms on the estimated spectrum. Then we illustrate the
influence of real single TMS and epidural stimulation pulses on
the spectrum if they are left untreated and how the methods
of this paper deal with their after-effects. Finally, we apply the
algorithms to data sets of BCI experiments with open-loop or
closed-loop stimulation and investigate the effect of each method
on the discrimination between the brain states during intended
movements and rest.

3.1. GAP SIZE
Figures 3A–C show the influence of gap sizes between 5 and
100 ms on the error in spectral estimation for three particular fre-
quencies (9, 21, and 81 Hz) and a model order of 32. We find that
the RMSE increases with the gap size for all methods. This hap-
pens, because the information of the samples that are excluded
by the gap is missing for the AR estimation, leading to a greater
deviation from the AR coefficients without gaps for increasing gap
size. The linear interpolation methods exhibit a negative bias and
the AR-prediction shows positive bias (Figures 3D–F and 5). The
negative bias of the linear interpolation methods occurs because
a section of the data window is reduced to a straight line which
has a power of almost 0 for higher frequencies, leading to a
decrease in the estimated power for these frequencies. This effect
increases with greater gaps. AR modeling can lead to jumps in
the data, because the extrapolated signal from the start of the
gap is not necessarily connected to the actual recorded signal at
the end of the gap. Such jumps result in higher estimated power
across all frequencies and thus a positive bias. For longer gaps
this bias increases because the potential deviation from the true
values after the gap (the jumps) becomes larger. The mixture
of linear interpolation and AR prediction is in general closer to
0 than the other two, but the sign of its bias depends on data
packet size and gap size. The joining and MEMgap algorithms
exhibit a bias close to zero, but the RMSE is smaller for MEMgap
than for joining. The variance (Figures 3G–I) also scales with gap
size but there are strong differences between the methods visible,
with MEMgap and the linear interpolation methods having the
lowest variance.

3.2. MODEL ORDER
Variations of the model order have the largest effect on the AR
modeling and the MEMgap algorithm. While AR modeling
exhibits a significant positive bias at 21 Hz for gaps longer than
60 ms at a model order of 16 (Figure 4D), it is not significantly
biased for a model order of 32 and 64 (Figures 4E,F). As shown in
section 3.3 and Figure 5, this is due to the frequency-dependency
of the bias for AR modeling which has a global minimum around
20 Hz for model order 32 and 64. For MEMgap we find no
significant bias for all model orders (Figures 4D–F) and that
the absolute error of the power estimation, captured by the
normalized RMSE, as well as the variance, increases rapidly with
increasing model orders (Figures 4A–C,G–I). This is probably
due to the lower number of samples fully available for AR esti-
mation with MEMgap compared to the standard Burg algorithm:
for MEMgap, forward or backward prediction errors can not
be calculated for up to 2p samples around each gap, where p is
the model order. Higher values of p only increase this difference,
leaving MEMgap with less and less samples for AR estimation,
thus probably leading to greater errors. In general, MEMgap has
the lowest RMSE for orders 16 and 32 and gaps longer than 30 ms
and the lowest RMSE of all methods with a bias close to 0 at an
order of 64.

3.3. FREQUENCY
In Figure 3, we show the results for low and high frequencies with
9 and 81 Hz as parts of the μ and high γ bands, respectively, in
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FIGURE 3 | Normalized RMSE, bias, and variance of the spectral power

estimation for the frequency bin at 9 Hz (A,D,G), 21 Hz (B,E,H), and 81 Hz

(C,F,I) for a model order of 32. The colored lines illustrate the course of the

normalized RMSE in (A–C), the normalized estimation bias in (D–F), and the
normalized variance in (G–I) relative to the gap size for the different algorithms.
The thin black line in (D–F) denotes an ideal estimation bias of 0.

addition to the “intermediate” frequency of 21 Hz as part of the
β-band. For 81 Hz, the linear interpolation methods already show
a significant negative bias for gaps of 5 ms, whereas for 9 Hz this
only becomes significant for gaps greater than 35 ms. This is easily
understandable considering that one cycle of a 9 Hz oscillation
lasts for more than 100 ms, therefore linear interpolation over a
gap of 10–20 ms would be fairly consistent with the real shape of
the undisturbed signal. The bias of MEMgap is not significant for
any frequency (Figures 3D–F). The joining method on the other
hand exhibits a negative bias for 9 Hz and gaps smaller than 40 ms
and a significant positive bias for 81 Hz. For 21 Hz, The bias is
significant only for gaps smaller than 10 ms. In terms of RMSE
and variance (Figures 3A–C,G–I), MEMgap always displays the
lowest values for gap sizes greater than 50 ms.

The results in Figures 3D–F, especially for AR modeling and
joining, suggest that the bias might be frequency-dependent. In
Figure 5, the bias is shown relative to the frequency bin for model
orders of 16, 32, and 64 for a gap size of 100 ms where it should be
most pronounced. We find that for the joining method, the bias

is negative, although non-significant, for frequencies lower than
25 Hz and positive otherwise (significant for most frequencies
>60 Hz). For AR modeling, the bias is in general positive (signif-
icantly for all frequencies for model order 16 and above 55 Hz for
32) and increases with frequency, has a minimum around 20 Hz
for a model order of 32 and 64 and is also increased for lower fre-
quencies. For linear interpolation, there is a bias close to −0.2,
indicating a reduction in power of about 20%, for frequencies
higher than 20 Hz. This value can be explained with the fact that
20% (100 ms of a 500 ms window) of the data had to be filled
by linear interpolation which removes the high-frequency con-
tent. MEMgap exhibits no significant bias across all frequencies
and model orders, except for very low frequencies and high model
orders where all methods show a positive bias. Although the bias
for the mixture of AR modeling and interpolation is also not
significant for most frequencies above 10 Hz and higher model
orders, this is due to the interaction between gap size and packet
size for this particular method. As seen in Figures 3D or F, for
example, a gap size of 80 would lead to a positive bias.
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3.4. APPLICATION ON DATA WITH STIMULATION
In our experiments, we received the data in packets with a length
of 40 ms. This leads to the jumps seen in the bias relative to the
gap size for the combination of AR modeling and linear interpo-
lation (e.g., Figure 3F, magenta line) as either linear interpolation
of AR modeling dominate the outcome. The packet length might
be different for other recordings, so we excluded this method from
the rest of the experiments, as the conclusions would be very spe-
cific for our setup. Further experiments are needed to investigate
the influence of this specific parameter. As the simulation results
of the two versions of linear interpolation did not differ much, we
restricted ourselves to four of the six methods for the remainder of
the paper: online-compatible linear interpolation, AR modeling,
joining, and MEMgap.

A model order of 16 was chosen for spectral estimation and
AR extrapolation as this section is mostly illustrative in nature
and serves the purpose to study whether the results from the sim-
ulations are transferable to data with actual stimulation. In terms
of the estimation bias, we found the clearest effects for a model
order of 16: a negative bias for linear interpolation and a positive
bias for AR modeling. The latter bias was not present for higher
model orders around the studied frequency bin of 21 Hz.

Figure 6 illustrates the effect of epidural stimulation on the
recorded ECoG activity, the evoked activity after stimulation and
their influence on spectral estimation for one representative stim-
ulation pulse. Figure 6A shows the raw trace of data with a single
pulse of electrical epidural stimulation occurring at time point 0.
Figure 6B displays a zoom on the first 100 ms after the pulse. The
stimulation artefact itself is contained within the first 10 ms after
the pulse. After that, one can find evoked activity with its peak
occurring 13 ms after the pulse and an amplitude of 240 μV. This
is much higher than the short-term amplitude fluctuations found
in our ECoG data without stimulation.

Figure 6C demonstrates the importance of adjusting the
length of the gap to the actual stimulation effects on the signal.
Applying a gap of 10 ms to the data might be enough to cover
the stimulation artefact itself, but the spectrum then still shows a
clear positive bias due to the influence of the evoked activity. The
results for short gap sizes are very similar to those without any
gap. Only gaps greater than 20 ms cover the extent of the artefact
and the initial evoked activity, leading to power values that are
similar to those obtained for data windows without the stimula-
tion event (windows 16–26). There is no clear difference in the
outcome of the gaps greater than 20 ms.
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FIGURE 6 | Example ECoG trace of an epidural stimulation event.

(A) One second of data with the stimulation at time point 0. The brackets
show the moving window used for spectral analysis. (B) Zoomed version of
the left plot, showing the evoked activity and the stimulation artefact in
greater detail. Dashed lines show the start and end markings of the gap,
here with a length of 50 ms. The end point of the gap can be varied in
time. (C) Output of the spectral estimation using MEMgap for gap sizes of
5, 10, 20, 50, 75, and 100 ms and the frequency bin centered at 21 Hz. The
logarithm of the estimated power is shown because of the large

differences between the power at a gap size of 0 and 50 and above.
Window numbers correspond to the brackets shown in (A), where the first
one is 1, the second one (shifted by 40 ms) is 2 and so on. The
computation of windows −1, 0, and 15–26 used data that is outside the
margins of (A). (D) Comparison of linear interpolation (red), AR modeling
(green), joining (blue), and MEMgap (gray) with gap sizes of 10 (dashed)
and 50 (solid) applied on the data in (A). The solid black line with circles in
(C) and (D) shows the result of spectral estimation without processing of
the stimulation after-effect (gap size = 0).
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In Figure 6D, linear interpolation, joining the data segments,
MEMgap, and AR modeling are compared when applied to the
stimulation event both for short and long gaps. All methods per-
form poorly for a gap size of 10 ms, but there are differences for
50 ms. Applying joining and AR modeling results in higher power
values than linear interpolation and MEMgap with a clear differ-
ence in estimated power between the windows with and without
stimulation. Assuming perfect exclusion of all stimulus-related
effects, we expect that the power does not differ strongly between
e.g., window 15 (which includes a small portion of the gap) and
window 16 (without the gap), therefore the result of MEMgap and
linear interpolation is more realistic than the output of the other
methods. At least for the AR modeling method, the increased esti-
mate of the power compared to, for example, linear interpolation
is consistent with the positive bias shown in Figure 3B. A rea-
son for the positive bias of the joining method for this example
data set might be that drifts of the signal after a stimulation on
epidural electrodes are common. If we take a data segment with
post-stimulus drifts, exclude the gap and join the data before
and after the gap into one window, it will contain a sharp dis-
continuity and have a comparatively high spectral power. With
linear interpolation, the discontinuity will be less severe and have
a smaller impact on the signal power. For MEMgap it does not
play a role as data before and after the gap is always separated
during estimation of the AR coefficients.

Stimulation artefacts and evoked activity are found for com-
bined EEG and TMS in a similar way as for stimulation over

implanted electrodes with the strength of the evoked activity
depending on the distance to the stimulation site. We illustrate
this in Figure 7 with the result of a TMS pulse on the activity
recorded on a distant EEG channel. There is no strong evoked
potential visible after the stimulation, therefore, as is evident
in Figures 7C,D, a short window of 10 ms is already sufficient
to cover the artefact and to produce an estimation of spectral
power that is similar in value compared to that resulting for
data windows long after the stimulation when using either linear
interpolation, joining or MEMgap to correct for the gap.

3.5. INFLUENCE ON DECODING PERFORMANCE
The stimulation-processing algorithm can bias the estimated
spectrum, or will at least produce deviations from the origi-
nal spectral power without gaps. This poses the question, how
strongly these errors influence the actual brain-state decod-
ing during a BCI experiment. For example, if the bias of lin-
ear interpolation toward underestimation of the signal power
directly influences, how well we can differentiate data pack-
ets obtained during a movement from those recorded during
rest, then this algorithm is not suitable for BSDS because it
might induce a bias in the subject’s performance in an online
experiment.

To investigate this, we used data sets with different stimu-
lation paradigms and recording methods (EEG and ECoG) to
assess the influence of the algorithms and gap size on the decod-
ing abilities of a BCI system. The patients always performed the
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FIGURE 7 | Example trace of a TMS pulse applied over EEG channel (C4) but recorded on a distant channel (F4). (A–D) Same as in Figure 6. Note the
missing evoked activity in (A) and (B) after the pulse.
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same cued attempted hand movements but we varied the stimu-
lation paradigm between no stimulation, stimulation with fixed
ISI and stimulation coupled to the output of the BCI (i.e., BSDS).
In the last paradigm, the stimulation pulses were only applied
while the BCI detected an intention to move from modulations
of the power in the β-band and therefore moved the orthosis. If
stimulation was used, stimulation artefacts were identified online
with a peak detector if the voltage of two consecutive samples
differed by more than 1 mV. The start of the gap was set 2 ms
before this artefact and the gap size was adjusted for each patient
and session depending on the length of the evoked activity as
determined by several test stimuli applied before the start of the
session. This resulted typically in a gap length between 30 and
70 ms. Stimulus processing was performed during recording with
the online-compatible linear interpolation method.

In the offline analysis, we applied the four methods: joining,
linear interpolation, AR modeling, and MEMgap on these data
sets and varied the gap size between 0, 10, 50, and 100. We simu-
lated the two different stimulation conditions on the data without
stimulation by varying, in which phases of the trial gaps are
placed: in the uncoupled condition the whole trial was valid, so
the placement of gaps was independent of the activity and brain-
state of the patient. For the coupled condition only time points
within the movement phase were used as gaps, thus simulating a
BSDS paradigm. In both cases the ISI was fixed at 2 s.

After applying the respective stimulation processing algo-
rithm, we computed the spectral power between 16 and 22 Hz
on channels located over the right motor cortex. For EEG mea-
surements we used FC4, C4, and CP4 as defined by the 10–10
system (Society, 2006), whereas for ECoG measurements the elec-
trodes were selected individually per patient based on the results
of a screening session. We used a window size of 500 ms and a
model order of 16 for spectral estimation. These were the same
parameters, channels and frequencies that had been used during
the online feedback experiments in which the data was recorded.
Furthermore, our simulations showed a positive estimation bias
for AR modeling at 16–22 Hz only for a model order of 16, not for
32 or 64. Thus, we only used an order of 16 for the simulations on
data without stimulation. In order to investigate, whether higher
model orders have a substantial effect on the processing of real
stimuli, we used model orders of 16, 32, and 64 on the data with
open-loop and closed-loop stimulation. For each run (consisting
of 11 trials), we calculated the area under the ROC curve (AUC)
for the sum of the logarithm of the power values within each data
window in the movement phase versus those in the rest phase.
We used this as a measure of the separability of these phases on
a single-packet level. Taken together from all three patients, we
analyzed 87 runs of EEG recordings without stimulation, 24 runs
with uncoupled EEG-TMS, 131 ECoG runs without stimuli, 51
runs of ECoG with uncoupled, and 82 runs of ECoG with coupled
stimulation. For each recording and stimulation condition, algo-
rithm and gap size, this resulted in a distribution of AUC scores,
one per run.

The conditions without stimulation allowed us to test for the
bias and absolute error introduced by the gaps into the AUC
scores. Thus, we computed the pair-wise differences between the
AUC scores of a gap size of 0 and those of all combinations

of algorithms and gap size for these conditions. Using Kruskal–
Wallis tests, Bonferroni-corrected for multiple comparisons, we
tested which algorithm leads to the smallest absolute differences
in AUC scores. We also applied Wilcoxon signed rank tests to
assess, whether the median of the differences deviates signifi-
cantly from 0, indicating a systematic bias in the AUC scores.
As there is no “true” reference distribution of the AUC scores
possible for data with stimulation, we used Bonferroni-corrected
non-parametric Friedman tests which account for possible effects
of using the same sessions in all conditions to test whether gap
sizes greater than 0 lead to different AUC scores compared to a
gap size of 0 and to test whether there is a difference between the
algorithms at a certain gap size.

Figure 8 shows data without any actual stimulation, so ideally
the difference in AUC scores between a gap size of 0 and of 100
should be zero for all runs. In Figures 8A,B, stimuli were sim-
ulated throughout the trial, thus independent of the task or the
output of the BCI. Session-wise comparison of the AUC values
with Friedman tests for each gap size show significant differences
between MEMgap and the other algorithms only for long gaps.
There is a slight decrease in the average AUC value for all algo-
rithms for a gap size of 100 compared to 0 and MEMgap and join-
ing yield significantly smaller absolute differences in AUC scores
compared to AR modeling and interpolation (p < 0.000001). In
Figures 8C,D, the stimuli were simulated only throughout the
movement phase. We find a significant decrease in AUC values for
AR modeling and a significant increase for linear interpolation.
This means that linear interpolation artificially “improves” the
decoding power. As shown in the simulation studies, linear inter-
polation of large gaps leads to a decrease of the power between 16
and 22 Hz (negative bias) which increases the event-related desyn-
chronization effect of sensorimotor rhythms during attempted
movements (Wolpaw et al., 2002). The MEMgap method shows
a significantly smaller deviation of the AUC values at gap sizes of
50 and 100 from the AUC values without gaps than all the other
methods (p < 0.000001). In contrast to the other algorithms, the
median of the AUC differences after MEMgap never differs signif-
icantly from 0 for the BSDS condition, except for the ECoG data
set with a gap size of 100 (p = 0.005). The other algorithms dif-
fer significantly from MEMgap in almost all cases of the coupled
conditions.

Patients in the data sets shown in Figures 9A,B were stimu-
lated independent of the task. We show only a model order of
16, because the results for an order of 32 and 64 are very similar.
It is evident from gap sizes of 0 and 10 that untreated stimula-
tion after-effects are detrimental for decoding. Online decoding
will be more successful if enough samples are excluded after a
stimulus (in these examples: a gap size of 50 ms seems to work
well, although this varies between patients). Using Friedman tests
for session-wise comparison of the AUC scores, significant dif-
ferences of the algorithms are found, although the mean absolute
differences are very small (≤0.01). In case of the uncoupled ECoG
condition, AUC scores with untreated stimulation after-effects are
significantly lower than AUC scores for gap sizes of 50 and 100,
independent of the applied algorithm (p < 0.01). This effect is
due to residual stimulation after-effects for small or absent gaps
that lead to a very high power of data windows that contain
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FIGURE 8 | Continued

FIGURE 8 | Distributions of the differences between AUC values

without gaps and AUC values of gap sizes of 10, 50, and 100 for data

sets without stimulation. A deviation from 0 indicates an over- or
under-estimation of class separability. (A) ECoG and (B) EEG data with gaps
simulated throughout the whole trial (uncoupled condition). (C,D) AUC
values computed on the same data sets as in (A) and (B), respectively,
but with gaps simulated only within the movement phase (coupled
condition, BSDS). Boxes cover the range between the lower and upper
quartile of AUC differences with the median depicted as a black line. The
whiskers extend to the most extreme data point which is no more than 1.5
times the interquartile range away from the box. ∗AUC scores differ
significantly from MEMgap for this gap size (p < 0.05, Friedman test,
Bonferroni-corrected).

electrical or magnetic pulses. In particular such data windows in
the movement phase will be classified incorrectly. If the strong
after-effects are removed by longer gaps, the classifier is more
likely to produce a correct result which is reflected in the increased
AUC score for gaps of at least 50 ms.

Finally, in Figure 9C, stimulation was given only during the
movement phase. The average AUC value for a gap size of 0 is
smaller than 0.5, indicating a higher power during movement
than during rest, as opposed to the expected event-related desyn-
chronization. This is due to the task-dependent existence of the
stimulation effects: the large stimulation after-effects that occur
only during the movement phase lead to a very high spectral
power of this phase. Thus, the spectral power of the movement
phase is very well separable from the power of the rest phase for a
gap size of 0. For a gap size of 10, there is a large variability in the
AUC scores. This is because for one of the three patients, a gap
of 10 ms was not sufficient to cover all artefact-related jumps in
the recording, resulting in AUC scores lower than 0.5. If the after-
effects are dealt with by using a gap size of 50, the relationship
between the power during rest and feedback reverses and resem-
bles the expected ERD/ERS pattern. For a gap size of 100, we
find in Figure 9C that the largest average AUC value is reached
for linear interpolation and the smallest one for AR modeling,
both differing significantly from the AUC values for MEMgap
(p < 0.000001). This relationship is found for all tested model
orders, where joining and AR modeling are on average worse
than MEMgap by more than 0.02 and 0.05, respectively, while
linear interpolation yields higher scores by at least 0.01. This is
consistent with the simulation results in Figures 8C,D indicat-
ing an artificial over- and under-estimation of class separability
by these methods. It supports the hypothesis that MEMgap is
probably best suited to deal with large gaps in the data, especially
for BSDS, because based on the simulation studies the deviation
from the true AUC value is significantly smaller than for the other
methods.

4. DISCUSSION
One challenge when trying to combine online brain-state decod-
ing from spectral data and direct cortical stimulation is that the
after-effects of stimulation such as artefacts (Taylor et al., 2008) or
evoked activity (Matsumoto et al., 2007) can have a much higher
amplitude than the background brain signals. Therefore, estima-
tion of the brain-state from a segment of data has been unreliable,
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FIGURE 9 | Influence of the stimulation processing algorithm and gap

size on the separability between intended movement and rest for

experiments with stimulation. No processing of the stimulation
after-effects was conducted for a gap size of 0. For gap sizes of 10, 50, and
100, AUC values were calculated after application of the four algorithms
(boxes from left to right) real interpol, AR model, joining, and MEMgap. A
baseline AUC value of 0.5 is shown as a solid line, because this is the chance
level for a purely random classifier (Fawcett, 2006). (A) Average AUC values
for the separation of movement and rest from experiments with epidural

stimulation and ECoG recordings. Stimulation pulses were given throughout
the whole trial with a fixed ISI of 2 s and the gap size was varied between 0,
10, 50, and 100. (B) Same as (A), but for TMS-EEG data with an ISI of 3 s.
(C) Average AUC values for ECoG data sets where stimulation pulses were
triggered only if the BCI system detected an intention to move within the
movement phase (BSDS). Boxes are defined as in Figure 8, open circles
depict AUC values outside the range of the boxplot whiskers. ∗AUC scores
for this algorithm and gap size differ significantly from MEMgap (p < 0.05,
Friedman test, Bonferroni-corrected).

if such stimulation after-effects are contained in this segment.
This leaves us with three options: we can (1) use only data seg-
ments for decoding that are free of any after-effects, (2) attempt
to separate stimulation after-effects from background brain activ-
ity, e.g., by fitting a template of the expected shape of the effects
to the recording, or (3) isolate the portions of the data segment
that are “contaminated” by stimulation effects and use only the
“clean” parts for decoding.

In earlier studies combining TMS and EEG without BSDS
(i.e., without the necessity to perform real-time brain-state-
decoding from the EEG), options (1) and (2) have been used.
In such studies, either a fixed length window around the stimu-
lus was removed offline (Fuggetta et al., 2006), a decomposition
into artefact-free and contaminated data was attempted in post-
processing (Litvak et al., 2007; Morbidi et al., 2007; Erez et al.,
2010) or a sample-and-hold circuit was used during recording
to fix the amplifier output at a constant level during the pulse
(Ilmoniemi et al., 1997). The latter method is especially helpful
for amplifiers that recover from TMS pulses only after a delay
of several hundred milliseconds (Ilmoniemi and Kičić, 2010),
although some current amplifiers are able to keep this delay
lower than 10 ms (Veniero et al., 2009). The drawback of the
sample-and-hold approach is that information on the brain sig-
nal directly after the pulse is invariably lost and that the signal
contains gaps.

Option (1) has also been used by Bergmann et al. (2012) in
their study on EEG-guided TMS, making a waiting period of
several seconds between stimulation pulses necessary. If the brain-
state is decoded from spectral features and for example 500 ms
of data is needed to estimate these features robustly, one has to

wait for 500 ms plus the expected duration of the stimulation
after-effects for making the first estimate of the brain-state after
a stimulation pulse. This duration is therefore also the absolute
minimum ISI in this scenario. Removal of the after-effects by tem-
plate subtraction is only possible, if several constraints are met:
the full amplitude range of the stimulation effects has to be within
the dynamic range of the amplifier, as portions of the data in
which the amplifier is in saturation can not be recovered with
this method, resulting in the necessity to correct for gaps in the
signal as in option (3). If the recorded effects are not sufficiently
stable, attempting to remove them will lead to residuals in the
signal. Like the original after-effects, these residuals can have a
detrimental effect on the quality of the estimated spectrum and,
thus, the decoding process. The employed removal algorithms
need to be suitable for an online BCI, so they need to work on a
single-trial level and therefore should not be too computationally
demanding.

We have chosen approach (3) for this work, the deliberate
introduction of gaps into the signal covering the strongest after-
effects of stimulation and correcting for these gaps during spectral
estimation. This allows continuous decoding without influence of
the stimulation after-effects, as long as the duration of the after-
effects is estimated properly. To apply this approach, methods
are needed that do not depend on continuous data segments for
brain-state decoding and can deal with gaps in the data.

In our experiments, we analyzed the spectral power in the
μ- and/or β-band to detect the patient’s intention to move the
paralyzed hand. We compared different approaches (linear inter-
polation, AR modeling, joining of data segments, and the Burg
algorithm adapted for segmented data) on their ability to estimate
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the spectrum with gaps in the data. To this end, we used an ECoG
BCI training data set and analyzed the normalized RMSE, bias
and variance of the difference between the estimated spectrum
with and without gaps. The RMSE increased with the gap size,
although the slope of the error increase was smaller for MEMgap
and joining than for algorithms that fill the gap with artificial
data (linear interpolation and AR modeling). We found a clear
systematic negative bias for linear interpolation and a system-
atic positive bias for AR modeling. We studied the frequency
range between 16 and 22 Hz in most detail, where the bias of
AR modeling was only apparent for a model order of 16, but a
clear bias of AR modeling can be found for other frequencies at
higher model orders, making this method also potentially unre-
liable. The joining method produces a bias close to 0 around a
frequency of 20 Hz, but can lead to a positive bias for higher
frequencies, whereas the MEMgap method always results in a
bias close to 0. For gaps smaller than 40 ms, linear interpola-
tion typically has the smallest absolute deviation from the true
power values while MEMgap outperforms the other methods for
longer gaps.

As our simulations show, the RMSE for linear interpolation
is smaller than for MEMgap, thus at first glance making linear
interpolation superior to MEMgap for large model orders and/or
small gaps. However, in the context of a continuous BCI decoding
for BSDS, the negative bias exhibited by the linear interpolation
methods will bias the output of the BCI in favor of ERD, thus dis-
torting the real performance of the participant to some extent if
stimulation is coupled to the detected brain-state. We therefore
think that MEMgap is most suited for BSDS as it is superior or at
least equal to the other methods in terms of RMSE and variance,
does not introduce a systematic bias and outperforms the other
methods in minimizing the stimulation after-effects in our BCI
paradigm.

Whether this approach of identifying and ignoring the seg-
ments of data dominated by stimulation after-effects is feasible
in any given experimental setting depends on the duration of
stimulation-evoked potentials after the pulse. As we showed here
in the simulation studies, if the strongest evoked activity is con-
tained within the first 50–100 ms after the pulse, then a decoding
approach using MEMgap is feasible. If no strong evoked activ-
ity is observed, e.g., in the case of a remote recording location
as illustrated in Figure 7, then a short gap of 10 ms covering the

stimulus artefact together with linear interpolation or MEMgap
would be sufficient. In Ferreri et al. (2011), evoked EEG activity
following single pulse TMS was found for up to 300 ms after the
pulse with amplitude fluctuations of less than 20 μV for late com-
ponents. Although we do not expect that such small potentials
would have a large impact on the estimated spectrum, especially
compared to the stimulation artefact itself or early evoked activ-
ity, for every experiment of BSDS with continuous decoding, the
size and shape of the evoked activity should be carefully studied
to get a proper estimate of the duration of strong after-effects. As
was shown by Casarotto et al. (2010), the after-effects depend on
a number of parameters, such as stimulation intensity, location
and (in the case of TMS) coil orientation. If gaps longer than the
100 ms tested here are necessary to cover all stimulation-related
activity, one should either wait long enough until all effects have
ceased before making the next brain-state decoding attempt, or
increase the size of the data window on which the spectrum is esti-
mated to ensure that it contains enough clean samples to compute
a valid estimate.

In conclusion, we have shown that the application of corti-
cal stimulation coupled to the output of an online brain-state
decoder based on spectral features is feasible as long as the
employed algorithms remove both the stimulation artefact and
large early components of evoked activity and allow spectral esti-
mation on non-continuous data. Especially if closed-loop BSDS is
used, algorithms that do not introduce a strong bias into the esti-
mated spectrum such as MEMgap are to be preferred over biased
methods like linear interpolation to ensure a reliable decoding
of the brain-state. In general, the methods investigated here are
not restricted to applications with cortical stimulation but can be
employed whenever spectral estimation has to be performed on
non-continuous data sets with missing blocks of samples.
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1. APPENDIX
1.1. THE BURG ALGORITHM
The Burg algorithm is used for the estimation of the coefficients
ci of an autoregressive (AR) model

x(tp) =
p∑

i = 1

cix(tp − i) + e

with order p for samples x(tk), 0 ≤ k < N, e a sample from a white
noise sequence. The algorithm needs p recursive steps and in each
step j, the coefficients cj,i for an autoregressive model of order j
are computed by the following procedure:

An initial estimation of the power of the white noise compo-
nent in the AR model is obtained by

P0 = 1

N

N−1∑
k = 0

|x(tk)|2.

Each new coefficient ci,i is computed by minimizing the forward
and backward prediction errors

fp,k = x(tk) −
p∑

i = 1

cp,i x(tk − i) with k = p, . . . , N − 1

bp,k = x(tk − p) −
p∑

i = 1

cp,i x(tk − p + i) with k = p, . . . , N − 1

with the formula

ci,i = −2
∑

k∈Ii
fi − 1,k · bi − 1,k − 2∑

k∈Ii

(|fi − 1,k|2 + |bi − 1,k − 1|2
) , Ii = {i + 1, . . . , N − 1}.

(A1)

Each previously computed coefficient ci − 1,k is then adjusted by

ci,k = ci − 1,k + ci,i · ci − 1,i − k

and we update the power estimation to

Pi = (1 − |ci,i|2) · Pi − 1

and the forward and backward prediction errors:

fi,k = fi − 1,k + ci,i · bi − 1,k − 1

bi,k = bi − 1,k − 1 + ci,i · fi − 1,k .

After p steps, this results in the AR coefficients ci = ci,p, i =
1, . . . , p.

1.2. ESTIMATING THE SPECTRUM FROM AN AR MODEL
An AR model can be interpreted as an all-pole infinite-impulse-
response filter with order p and coefficients ci which is applied to

a white noise process with a power of Pp (Pardey et al., 1996).
Thus, after finding the p autoregressive coefficients ci, one can
estimate the spectrum by evaluating the transfer function H(z) =√

Pp

(
1 − ∑p

k=1 ckzk
)−1

of the filter to find power values

P(ω) = Pp

|1 −
p∑

k = 1
cke−jkω|2

at (normalized) frequencies ω.

1.3. THE MEMgap ALGORITHM
If one assumes that a sequence g of length N exists and that
g(n) = 1 only if the corresponding sample x(tn) is part of a gap
in the data and 0 otherwise then we just have to make sure that
none of the samples x(tn) with g(n) = 1 influence the estimation
of the model coefficients. The Burg algorithm computes the AR
coefficients for order p in p steps, yielding in the i-th step the coef-
ficients of an AR model with order i. If we use in the i-th step only
those samples fully for computation of the AR coefficients that
are at least i + 1 time steps away from a sample with g(n) = 1, we
achieve the desired effect. To be more precise, the coefficients are
computed by evaluating forward and backward prediction errors
(see Appendix 1.1). In the MEMgap algorithm, forward predic-
tion errors are only computed for samples that are at least i + 1
time steps after a gap, backward prediction errors only for those
at least i + 1 time steps before a gap. Formally, this is done by
modifying Ii in Equation (A1) to the set

Ii ={k | g(k) = 0 ∧ i < k < N ∧
(k − n < 0 ∨ k − n > i) ∀n with g(n) = 1}.

This set can also be computed iteratively in each step of the Burg
algorithm as Ii = Ii−1 ∩ I′

i−1, where I′
i−1 is the set Ii−1 with each

entry incremented by 1 and I0 = {k | g(k) = 0 ∧ 0 < k < N}.
This resembles a “forbidden zone” that initially contains only the
gaps but grows in each step of the algorithm by one sample. The
estimation of the white noise power P0 has to be calculated only
with samples outside of gaps: P0 = 1

|I0|
∑

k∈I0
|x(tk)|2. The rest of

the algorithm works as the standard Burg algorithm described in
Appendix 1.1.

Obviously, this method can only work if the continuous seg-
ments between gaps are long enough. Therefore, there needs
to be at least one segment of samples with a length that is at
least equal to the model order p in order to make an estimation
of the spectrum with this method. In practice, it is preferable
if the number of samples in such a segment is several times
higher than the model order in order to reduce the bias and
variance of the estimator. If there are ns segments of clean data
with a length greater than p and the total number of samples
in these segments equals M, then only M − 2nsp forward and
backward prediction errors are available in the p-th step of the
MEMgap algorithm, although all M samples are evaluated to
compute these errors. This means that even if the total num-
ber of samples within gaps might be the same, one can expect
that the variance of the spectral estimation will be smaller if
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there are only a few large gaps in the data compared to having
many small gaps because less samples contribute fully in the sec-
ond case. According to de Waele and Broersen (2000), the same
holds for the estimation bias which is inversely proportional to
the number of available samples.

1.4. AR MODELING INDUCES JUMPS IN THE SIGNAL
The approach to fill the gap with samples that were extrapo-
lated by an AR model fitted to the data before the gap can be
problematic, if the extrapolation diverges strongly from the mea-
sured data. When actually measured samples are added to the
data buffer after the gap, there can be a large amplitude difference
between the last (extrapolated) sample within the gap and the first
measured sample after the gap (Figure A1A). Such a “jump” in
the signal results in high power across all frequencies, thus distort-
ing the spectrum. To assess the influence of the model order and
the gap size on the jumps, we ran simulations on the data from
the ECoG recordings without stimulation used in Figure 8A: in
total, 11266 stimuli were simulated on 397 minutes of data, the
gap size was varied between 0 and 100 ms in steps of 5 ms and
model orders 16, 32, and 64 were tested.

We applied AR modeling to deal with the gaps and measured
the jump as the absolute voltage difference between the last sam-
ple generated by the AR model at the end of the gap and the
first sample after the gap. The results are shown in Figure A1B.
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FIGURE A1 | (A) An example, how AR modeling fills a gap in the
signal. A gap is introduced into an ECoG signal (blue) between 500
and 600 ms. An AR model of order 32 is estimated from the
500 ms before the gap and applied as a linear predictor to generate
100 samples to fill the gap (red). The original ECoG samples within

the gap are shown in gray. The voltage difference between the last
sample generated for the gap and the first ECoG sample after the
gap is the jump height. (B) Average jump height after filling the
gap with AR modeling for model orders 16 (black), 32 (red), and 64
(green).

For comparison, the average absolute voltage difference between
neighboring samples of the original ECoG data without any gaps
or stimuli is 1.68 ± 0.43 μV (mean ± std).

We found that for all model orders, the average height
of the jump increases sharply up to a gap size of 10, yield-
ing 12.35 ± 5.0 μV for order 16, 11.82 ± 4.43 μV for 32 and
11.29 ± 4.37 μV for 64. For further increasing gap size, the
average jump height increases more slowly for higher model
orders than for lower ones. For a gap size of 100 ms we
find average jump heights of 28.08 ± 14.94 μV for order 16,
23.45 ± 12.51 μV for 32 and 20.23 ± 11.94 μV for 64. Thus,
while the jump height at the end of the gap is significantly
smaller for a model order of 64 compared to 32 and 16
(gap size = 100, paired Wilcoxon signed rank tests, both p <

10−17), it is still vastly higher than the average sample-to-
sample difference for ongoing ECoG activity. Therefore, we can-
not conclude that higher model orders prevent jumps after the
gap.

Furthermore, if the gaps are used to cover the effects of real
stimulation, there has to be a jump at the end if the gap is
filled by AR modeling and evoked activity is present. AR model-
ing attempts to extrapolate the pre-stimulus signal which almost
certainly differs in its time course from the stimulation-evoked
activity, therefore extrapolation can not work perfectly, regardless
of the model order.
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