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During a reach, neural activity recorded from motor cortex is typically thought to linearly
encode the observed movement. However, it has also been reported that during a
double-step reaching paradigm, neural coding of the original movement is replaced by that
of the corrective movement. Here, we use neural data recorded from multi-electrode arrays
implanted in the motor and premotor cortices of rhesus macaques to directly compare
these two hypotheses. We show that while a majority of neurons display linear encoding
of movement during a double-step, a minority display a dramatic drop in firing rate that
is predicted by the replacement hypothesis. Neural activity in the subpopulation showing
replacement is more likely to lag the observed movement, and may therefore be involved
in the monitoring of the sensory consequences of a motor command.
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INTRODUCTION
There is a long tradition of investigating motor control by
using a double-step reaching paradigm, where a target jumps
to a new location after a movement is initiated (Georgopou-
los et al., 1981; Soechting and Lacquaniti, 1983; Goodale et al.,
1986; Pelisson et al., 1986; Paulignan et al., 1991; Prablanc and
Martin, 1992). For example, this double-step paradigm was
used to implicate posterior parietal cortex (PPC) in monitor-
ing the error between the hand and target position, because
online corrections are not made in response to a double-step
when this area is inactivated by transcranial magnetic stimulation
(Desmurget et al., 1999; Reichenbach et al., 2011) or by a lesion
(Grea et al., 2002).

Only a few studies have used extracellular recordings in cerebral
cortex to investigate neural coding during a double-step reach-
ing paradigm (Georgopoulos et al., 1983; Archambault et al., 2009,
2011). These studies found that in primary motor (MI) and dorsal
premotor (PMd) cortices (Archambault et al., 2011), and in area
5 of the PPC (Archambault et al., 2009), neural activity during
a double-step was well-explained by replacing the original neu-
ral activity with neural activity corresponding to the correction
elicited by the target jump.

However, this idea of replacement is at odds with the tra-
ditional view in the motor cortical encoding literature, which
describes neural activity during reaching as a linear function of
hand kinematics, particularly the instantaneous direction and
speed (Georgopoulos et al., 1982; Schwartz et al., 1988; Moran
and Schwartz, 1999; Wang et al., 2007). These models would not
predict anything different during a double-step reach.

Here, we use multi-electrode arrays to record neural data
from MI, PMd, and ventral premotor (PMv) cortices from rhesus
macaques performing reaches, and directly compare the default,
linear encoding hypothesis to the replacement hypothesis previ-
ously proposed in cortical double-step studies. The replacement

hypothesis (Archambault et al., 2009, 2011) was developed in the
context of a standard center-out task, requiring reaches from a
center target to one of eight peripheral targets arranged in a cir-
cle. The double-step involved jumping from the original target to
a target located 180◦ opposite on the circle. Double-step activity
was fit by starting with the original neural activity for movement
from the center to the first target and replacing it with neural
activity for movement from the center to the second target, which
predicted the observed neural activity better than replacing it
with neural activity associated with movement from the center
to a randomly selected target (Archambault et al., 2009, 2011).
Though these studies found that a linear encoding model gener-
alized poorly from single-step to double-step trials (Archambault
et al., 2009, 2011), the prediction of the “Replacement” hypothesis
was not directly compared to the alternative of linear encoding of
observed kinematics. This is because the “Replacement” predic-
tion was derived from the directly observed, trial-averaged neural
activity, instead of the prediction of a linear model fit using single-
trials. Thus it is not clear that the replacement model predicts
double-step neural activity better than a standard linear encoding
model of observed kinematics.

Here, we use the concept of superposition to allow a direct
comparison of the two hypotheses. It has been previously shown
that the kinematics during a double-step can be expressed as the
superposition (or vector sum) of the original, unperturbed move-
ment and a corrective movement from the original target location
to the new target location (Flash and Henis, 1991). We define the
“Replaced” hypothesis to mean that, during a double-step trial,
neurons first encode the kinematics of the original movement, and
then switch to encode the kinematics of the corrective movement.
To test this prediction, the observed movement first needs to be
decomposed into a linear combination of its two constituent parts:
the original movement and the corrective movement. To allow a
direct and fair comparison to the standard linear encoding model,
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we define an alternative “Summed” hypothesis which states that
neurons encode the summed kinematics of the two constituent
movements, which should closely match the observed movement.

The difference between the “Replaced” and “Summed”
hypotheses can be best understood in the context of a double-step
movement in one dimension, where the target is simply perturbed
farther in the direction of the original movement (Figure 1). If
the target jump happens soon after movement onset, the correc-
tion will be triggered before the original movement ends. This
means that the velocity profile will be double-peaked, and it will
not return to 0 between the peaks (Figure 1A, top). This double-
peaked profile can be decomposed into the sum of two overlapping
single-peaked speed profiles. If we assume that neurons linearly
encode the velocity in the neuron’s preferred direction at a sin-
gle leading time delay, then the firing rate profile should also be
double-peaked (Figure 1A, middle). That is the “Summed” pre-
diction. In contrast, in the “Replaced” prediction, the firing rate
first follows the original, single-peaked profile and then switches
to the second, corrective single-peaked profile at some time prior
to the start of the second movement (Figure 1A, bottom). This
switch produces a sharp drop in firing rate back to the baseline
level, before rising again to match the corrective velocity profile.

If instead neuronal firing lags the velocity profile, the
“Summed” prediction simply shifts to the right but is otherwise
unchanged (Figure 1B, middle). However, if the switch time
happens at the same time point, then the “Replaced” hypothesis
predicts an extended silent period where the firing rate drops to
the baseline level, before rising again to track the corrective move-
ment (Figure 1B, bottom). The predictions of the “Summed” and
“Replaced” hypotheses are quite different, so we should be able to

resolve on a neuron by neuron basis which hypothesis better fits
single-trial neural activity.

MATERIALS AND METHODS
NEURAL RECORDINGS
Three rhesus macaques (Macaca mulatta) were implanted with a
total of five Utah 100-microelectrode arrays (Blackrock Microsys-
tems, Salt Lake City, UT, USA) in MI, PMv, or PMd cortices in
the right hemisphere (contralateral to the arm used for the task).
Subject CO had arrays in MI, PMd, and PMv, subject MK had an
array in MI, and subject BO had an array in PMd (Figure 2). The
length of the electrodes on subject CO’s MI array was 1.5 mm,
while the length on the other four arrays was 1 mm. All electrode
tips were sputter-coated with platinum, except for subject MK’s MI
electrode tips, which were coated with iridium oxide. The proce-
dure for implanting the Utah array has been described elsewhere
(Rousche and Normann, 1992; Maynard et al., 1999). During a
recording session, signals from 96 electrodes were amplified (gain
of 5,000), band-pass filtered between 0.3 Hz and 7.5 kHz, and
recorded digitally (14-bit) at 30 kHz per channel using a Cer-
berus acquisition system (Blackrock Microsystems Inc., Salt Lake
City, UT, USA). Only waveforms (duration, 1.6 ms; 48 sample
time points per waveform) that crossed a voltage threshold were
stored for off-line sorting. This voltage threshold was set just out-
side the noise band, so that all potential spike waveforms were
recorded for later off-line spike sorting. Spike waveform data
were sorted in Offline Sorter (Plexon, Dallas, TX, USA) using a
user-defined unit template, which was a single waveform shape
to which all potential spike waveforms were compared. All wave-
forms whose mean square error from this template fell below a

FIGURE 1 | Schematic of the two hypotheses for neural coding

during a double-step. (A) Top: The theoretical double-peaked velocity profile
of a double-step trial (black) can be decomposed into the sum of a primary
velocity profile (light gray) and an overlapping, secondary velocity profile (dark
gray); middle: Under the default “Summed” hypothesis, neural firing is
predicted to track the observed velocity profile, preceding it at a fixed lead;
bottom: The alternative “Replaced” hypothesis predicts that the neural firing

will track the primary velocity profile (light gray), before replacing
this with coding of the secondary profile (dark gray). (B) The predictions
under the “Summed” and “Replaced” hypotheses if neuronal firing
instead lags the observed velocity. The replacement between coding of the
primary and secondary movements is assumed to happen at a fixed delay
that we call the neural offset, prior to the start of the second movement
(dashed line).
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FIGURE 2 | Location of the five multi-electrode arrays relative to the central sulcus (CS) and the arcuate sulcus (AS). (A) Subject CO had arrays in primary
motor cortex (MI), dorsal premotor cortex (PMd), and ventral premotor cortex (PMv). (B) Subject MK had one array in MI. (C) Subject BO had one array in PMd.

user-defined threshold were classified as spikes belonging to that
unit.

BEHAVIORAL TASK
Subjects were operantly conditioned to perform a behavioral
task requiring planar reaching movements using a two-link
robotic exoskeleton (KINARM, BKIN Technologies, Kingston,
ON, Canada) that sampled X andY positions of the hand at 500 Hz.
However, for these experiments, the shoulder angle was locked, so
only one-dimensional, elbow flexion and extension movements
were possible. Control (single-step) trials of the behavioral task
involved maneuvering a cursor controlled by the hand position
to acquire a target within 1,500 ms of its appearance and then
holding on it for a random hold period (uniformly distributed
from 300 to 700 ms). There was no instructed delay, so subjects
were free to move to the target as soon as it appeared. There were
five discrete target locations (numbered 1–5), equally spaced at
1.35, 1.5, 1.65, 1.8, and 1.95 radians, respectively. Here, 0 radians
indicates a fully extended elbow and an increasing angle indicates
elbow flexion. The target width was 0.05 radians. Since the sub-
jects forearm lengths were approximately 20 cm, this corresponds
to an approximately 1 cm wide target.

In addition to these single-step control trials, up to one-third
of trials requiring movement between targets 2, 3, or 4 were per-
turbed to become double-step trials. The target shifted its position
when the cursor moved more than 0.075 radians from the original
target center.

In the three “Forward Jump” datasets, the target was perturbed
in the same direction as the initial movement by 0.15 radians (for
example, a movement starting at location 2 to a target at location
4 was perturbed by moving the target to location 5). In the four
“Reverse Jump” datasets, the target was perturbed in the opposite
direction of the initial movement by 0.15 radians. More details
of the seven datasets analyzed are given below (Table 1). Of note,
subject CO had all three arrays implanted simultaneously, and
datasets #1 and #5 were recorded simultaneously. Each dataset
represents all neurons recorded from one cortical area in a given
day’s training session. All of the surgical and behavioral procedures
were approved by the University of Chicago Institutional Animal

Care and Use Committee and conform to the principles outlined
in the Guide for the Care and Use of Laboratory Animals.

DATA PROCESSING
The raw angular position traces were first low-pass filtered for-
ward and backward using a fourth order Butterworth filter and a
10-Hz cutoff frequency. These were then differentiated to obtain
the angular velocity traces. For single-step trials, spike times were
aligned on the first crossing of a 0.3-radians/s velocity thresh-
old after target appearance. For double-step trials, spike times
were aligned on the jump time (when the change in target loca-
tion occurred). Mean trajectories and peri-event time histograms
(PETHs) were computed by averaging kinematics and spike counts
across all trials with the same starting and ending locations in a
time window from −300 ms before the velocity threshold crossing
(or jump time for the double-step trials) to 800 ms afterward.

ENCODING MODEL
Previous studies have reported that motor cortical firing is linearly
related to both the Cartesian velocity and speed of the hand at a
single time lag (Moran and Schwartz, 1999), but also that cortical

Table 1 | Details are provided for the seven datasets reported here.

# Area Subject Jump Dir. Single Double Neurons Analyzed

1 MI CO Forward 1,626 167 26 17

2 MI MK Reverse 1,276 228 70 41

3 MI CO Reverse 1,428 242 36 17

4 PMd BO Reverse 1,645 280 115 67

5 PMd CO Forward 1,626 167 88 30

6 PMd CO Reverse 1,407 299 128 56

7 PMv CO Forward 1,943 275 90 54

From left to right, the columns list the dataset number (#), the cortical area
recorded from (Area), the subject ID (Subject), whether the dataset had a “For-
ward” or “Reverse” double-step (Jump Dir.), the number of single-step trials
(Single), double-step trials (Double), sorted neurons (Neurons), and neurons
analyzed in the Section “Results” (Analyzed).

Frontiers in Neural Circuits www.frontiersin.org April 2013 | Volume 7 | Article 51 | 3

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


“fncir-07-00051” — 2013/4/4 — 9:36 — page 4 — #4

Dickey et al. Heterogeneous coding of corrections

discharge is better explained by joint angular velocity than Carte-
sian velocity (Reina et al., 2001). For our 1-D behavioral task, we
combine these two results and assume that during single-step tri-
als motor cortical firing rate FR(t) is a linear function of the elbow
joint angular velocity V (t) and speed |V (t)| at a single time delay
δ. The baseline firing rate is b0, and b1 and b2 are the coefficients
for velocity and speed tuning, respectively.

FR(t − δ) = b0 + b1V (t) + b2|V (t)|. (1)

Although in 1-D angular velocity and speed can differ only in sign,
they are uncorrelated and the linear prediction is better when using
both. Spike times for each neuron from all successful single-step
trials were binned every 10 ms, and the resulting spike counts
were smoothed by convolving them with a Gaussian kernel with
a standard deviation of 30 ms, similar to the Archambault et al.’s
(2009; 2011) studies. These smoothed spike counts were fit as a
linear function of the elbow angular velocity and speed, sampled
every 10 ms and delayed by the parameter δ. We tested all pos-
sible delays from −300 to +300 ms in 10 ms increments, and
kept the delay with the highest correlation coefficient between the
predicted and actual binned spike counts. We also fit a logistic ver-
sion of Eq. 1, using standard generalized linear model techniques,
relating kinematics to binary spike counts in 10 ms bins (the 0.2%
bins containing more than one spike were treated as having one
spike).

Of the 553 neuron samples which were originally recorded
across the seven datasets, we excluded from analysis the 190 neu-
rons which had an encoding delay of greater than +175 ms. This
is due to the fact that these neurons tended to respond precisely
to the visual appearance of the target, usually 100 ms following
target appearance (Reimer and Hatsopoulos, 2010), rather than in
anticipation of future velocity or response to past velocity. For the
remaining neurons, we compared the prediction of the encoding
model (Eq. 1) to the mean PETHs computed for each combination
of starting and end point by computing a correlation coefficient
between the observed and predicted PETHs. We rejected an addi-
tional 81 neurons whose correlation coefficient was less than 0.5.
This left 282 neurons for further analysis. The number of neurons
analyzed in each dataset is given in Table 1. These are neurons for
which the linear encoding model (Eq. 1) provides an adequate pre-
diction of the firing rate on control, single-step motions between
pairs of targets.

DECOMPOSING DOUBLE-STEP KINEMATICS
It has been previously shown that kinematics during a target jump
can be decomposed into the sum of two minimum jerk move-
ments (Flash and Henis, 1991; Henis and Flash, 1995). If the
inter-stimulus interval between the original target presentation
and the target jump is greater than 100 ms, then the original move-
ment is directed from the start point to the original target location,
and the secondary movement is directed from the original target
to the new target location (Henis and Flash, 1995).

We first fit the control, single-step movements to a single
minimum jerk trajectory. The minimum jerk velocity profile is
mathematically described below (Eq. 2) for a movement starting
at time t0 with duration d and with an amplitude a, which is the

change in position from the beginning to the end of the move-
ment (Hogan, 1984; Flash and Hogan, 1985). Note that velocity
is defined to be 0 before the start point t0 or after the endpoint
t0 + d.

V (t ; t0, a, d) =⎧⎨
⎩

30
a

d

(
τ4 − 2τ3 + τ2

)
, τ = (t−t0)

d for t0 ≤ t ≤ t0 + d

0 otherwise

⎫⎬
⎭ .

(2)

The angular velocity during a double-step trial V J UMP (t) was
fit as a sum of a primary (V 1) and secondary (V 2) minimum
jerk velocity profile (Eq. 3). Thus the double-step velocity can be
described with six parameters.

VJUMP(t) ≈ VSUM(t ; t1, a1, d1, t2, a2, d2)

= V1(t ; t1, a1, d1) + V2(t ; t2, a2, d2). (3)

We found the optimal set of six parameters to fit a given double-
step velocity profile V JUMP(t) by minimizing the cost function
expressed below (Eq. 4).

C(t1, a1, d1, t2, a2, d2) =
(1 − α)

(σERR)2

[∑
t

(
VJUMP(t) − VSUM(t ; t1, a1, d1, t2, a2, d2)

)2

]

+ α

[
2∑

i=1

(
ai − a∗

i

)2
/(σa)

2 +
2∑

i=1

(
di − d∗

i

)2
/

(σd)2 + (
t2 − t∗)2

/(σt )
2

]
. (4)

We make the assumption that the parameters of two compo-
nent movements will be similar to the corresponding single-step
motions. Thus, for a double-step which starts at location 2 where
the target jumps from location 4 to 5, we assume the primary
motion V 1 is similar to the single-step movement from 2 to 4, and
the secondary motion V 2 is similar to the single-step movement
from 4 to 5. The values of the coefficients were constrained by
including a squared error term relative to a reference value, multi-
plied by a scaling factor. These reference values and scaling factors
were derived from single-step trials. We fit the velocity profiles
from single-step trials to a minimum jerk velocity profile (Eq. 2)
by minimizing the sum of squared errors. The reference ampli-
tudes (a∗

1 , a∗
2) and durations (d∗

1 , d∗
2 ) were set to the median

of the amplitudes and durations fit to the corresponding single-
step trials, and so these values varied from dataset to dataset. The
remaining parameters (t*,σa, σb, σt , σERR) were set constant for
all datasets, and were derived from the “well-fit” single-step tri-
als from one dataset (#7) whose correlation between actual and
fit velocity was above 0.9 for 1,694 of 1,943 trials (87%). The
start time of the first movement was unconstrained, but the ref-
erence start time of the second movement (relative to the jump
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time) was set as the mean of the reaction time of these well-
fit single-step trials (t* = 220 ms), with scaling factor given by
their standard deviation (σt = 50 ms). Similarly, the scale factor
for the amplitude and duration was again set to the pooled esti-
mate of their standard deviations for the well-fit single-step trials
(σa = 0.3 radians, σd = 90 ms). The sum squared error between the
actual and fit velocity was normalized by the mean squared error
of the well-fit single-step trials (σERR = 0.08 radians/s). There
was also an arbitrary weight constant (α = 0.95) added to pre-
vent the velocity error term from dominating the coefficient error
terms.

“SUMMED” vs. “REPLACED” HYPOTHESIS
Under the default “Summed” hypothesis, the same encoding
model (Eq. 1) that was fit to single-step trials was applied to
double-step trials. However, rather than applying this encoding
model to the observed velocity profile V JUMP, the firing rate was
predicted using the fit velocity profile V SUM:

FRSUM(t − δ) = b0 + b1VSUM(t) + b2 |VSUM(t)| . (5)

The “Summed” prediction is based on the fit velocity V SUM to
allow a direct comparison to the alternative“Replaced”hypothesis,
where neurons instead encode the constituent movements V 1 and
V 2 which comprise V SUM. The “Replaced” hypothesis states that
neurons will first encode the primary movement, and then switch
to encoding the secondary movement at some time after the target
jump (Eq. 6). We assume that this switch time is fixed to the start of
the second movement t2 minus some constant neural offset tN . To
prevent over-fitting, we fixed the neural offset to a constant for each
cortical area before comparing the prediction to the “Summed”
hypothesis.

FRREPLACE(t) =⎧⎨
⎩ b0 + b1V1(t + δ) + b2 |V1(t + δ)| for t < t2 − tN

b0 + b1V2(t + δ) + b2 |V2(t + δ)| for t ≥ t2 − tN

⎫⎬
⎭ . (6)

We compared the “Summed” (Eq. 5) and the “Replaced” (Eq. 6)
predictions in terms of their fit to observed neural activity during
a double-step trial. We predicted the spike count in 10 ms bins
for each trial, and assessed the goodness of fit of these predictions
by computing the root-mean-square error (RMSE) between the
prediction and the smoothed spike train (after convolution with
a Gaussian kernel with a 30-ms standard deviation). The calcu-
lation of the RMSE metric was limited to a time interval from
the jump time to 500 ms after the jump, as the predictions of
the two hypotheses were very similar outside of this window. The
RMSE metric includes data, from double-step trials from all the
movement conditions. Predicted firing rates less than 1 spike/s
were replaced with replaced with 1 spike/s. This thresholding was
performed to prevent the linear model from predicting a nega-
tive or zero firing rate. A paired t-test was then used to determine
if the mean RMSE was significantly different between the two
predictions.

We also compared the predictions for the “Summed” and
“Replaced” hypotheses using the logistic version of Eq. 1. For

the logistic prediction of firing rate, FR*(t), we computed a
log-likelihood of observed binary spike counts in 10 ms bins,
given the “Summed” or “Replaced” predictions. We assume spike
counts are conditionally independent Bernoulli random vari-
ables. If the binary spike count for a given neuron at time t
is denoted x(t), then the log-likelihood of a spike train given
the “Summed” hypothesis (LSUM) is given in Eq. 7. A similar
expression holds for log-likelihood of the “Replaced” hypothesis
(LREPLACED).

LSUM =
∑

t

x (t) log
(
FR∗

SUM (t)
)

+ (1 − x (t)) log
(
1 − FR∗

SUM (t)
)

. (7)

RESULTS
A decomposition algorithm was used (see Decomposing Double-
step Kinematics) to fit the double-step velocity profiles to the sum
of two minimum jerk velocity profiles (Figure 3). For a single trial
(Figure 3A), the fit velocity profile does a good job matching the
bulk of the observed double-peak profile, though it does not fit
the reversal in velocity, which comes after the second movement.
The fraction of variance (R2) of the actual velocity explained by
the fit velocity was 0.986. The decomposition performed simi-
larly well for all 52 double-step trials for this movement condition
from dataset #7 (Figure 3B), where the starting point was location
2, and the target jumped from location 4 to 5. The main differ-
ence is that the fit velocity is constant at 0 before and after the
double-peaked velocity profile. The median R2 for these trials was
also 0.986, and the mean was 0.983 (standard deviation 0.015).
For the 1,658 successful double-step trials from all datasets, the
median R2 was 0.982, with a mean of 0.970 (standard deviation
0.0357).

We can use the parameters of the fit velocity profile as an esti-
mate of the reaction time, either from the target appearance or
the target jump (Table 2, left). The average reaction time of all
single-step trials (with amplitude 0.15 radians) of a given dataset
varied from 203 to 230 ms. However, when looking across the
seven datasets, the mean of these single-step reaction times was
not significantly different from the mean of the first or sec-
ond double-step reaction times (paired t-test, p > 0.05). The
average movement duration for single-step trials (with ampli-
tude 0.15 radians) varied from 405 to 457 ms (Table 2, right).
Similarly, when looking across the seven datasets, the mean of
these single-step durations was not significantly different from the
mean of the first or second double-step durations (paired t-test,
p > 0.05).

Given the decomposition, we still need one extra parameter
to predict the neural firing under the “Replaced” hypothesis: the
neural offset tN . This is a constant which represents how soon
before the start of the secondary movement (t2) the neurons show
the replacement effect. We first assumed that the neural offset
for each neuron was constant for all movement conditions, but
different across neurons. We then tested a range of offsets for each
neuron, from 0 to 250 ms in 10 ms increments, and picked the
offset which minimized the RMSE of the data given the“Replaced”
prediction. Within this range, we are trying to find a change in
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FIGURE 3 | Decomposition of actual kinematics observed during

a double-step. (A) The actual kinematics of a double-step trail (black line)
are well-approximated by the sum (gray line) of a primary (light gray)
and secondary (dark gray) single-peaked profiles. (B) The single-trial
velocity profiles are displayed as heat maps, with the vertical axis

representing different trials, and the horizontal axis representing
time elapsed within a given trial. The actual kinematics (top left)
can be compared to the fit kinematics (top right), which is the sum
of the single-trial primary (bottom left) and secondary (bottom right)
motions.

Table 2 |The mean and standard deviation of the reaction times (RT) and movement durations of the single-step (SS), the first double-step

(DS 1), and the second double-step (DS 2) movements for all seven datasets.

# RT mean (±SD) in ms # Duration mean (±SD) in ms

SS DS 1 DS 2 SS DS 1 DS 2

1 228 (47) 207 (40) 222 (34) 1 416 (66) 418 (68) 366 (51)

2 203 (71) 202 (57) 201 (50) 2 457 (102) 469 (83) 446 (82)

3 231 (53) 224 (42) 181 (48) 3 405 (71) 399 (61) 416 (85)

4 221 (84) 253 (46) 248 (44) 4 406 (105) 404 (100) 409 (119)

5 228 (47) 207 (40) 222 (34) 5 416 (67) 418 (68) 366 (51)

6 230 (55) 221 (40) 174 (43) 6 413 (71) 396 (51) 413 (77)

7 223 (50) 208 (43) 217 (39) 7 430 (76) 420 (55) 389 (84)

Data are reported for all single-step trials with an amplitude of 0.15 radians, and all double-step trials where each component has an amplitude of 0.15 radians. Outlying
reaction times >400 ms (6% of original data) and durations >700 ms (7%) were removed before the mean and standard deviation were computed.
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neural activity in the reaction time period, between the change
in target position but before the onset of movement. We then
compared the distributions of neural offsets across cortical regions,
from neurons which were better fit by the “Replaced” prediction
(lower mean RMSE, p < 0.05, t-test) and whose neural offset was
greater than 0 ms and less than 250 ms.

The distribution of neural offsets was markedly different
between MI and premotor cortices, i.e., PMd and PMv cortices
(Figure 4). The mean neural offset of the 26 eligible MI cortical
neurons (53 ms) was significantly less (p < 0.01, t-test) than the
mean of neural offset of the 91 eligible premotor neurons (84 ms).
This indicates that premotor cortex shows an earlier response to
the double-step target jump than MI cortex, consistent with pre-
vious results (Archambault et al., 2011). There was no significant
difference in mean neural offsets between neurons in PMd and
PMv (p > 0.05, t-test). To compare the “Replaced” prediction to
the “Summed” prediction, we did not want the neural offset to
be a free parameter, because this could lead to over-fitting of the
“Replaced” neural prediction and would represent an unfair com-
parison between the two hypotheses. Thus, we rounded the mean
neural offsets up to the nearest 10 ms, so that all MI neurons had
a neural offset of 60 ms, and all premotor neurons had a neural
offset of 90 ms. Recall that the neural offset specifies when the
neural replacement happens relative to start of movement. It is
different that the encoding delay, which specifies whether neural
firing lags or leads observed movement.

We observed that the response profiles of some neurons were
consistent with the “Summed” hypothesis while others were more
consistent with the “Replaced” hypothesis during the double-step

FIGURE 4 |The distribution of neural offsets is compared between

neurons from the primary motor cortex (A) and the premotor cortex

(B), including both dorsal and ventral premotor cortices. The neural
offset describes the time at which the “Replaced” hypothesis predicts a
shift from coding the primary movement to coding the secondary
movement (see Figure 1).

trials, even among neurons that were recorded simultaneously.
For an example PMv neuron (from dataset #7), the prediction
of a linear encoding model (fit on all single-step trials) closely
matched the PETH for single-step movements from location 2 to
4 (Figure 5A). The R2 between the actual PETH (Figure 5A, solid
black) and predicted PETH (Figure 5A, gray dot dash) was 0.96
for this movement condition. Fitting a linear encoding model to
all single-step trials gave an optimal encoding delay δ of +30 ms,
meaning this neuron’s firing led the observed velocity.

The corresponding double-step condition also involved starting
at location 2 and moving to location 4, but the visual target was
switched to location 5 after the original movement was initiated.
This resulted in a double-peaked velocity (see Figure 3) where
the constituent velocity profiles overlapped. For a neuron which
leads velocity, the “Summed” hypothesis predicts the firing rate
should follow the shape of the double-peaked profile, while the
“Replaced” hypothesis predicts a temporary reset to baseline after
the target jump (see Figure 1A). For this neuron, the “Summed”
prediction much better fit to the observed double-step PETH than
did the “Replaced” prediction (Figure 5B).

This neuron’s spike times from individual trials of the single-
step (Figure 5C) and double-step (Figure 5D) conditions show a
similar smooth rise and fall in firing rate. The raw double-step
rasters (Figure 5D) can be visually compared to the single-
trial predictions of the “Summed” (Figure 5E) and “Replaced”
(Figure 5F) predictions. These are displayed as heat maps, where
black indicates a high firing rate and white indicates a low fir-
ing rate. There is a sharp drop in firing rate (seen as a black to
white transition) in the “Replaced” prediction (Figure 5F) around
100 ms after the target jump. However, this predicted drop in fir-
ing rate is not seen in the raw double-step rasters (Figure 5D) or
the observed PETH (Figure 5B). Instead, the neuron reaches a
similar peak firing rate as the single-step condition (23 spikes/s) at
the jump time (0 s), before gradually decreasing its firing rate over
the next 500 ms. Note that the double-step rasters and predictions
(Figures 5D–F) are sorted by the start of the second constituent
motion (as defined by the decomposition algorithm). This is why
the reset to baseline is predicted to occur later for trials near the
bottom for the“Replaced”hypothesis (Figure 5F). The R2 between
the actual double-step PETH and the“Summed”prediction is 0.94,
compared to 0.62 for the “Replaced” prediction. For this neuron,
across all trials of all double-step conditions, the average RMSE
for the “Summed” prediction (7.6 spikes/s) was significantly less
(p < 0.001, paired-test) than the average RMSE of the “Replaced”
prediction (8.2 spikes/s).

In contrast, the firing of a different but simultaneously recorded
PMv neuron was clearly better fit by the “Replaced” hypothe-
sis (Figure 6). The single-step PETH (Figure 6A, black) from
target 2 to 4 showed a smooth increase and decrease in firing
rate. The firing rate profile was wider than that predicted by the
linear encoding model (gray dot dash), but the R2 between the
actual and fit PETH was still 0.80. This neuron’s optimal delay
δ was −70 ms, indicating that neural firing lagged hand veloc-
ity. During the corresponding double-step profile, the “Summed”
hypothesis failed to predict the neuron’s response (Figure 6B,
gray dotted). It predicted that the neural firing rate should reach
a peak of 20 spikes/s 200 ms after the target jump. Instead,
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FIGURE 5 | A neuron from ventral premotor cortex is better fit by the

“Summed” hypothesis. (A) During single-step (SS) trials, the observed
peri-event time histogram (PETH, black) is well fit by a model assuming linear
encoding of velocity and speed (gray dot dash). Zero time refers to the time
of target appearance. (B) During double-step (DS) trials, the observed PETH
(black) is well fit by the “Summed” prediction (gray dotted) but not the

“Replaced” prediction (gray dashed). Zero time refers to the time of the
target jump. (C) The single-trial spike time rasters for the SS trials. (D) The
single-trial spike time rasters for the DS trials, arranged by the predicted
replacement time (gray). (E) The DS single-trial prediction of the “Summed”
hypothesis, displayed as a heat map. (F) The DS single-trial prediction of the
“Replaced” hypothesis.

FIGURE 6 | A neuron from ventral premotor cortex is better fit by the “Replaced” hypothesis. Format follows Figure 5.

the actual neural firing dropped below 2 spikes/s from 150 to
250 ms after the target jump. Unlike the “Summed” prediction,
the “Replaced” prediction (gray dashed) successfully predicted
this transient drop in firing rate for the double-step condition.
The R2 between the actual and predicted double-step PETH was
0.80 for the “Replaced” hypothesis, but 0.05 for the “Summed”
hypothesis.

While the single-trial spike times for the control, single-step
trials (Figure 6C) showed a smooth increase and decrease in
firing rate, each individual trial in the double-step condition
showed an abrupt cessation of spiking activity (Figure 6D). This
drop is not seen in the single-trial predictions of the “Summed”
hypothesis (Figure 6E), but it is seen in the predictions of
the “Replaced” hypothesis (Figure 6F). Across all trials of all
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double-step conditions, the mean RMSE for the “Replaced”
prediction (7.5 spikes/s) was significantly less (p < 0.001,
paired-test) than the mean RMSE of the “Summed” prediction
(8.8 spikes/s).

Similar examples of “Replaced” neurons can be found in MI
(Figure 7) and PMd (Figure 8). The MI neuron (from dataset #2)
had an optimal encoding delay δ of −90 ms, and the R2 between
the actual and predicted single-step PETH for movement from
location 2 to 4 was 0.86 (Figure 7B). The R2 between double-step

PETH and the “Replaced” prediction was 0.68, and between the
PETH and “Summed” prediction was 0.08. The RMSE was signifi-
cantly less for the “Replaced” than the “Summed” prediction (14.2
vs. 15.7 spikes/s, p < 0.001, paired-test). In this dataset, the jump
involved a reversal in the direction of movement (see Materials and
Methods), but this neuron increased its firing rate for movements
in both directions, so the “Replaced” prediction was similar to the
previous example. The PMd neuron (from dataset #5) had an opti-
mal encoding delay δ of −100 ms, and the R2 between the actual

FIGURE 7 | A neuron from primary motor cortex is better fit by the “Replaced” hypothesis. Format follows Figure 5.

FIGURE 8 | A neuron from dorsal premotor cortex is better fit by the “Replaced” hypothesis. Format follows Figure 5.
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and predicted single-step PETH for movement from location 2 to
3 was 0.89 (Figure 8B). The R2 between double-step PETH and
the “Replaced” prediction was 0.81, and between the PETH and
“Summed” prediction was 0.40 (Figure 8F). The RMSE was sig-
nificantly less for the “Replaced” than the “Summed” prediction
(5.5 vs. 6.2 spikes/s, p < 0.001, paired-test).

Across all neurons, two-thirds were better fit with the
“Summed” prediction, and one-third were better fit with the
“Replaced” prediction (Table 3). For the linear version of Eq. 1,
we defined the better prediction as having a lower average RMSE,
while for the logistic version, the better prediction had a higher
log-likelihood (see Materials and Methods). The percentage of
cells which were better fit with the “Replaced” prediction (using
RMSE) did not differ significantly between MI cortex (29/75, 39%)
and premotor cortex (82/207, 40%).

Interestingly, we found that “Replaced” neurons were more
likely to lag movement velocity while “Summed” neurons tended
to lead movement velocity. Specifically, the percentage of neurons
with an encoding delay δ less than 0 was significantly different
for “Summed” and “Replaced” neurons, as were the mean and
median lags (Table 3). Recall that the encoding lag is fit only
to single-step trials, while the determination of “Replaced” vs.
“Summed” is made on the double-step trials. This difference in
the distribution of encoding delays was most dramatic when we
looked at the 128 neurons that exhibited a significant difference
(p < 0.01, t-test) in the mean RMSE between the “Summed” and
“Replaced” predictions (Figure 9). Of these cells, 46 (36%) were
better “Replaced” and 82 (64%) were better “Summed.” Again, the
“Replaced”neuronal firing was significantly more likely (p < 0.001,
chi-square test) to lag observed velocity (35/46 or 76% with
δ < 0) than was “Summed” neuronal firing (42/82 or 51% with
δ < 0).

Table 3 | Neurons which were better “Replaced” were more likely to

lag the kinematics (encoding delay <0) than neurons better

“Summed.”

Replaced Summed p-Value

Linear

Percentage of cells 39% (111) 61% (171)

Percentage lagging 58% (64) 30% (66) 0.01

Mean delay −49 ms 13 ms <0.001

Median delay −70 ms 30 ms <0.001

Logistic

Percentage of cells 36% (108) 64% (194)

Percentage lagging 56% (61) 43% (83) 0.02

Mean delay −116 ms −11 ms 0.01

Median delay −140 ms −10 ms 0.03

The top rows list the percentage (and number) of cells better “Replaced” or
better “Summed,” while the subsequent rows show the percentage of those
cells with a lagging delay, the mean delay, and median delay. The percent-
ages were compared using a chi-square test, the mean delays were compared
with a t-test, and the median delays were compared with a Wilcoxon rank-sum
test.

FIGURE 9 |The distribution of the encoding time delay δ is compared

between neurons which were better fit with the “Replaced”

hypothesis (A), versus neurons better fit with the “Summed”

hypothesis (B). Only neurons which showed a significant difference in
single-trial root-mean-square error between the two hypotheses are shown
(see Results for details).

DISCUSSION
We found that for a third of the neurons analyzed from MI and
premotor cortices, single-trial neural activity during a double-step
was better explained with the “Replaced” rather than “Summed”
encoding hypothesis. In some cases, the drop in firing rate pre-
dicted by the “Replaced” hypothesis was dramatic and readily
visible in the single-trial raster plots (see Figure 6). Thus we were
able to replicate the replacement phenomenon described previ-
ously (Georgopoulos et al., 1983; Archambault et al., 2009, 2011),
though we saw it in only a minority of cells. The majority of neu-
rons was consistent with the“Summed”hypothesis and conformed
to the model of linear encoding of velocity (Schwartz et al., 1988;
Moran and Schwartz, 1999).

Why did we only observe the “Replaced” phenomenon in a
minority of cells? One potential difference from the studies by
Archambault et al. (2009, 2011) is that we used a 1-D reaching
paradigm rather than 3-D unconstrained reaching. We chose the
1-D paradigm to make the decomposition algorithm as simple
as possible (see Decomposing Double-step Kinematics). However,
we do not expect the change in the degrees of freedom to affect
the results – the “Replaced” hypothesis was described for both
2-D planar reaching (Georgopoulos et al., 1983) and 3-D uncon-
strained reaching (Archambault et al., 2009, 2011). Likewise, linear
encoding models have been used to describe motor cortical firing
both for 2-D planar reaching (Moran and Schwartz, 1999) and
3-D unconstrained reaching (Wang et al., 2007).

We feel the difference from the Archambault et al.’s (2009; 2011)
studies is simply one of methodology. The previous studies were
documenting the existence of a phenomenon, so the “Replaced”
hypothesis was compared to a null condition. This null condi-
tion replaced neural firing with a randomly selected firing pattern,
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while the alternative condition replaced with a firing pattern corre-
sponding to the direction of the correction. That is an appropriate
technique, but it does not address the question of whether the
“Replaced” hypothesis is better than the existing linear encoding
models (the“Summed”hypothesis). We wanted to know the preva-
lence of “Replaced” phenomenon, not just whether it existed. That
is a higher threshold of evidence to cross, and only one-third of
neurons crossed it.

That said, we tested a fairly restrictive form of the “Replaced”
hypothesis, where the prediction of neuronal firing at one time
point was instantaneously replaced with another firing rate, usu-
ally leading to a sharp drop in predicted firing rate back to
baseline. This was done deliberately, because it helped ensure
that the neurons found to be better “Replaced” were not simply
being over-fit. However, it did mean that other neurons might be
well-described with the “Replaced” hypothesis using a more gen-
tle transition. Thus the number of “Replaced” neurons might be
underestimated.

We also found that the firing of neurons better fit by the
“Replaced” hypothesis was more likely to lag velocity than lead
it (see Figure 9). This suggests that this population is mon-
itoring on-going movement as opposed to causally driving it.
However, it is unclear why these lagging neurons would shut-
off during the target jump. The simplest interpretation is that
the firing of these lagging neurons is related to incoming sen-
sory information, but that this neuronal firing is inhibited after
the target jump. This might be analogous to saccadic suppres-
sion, where sensory responses are dampened in primary visual
cortex during a saccade (Vallines and Greenlee, 2006) to avoid the
trouble of processing a blurry image. Perturbation experiments
during voluntary movement have suggested that the propriocep-
tive effects on MI neurons are highly attenuated during large
ballistic movements as compared to finer movement adjust-
ments (Evarts and Fromm, 1977). Therefore, modulation in this
“sensory” population of MI neurons might be expected to tem-
porarily shut-off during the early ballistic portion of the corrective
movement.

Another possibility is these “Replaced” neurons are partic-
ipating in a larger cortical network which monitors of the
consequences of motor actions, particularly whether or not the
action is successful. For example, the anterior cingulate cortex
(ACC) is known to have projections to MI cortex (Dum and Strick,
1991), and the ACC has been implicated in the monitoring of
the consequences of one’s actions. One proposal is that the ACC
encodes the “surprise related to the non-occurrence of a predicted
event” (Alexander and Brown, 2011). Neurons in the ACC have
been found that show an error-related phasic increase in firing
rate peaking around 200 ms after the initiation of an inappropri-
ate saccade (Ito et al., 2003). If these neurons (or similar neurons)
directly inhibited the pool of “Replaced” neurons described here,
it would explain the sudden drop in firing rate following a target
jump.

We focused on kinematics for this study, because our single-
trial “Replaced” prediction relied on a kinematic decomposition
assuming summation of the original movement and a second cor-
rective movement. One drawback of this focus is that we did
not record forces, torques, or muscle activity. The lack of force

data means we were unable to investigate alternatives to kinematic
summation, such as the proposal that a target jump elicits a stereo-
typed force pulse made in the direction of the new target (Massey
et al., 1986).

Another limitation is that we excluded a fair number of neurons
from analysis. We excluded 190 of 553 neurons (34%) for having
a predictive encoding lag greater than +175 ms. This was done
purposely to exclude neurons firing in relation to the previous
target appearance (Reimer and Hatsopoulos, 2010), rather than
anticipation of future velocity. We did not want to consider tar-
get encoding effects here. We also excluded an additional 81 of 553
neurons (15%) because they were not well fit by the linear encoding
model. However, such neurons might still encode relevant infor-
mation, particularly if they use a temporal rather than a rate code.
By focusing on the two main classes of neurons, “Summed” and
“Replaced,” we are underestimating the heterogeneity of neural
coding.

We used the double-step reaching paradigm in these exper-
iments to reliably induce corrections, so that we could average
across trials with similar corrections. However, we view this as
a model system for corrections and motor variability in general.
Corrective submovements are often observed when reaches require
accuracy (Crossman and Goodeve, 1983; Milner and Ijaz, 1990;
Novak et al., 2000) or when infants are first learning to reach
(Berthier, 1997). We predict that these “Replaced” neurons would
also show a sharp change in firing rate for these naturally occur-
ring corrections as well as those resulting from a target jump.
Decomposing submovements in naturalistic movement is a diffi-
cult problem if the exact nature of the submovement is uncertain
(Krebs et al., 1999). However, unpredictable gain or rotation per-
turbations could be applied on a single-trial basis to reliably induce
corrections without the need for a sudden shift in visual target
location.

The existence of a subpopulation of “Replaced” neurons is
relevant for the design of brain machine interfaces. Standard
techniques, such as the linear filter (Serruya et al., 2002) or the
Kalman filter (Wu et al., 2002), tend to only look at the neuronal
firing with leading encoding delays. This means such techniques
may ignore the lagging “Replaced” neurons entirely. However,
this subpopulation might be used to identify the presence of
a correction, which would indicate the need for a dramatic
adjustment to the estimate of hand position. Additionally, the
“Replaced” subpopulation could be used to identify trials where
a correction was necessary, which could be used as a teaching
signal in an adaptive decoding algorithm. If the “Replacement”
phenomenon is replicated in situations involving more natural
corrections, then we should be able to leverage the informa-
tion they contain to make brain machine interface algorithms
more accurate and easier to control during real-time, closed loop
control.

ACKNOWLEDGMENTS
We would like to thank Aaron Suminski for help in creat-
ing images and Josh Coles for help in training subjects. This
work was supported by National Institute of Neurological Dis-
orders and Stroke at the National Institutes of Health (R01
NS045853).

Frontiers in Neural Circuits www.frontiersin.org April 2013 | Volume 7 | Article 51 | 11

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


“fncir-07-00051” — 2013/4/4 — 9:36 — page 12 — #12

Dickey et al. Heterogeneous coding of corrections

REFERENCES
Alexander, W. H., and Brown, J. W.

(2011). Medial prefrontal cortex as
an action-outcome predictor. Nat.
Neurosci. 14, 1338–1344.

Archambault, P. S., Caminiti, R., and
Battaglia-Mayer, A. (2009). Corti-
cal mechanisms for online control of
hand movement trajectory: the role
of the posterior parietal cortex. Cereb.
Cortex 19, 2848–2864.

Archambault, P. S., Ferrari-Toniolo,
S., and Battaglia-Mayer, A. (2011).
Online control of hand trajectory and
evolution of motor intention in the
parietofrontal system. J. Neurosci. 31,
742–752.

Berthier, N. E. (1997). “Analysis of
reaching for stationary and mov-
ing objects in the human infant,” in
Neural Network Models of Cognition:
Biobehavioral Foundations, eds J. W.
Donohoe and V. P. Dorsel (Amster-
dam: Elsevier), 283–301.

Crossman, E. R., and Goodeve, P. J.
(1983). Feedback control of hand-
movement and Fitts’ law. Q. J. Exp.
Psychol. A 35, 251–278.

Desmurget, M., Epstein, C. M., Turner,
R. S., Prablanc, C., Alexander, G.
E., and Grafton, S. T. (1999). Role
of the posterior parietal cortex in
updating reaching movements to
a visual target. Nat. Neurosci. 2,
563–567.

Dum, R. P., and Strick, P. L. (1991).
The origin of corticospinal projec-
tions from the premotor areas in the
frontal lobe. J. Neurosci. 11, 667–689.

Evarts, E. V., and Fromm, C. (1977).
Sensory responses in motor cortex
neurons during precise motor con-
trol. Neurosci. Lett. 5, 267–272.

Flash, T., and Henis, E. (1991). Arm tra-
jectory modifications during reach-
ing towards visual targets. J. Cogn.
Neurosci. 3, 220–230.

Flash, T., and Hogan, N. (1985).
The coordination of arm movements:
an experimentally confirmed mathe-
matical model. J. Neurosci. 5, 1688–
1703.

Georgopoulos, A. P., Kalaska, J. F.,
Caminiti, R., and Massey, J. T. (1982).
On the relations between the direc-
tion of two-dimensional arm move-
ments and cell discharge in primate
motor cortex. J. Neurosci. 2, 1527–
1537.

Georgopoulos, A. P., Kalaska, J. F.,
Caminiti, R., and Massey, J. T. (1983).
Interruption of motor cortical dis-
charge subserving aimed arm move-
ments. Exp. Brain Res. 49, 327–340.

Georgopoulos, A. P., Kalaska, J. F.,
and Massey, J. T. (1981). Spatial
trajectories and reaction times of
aimed movements: effects of prac-
tice, uncertainty, and change in target
location. J. Neurophysiol. 46, 725–
743.

Goodale, M. A., Pelisson, D., and
Prablanc, C. (1986). Large adjust-
ments in visually guided reaching do
not depend on vision of the hand
or perception of target displacement.
Nature 320, 748–750.

Grea, H., Pisella, L., Rossetti, Y.,
Desmurget, M., Tilikete, C., Grafton,
S., et al. (2002). A lesion of the poste-
rior parietal cortex disrupts on-line
adjustments during aiming move-
ments. Neuropsychologia 40, 2471–
2480.

Henis, E., and Flash, T. (1995). Mech-
anisms underlying the generation of
averaged modified trajectories. Biol.
Cybern. 72, 407–419.

Hogan, N. (1984). An organizing prin-
ciple for a class of voluntary move-
ments. J. Neurosci. 4, 2745–2754.

Ito, S., Stuphorn, V., Brown, J. W., and
Scall, J. D. (2003). Performance mon-
itoring by the anterior cingulate cor-
tex during saccade countermanding.
Science 302, 120–122.

Krebs, H. I., Aisen, M. L., Volpe, B.
T., and Hogan, N. (1999). Quantiza-
tion of continuous arm movements
in humans with brain injury. Proc.
Natl. Acad. Sci. U.S.A. 96, 4645–4649.

Massey, J. T., Schwartz, A. B., and
Georgopoulos, A. P. (1986). On infor-
mation processing and performing a
movement sequence. Exp. Brain Res.
15, 242–251.

Maynard, E. M., Hatsopoulos, N. G.,
Ojakangas, C. L., Acuna, B. D., Sanes,
J. N., Normann, R. A., et al. (1999).
Neuronal interactions improve corti-
cal population coding of movement
direction. J. Neurosci. 19, 8083–
8093.

Milner, T. E., and Ijaz, M. M.
(1990). The effect of accuracy con-
straints on three-dimensional move-
ment kinematics. Neuroscience 35,
365–374.

Moran, D. W., and Schwartz, A. B.
(1999). Motor cortical representation
of speed and direction during reach-
ing. J. Neurophysiol. 82, 2676–2692.

Novak, K. E., Miller, L. E., and Houk,
J. C. (2000). Kinematic properties
of rapid hand movements in a knob
turning task. Exp. Brain Res. 132,
419–433.

Paulignan, Y., MacKenzie, C., Marte-
niuk, R., and Jeannerod, M. (1991).
Selective perturbation of visual input
during prehension movements. 1.
The effects of changing object
position. Exp. Brain Res. 83,
502–512.

Pelisson, D., Prablanc, C., Goodale, M.
A., and Jeannerod, M. (1986). Visual
control of reaching movements with-
out vision of the limb. II. Evidence of
fast unconscious processes correcting
the trajectory of the hand to the final
position of a double-step stimulus.
Exp. Brain Res. 62, 303–311.

Prablanc, C., and Martin, O. (1992).
Automatic control during hand
reaching at undetected two-
dimensional target displacements. J.
Neurophysiol. 67, 455–469.

Reichenbach, A., Bresciani, J. P., Peer,
A., Bulthoff, H. H., and Thielscher,
A. (2011). Contributions of the PPC
to online control of visually guided
reaching movements assessed with
fMRI-guided TMS. Cereb. Cortex 21,
1602–1612.

Reimer, J., and Hatsopoulos, N.
G. (2010). Periodicity and evoked
responses in motor cortex. J. Neu-
rosci. 30, 11506–11515.

Reina, G. A., Moran, D. W., and
Schwartz, A. B. (2001). On the rela-
tionship between joint angular veloc-
ity and motor cortical discharge dur-
ing reaching. J. Neurophysiol. 85,
2576–2589.

Rousche, P. J., and Normann, R. A.
(1992). A method for pneumati-
cally inserting an array of penetrating
electrodes into cortical tissue. Ann.
Biomed. Eng. 20, 413–422.

Schwartz, A. B., Kettner, R. E., and
Georgopoulos, A. P. (1988). Pri-
mate motor cortex and free arm
movements to visual targets in
three-dimensional space. I. Relations
between single cell discharge and
direction of movement. J. Neurosci.
8, 2913–2927.

Serruya, M. D., Hatsopoulos, N. G.,
Paninski, L., Fellows, M. R., and
Donoghue, J. P. (2002). Instant neural
control of a movement signal. Nature
416, 141–142.

Soechting, J. F., and Lacquaniti,
F. (1983). Modification of tra-
jectory of a pointing movement
in response to a change in tar-
get location. J. Neurophysiol. 49,
548–564.

Vallines, I., and Greenlee, M. W. (2006).
Saccadic suppression of retinotopi-
cally localized blood oxygen level-
dependent responses in human pri-
mary visual area V1. J. Neurosci. 26,
5965–5969.

Wang, W., Chan, S. S., Held-
man, D. A., and Moran, D. W.
(2007). Motor cortical representa-
tion of position and velocity during
reaching. J. Neurophysiol. 97, 4258–
4270.

Wu, W., Black, M. J., Gao, Y., Bienen-
stock, E., Serruya, M., and Donoghue,
J. P. (2002). “Inferring hand motion
from multi-cell recordings in motor
cortex using a Kalman filter,” in
SAB’02-Workshop on Motor Control
in Humans and Robots: On the Inter-
play of Real Brains and Artificial
Devices, August 10, 2002, Edinburgh,
66–73.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 30 November 2012; paper
pending published: 17 January 2013;
accepted: 08 March 2013; published
online: 04 April 2013.
Citation: Dickey AS, Amit Y and Hat-
sopoulos NG (2013) Heterogeneous neu-
ral coding of corrective movements in
motor cortex. Front. Neural Circuits 7:51.
doi: 10.3389/fncir.2013.00051
Copyright © 2013 Dickey, Amit and
Hatsopoulos. This is an open-access arti-
cle distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are cred-
ited and subject to any copyright notices
concerning any third-party graphics etc.

Frontiers in Neural Circuits www.frontiersin.org April 2013 | Volume 7 | Article 51 | 12

http://dx.doi.org/10.3389/fncir.2013.00051
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive

	Heterogeneous neural coding of corrective movements in motor cortex
	Introduction
	Materials and methods
	Neural recordings
	Behavioral task
	Data processing
	Encoding model
	Decomposing double-step kinematics
	"Summed" vs. "replaced" hypothesis

	Results
	Discussion
	Acknowledgments
	References


