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A unique delayed self-inhibitory pathway mediated by layer 5 Martinotti Cells was studied
in a biologically inspired neural network simulation. Inclusion of this pathway along with
layer 5 basket cell lateral inhibition caused balanced competitive learning, which led to
the formation of neuronal clusters as were indeed reported in the same region. Martinotti
pathway proves to act as a learning “conscience,” causing overly successful regions in
the network to restrict themselves and let others fire. It thus spreads connectivity more
evenly throughout the net and solves the “dead unit” problem of clustering algorithms in
a local and biologically plausible manner.
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INTRODUCTION
The neocortex is probably the most magnificent piece of biologi-
cal machinery we possess, responsible above all else for making
us who we are both as a species and as individuals. Structural
studies reveal it is made of a relatively repeating stereotypical hier-
archy of columns and layers, slightly varying between different
regions in charge of different tasks. Closer inspection, however,
hits an “impenetrable jungle” of connectivity, leaving neocortical
inner-circuitry largely a mystery to this day.

Recently, several small-scale neocortical connectivity struc-
tures have been found, one of which is a unique inhibitory
pathway of sub-columnar dimensions. It provides prolonged
delayed feedback, inhibiting excitatory pyramidal cell (PC) neigh-
borhoods which stir it to action within a distinctive delay from
activity onset (Kapfer et al., 2007; Silberberg and Markram, 2007;
Berger et al., 2010). This pathway is mediated by Martinotti cells
(MC), a somatostatin (SOM)-expressing prominent member of
the neocortical interneuron population, most frequent in layer 5
(Markram et al., 2004). In the same 5th layer, other studies have
found recurring structures and regularities in PC network con-
nectivity (Song et al., 2005; Perin et al., 2011). Across different
animals, similar patterns of PC clustering were found in a remark-
ably predictable fashion. Finding such regularities, in postnatal
animals especially, begged the question of their origin—might
they be predetermined, perhaps DNA prescribed?

In describing layer 5 circuitry, a third important player is miss-
ing. Large basket cells (LBC) are the most prevalent interneuron
type of the entire neocortex and of layer 5 specifically. They
are parvalbumin (PV) expressing, and together with MC, these
two types constitute the vast majority of the layer’s interneurons
(Markram et al., 2004; Rudy et al., 2011). In contrast to MC’s
local innervation, LBCs are known to be the most common lateral
inhibition neurons of the neocortex (Wang et al., 2002; Markram
et al., 2004), extending expansive lateral axonal arborizations to

neighboring and distant columns within their layer. For this rea-
son, they are frequently attributed imposing Mexican hat shaped
inhibition in the neocortex (Casanova et al., 2003), dynamics
which are prominent in neural network literature (Kang et al.,
2003) and constitute a basic circuitry principle in the cortex,
mapping cortical input to output (Adesnik and Scanziani, 2010).

Putting together PC neurons with MC and LBC inhibition, a
comprehensive simulation of neocortical layer 5 circuitry is possi-
ble, covering approximately 95% of the layer’s neuronal types. We
have composed such a neural network simulation and examined
how these novel inhibition dynamics affect network behavior and
development. We have found that the combination of MC and
LBC inhibition produces a unique balance in learning. MC inhi-
bition with its spatial and temporal traits constitutes a substantial
addition to classic local-excitation lateral-inhibition connectiv-
ity, acting as a chief regulator of competitive learning. A useful
competitive circuit is formed, which under simple spike-timing
dependent plasticity (STDP) rules inevitably develops clustered
connectivity patterns in an excitatory PC network, patterns which
were indeed found to exist.

Although much has been discovered in recent years on both
the importance and the characteristics of cortical inhibitory neu-
rons, understanding of their circuitry and subtype-specific role
in cortical computation is so far lacking (Isaacson and Scanziani,
2011). In this study we therefore offer a feasible interpretation of
some of the function both LBCs and MCs play in cortical dynam-
ics, both in agreement with previous work ascribing them with
input selectivity and tuning responsibilities.

MATERIALS AND METHODS
SINGLE NEURON SIMULATION
Leaky integrate-and-fire (LIF) model (Burkitt, 2006) was cho-
sen to simulate PC neurons in this study due to its biologi-
cal relevance along with computational simplicity, according to
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the following update equation:

V(t + �t) =
(

1 − �t

τ

)
V(t) + �t

C
I(t) + �t

τ
Vrest (1)

Membrane resting potential Vrest is set to −65 mV, threshold
potential to −40 mV and time constant τ to 20 ms, based on the
electrophysiological characteristics of cortical pyramidal neurons.
Firing is followed by an absolute refractory period of 1 ms.

NETWORK INPUT
At any given time of the simulation, a randomly generated input
is driving the network. A single input is in fact a binary vector of
size N, so all neurons act as channels to the outside world to this
extent. An input pattern is held constant for a time window of
160 ms so encompassing 4 learning iterations (see Plasticity), after
which it is regenerated, switching on/off each of the N input chan-
nels at an independent probability of 0.5 each. An active input
channel mimics an electric current producing a driving force of
5 mV EPSP, which causes stimuli receiving neurons to fire at a fre-
quency of 166 Hz. Stemming from Equation 1, in order to achieve
a PSP change of γ (in mV), external input at time t should be:

I(t) =
{
γ + �t

τ
V(t) − �t

τ
Vrest

}
C

�t
(2)

Assuming post-synaptic neuron is at resting potential at time t, γ

PSP would be achieved within �t time by an outside current of:

I(t) = γ
C

�t
(3)

Synaptic weights are calculated using Equation 3, with �t of 1 ms
in order to produce the effect by a single pre-synaptic spike at
resting potential.

SIMULATION PROCEDURE
A standard simulation begins with random distance-dependent
connectivity between neurons. Timeline is dependent primarily
upon learning rate, a variable dictating the extent to which learn-
ing affects the network. Learning rate declines exponentially over
time, reflecting network stabilization. This enables the network to
change dramatically on early stages of simulation and then slowly
stabilize and fine tune, in a way resembling AI self-organizing
maps (SOMs). Simulation ends when learning becomes practi-
cally ineffective. Standard learning rate of our simulation declines
at a factor of 550. Update is done in learning iterations lasting
40 ms each, thus allowing 885 such iterations throughout a single
simulation.

PC CIRCUITRY
Simulation network is made of N pyramidal neurons (1000 as
standard), with connectivity matrices representing excitatory and
inhibitory connections. Only PCs are implemented as model
spiking neurons so to keep the simulation relatively simple, and
portray the key effect on PC interconnectivity arising from MC-
LBC structure dynamics (see Results, for a discussion of this
approach). Networks represent a 3D cube of cortical tissue, so

each PC is ascribed a three dimensional coordinate. Average dis-
tance between neurons is set to 36 μm between cortical PCs
(based on unpublished electrophysiological findings), while an
additional position jitter of up to 30 μm is randomly applied.
Given the network has within it a maximal distance of maxDist,
connectivity is initialized naively distance dependent using the
following connection probability for any two neurons I and j:

P
(
connecti,j

) =
(

maxDist − disti,j

maxDist

)5

(4)

Because distances distribute normally around 250 μm, Equation
4 results in 12.2% connectivity initialization on average. PC-
PC synapses undergo synaptic efficacy molding throughout the
simulation, and are randomly initialized between 1 and 4 mV
EPSP.

LBC CIRCUITRY
Basket Cell inhibition in the net is expressed by depressing con-
nections made between PCs. LBC-PC synaptic strength in our
study is set to 1.5 mV IPSP (Thomson et al., 2002). Inhibitory
BC connectivity between PCs is set, again, following distance-
dependent connection probability, normally distributed around
a mean distance of 40 μm with a variance of a third of the maxi-
mal distance (maxDist/3). This is done to match the geographical
distribution and connection probability of somatosensory layer 5
LBCs taken from Packer and Yuste (2011).

MC CIRCUITRY
Delayed self-inhibition, the inhibitory pathway attributed to MCs
is manifested in the model as a paralyzing inhibitory current
affecting a 50 μm neighborhood range of an active PC neuron
(Silberberg and Markram, 2007). Each PC is a center of such
a neighborhood, initiating a 50 μm radius inhibition around it
when active, so to not bias to begin with formation of any specific
neighborhoods. MC inhibition lasts 120 ms but within 240 ms
delay from activity onset (Silberberg and Markram, 2007).

PLASTICITY
Synaptic plasticity in the simulation comes in two major forms,
both governed primarily by the global learning rate. The pri-
mary form of plasticity is the ongoing learning process of STDP,
modulating synaptic strength according to its directionality and
according to the relative timing of spikes coming from the two
neurons on both ends of it (Feldman, 2012). For this research a
classic “Hebbian” STDP function was implemented from Bi and
Poo (1998) with two major modifications:

(1) Effective time slot for LTD and LTP are unsymmetrical,
depression sensitive to larger time scales than potentiation,
as several studies have found (Feldman, 2000; Sjöström et al.,
2001).

(2) Certain randomness is incorporated for determining exact
volume of synaptic change. As can also be seen in Bi and Poo
(1998), classic STDP function defines a range, not a deter-
ministic value of change per each �t. This is probably due to
a multitude of factors which influence actual STDP in addi-
tion to pairwise directionality and timing, such as firing rate,
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synaptic location, and trains of multiple spikes (Pfister and
Gerstner, 2006; Froemke et al., 2010a,b; Feldman, 2012)

Using an LTP window ϕ1 of 20 ms along with an LTD window ϕ2

of 40 ms, the following equation describes the change applied to
synapse Ai,t as the result of a time difference of �t ms between
a presynaptic spike from neuron I and a postsynaptic spike from
neuron t (where r is a random scalar between 0 and 1 embodying
randomness described above in point 2, and δ is the current global
learning rate):

Ai,t =
⎧⎨
⎩

Ai,t + 0.05 ∗ Ai,t ∗ e

( −�t
30

)
∗ r ∗ δ 0 ≤ �t < ϕ1

Ai,t − 0.05 ∗ Ai,t ∗ e

( �t
30

)

2 ∗ r ∗ δ − ϕ2 < �t < 0
(5)

A 0.05 factor is applied to make single spike change very small and
in fact resemble real plasticity in which a train of at least 20 spikes
is required for functional change.

A second separate form of plasticity affects inactive synapses
rather than active ones in a periodic fashion. A learning itera-
tion window is defined (40 ms), at the end of which synapses
which have not been altered by STDP in the last period undergo a
“natural” small weakening.

Synapses in the simulation are allowed to vary in strength
between 0.05 and 12 mV EPSP. Upper bound constitutes synapse
saturation and cannot be exceeded. Lower bound determines
threshold for pruning away the synapse.

ANALYSIS
Result analysis is done using custom Matlab software and python
scripts. For cluster connectivity comparison and analysis we use
Affinity Propagation (AP) algorithm in this study (Frey and
Dueck, 2007). AP was chosen in order to submit simulation
results to the same tests used by Perin et al. (2011), and so pro-
vide the best possible comparison between the two. AP algorithm
finds the best matching representatives (termed “exemplars”) of
a set of data points, given their similarity to one another and a
value for each point indicating the preference of it being chosen as
such an exemplar. A subset of exemplars is eventually converged
upon, optimizing input values. Exemplars together with the neu-
rons they represent constitute clusters. For our study, similarity
between each pair of neurons is defined as the number of com-
mon neighbors (NCN) shared by them, and preference value is
set to a common value of 2, as was done by Perin et al.

For firing pattern analysis, we used Manhattan distance to
assess spike train similarity. This metric provided results simi-
lar to those of the Victor-Purpura spike train metric (Dauwels
et al., 2009)1 , which is infeasible to calculate for large networks
within reasonable time. PCA algorithm was used on spike train
distance matrix in order to reduce feature space dimensionality,
and the first five components of PCA were picked, explaining 99%

1Victor-Purpura distance metric defines the distance between two spike trains
as the minimum cost of transforming one train to the other using three basic
operations: insertion, deletion, and movement. Using this metric, each neuron
is defined as an N vector space, where the i’th element is its Victor-Purpura
distance from the i’th neuron.

of distance variance. Over this N × 5 features space we applied
mixture of Gaussians clustering method (Titterington et al., 1985)
to find neurons with similar spiking behavior. Only the last quar-
ter of simulation activity was regarded in order to analyze evolved
network dynamics.

To determine the most reasonable number of clusters emerg-
ing from our data, we used information-theoretic criteria (BIC)
(Burnham and Anderson, 2002) and chose the model bearing
minimal BIC score. Two distinct types of clusters were found—
clusters of correlated active neurons and clusters of silent ones,
which almost did not fire and were therefore disregarded from
analysis. For oscillation analysis, spike trains of the most active
unit of each cluster were examined. Auto-correlation of these
spike trains revealed oscillatory behavior, while cross-correlation
between all pairs revealed phase differences and alternation
patterns.

RESULTS
Following empirical geographical distributions and connection
probabilities (see Materials and Methods), connected LBCs are
more distant from the average PC than connected PCs are from it
(Figure 1A) allowing Mexican hat shaped excitation. Adding MC
inhibition produces the complete structure depicted in Figure 1B.
As described in Materials and Methods, simulation is highly sim-
plified, using LIF model for PC neurons and modeling inhibitory
neurons only as inhibitory currents lacking neuronal dynam-
ics of their own. Many network connectivity complexities are
disregarded in this way, such as synapse targeting location and
inhibition of inhibition, however it allows focused portrayal of
a computational principle and its abstraction from finer scaled
anatomical debate. We chose this approach in order to bridge
between biological and computational knowledge, hoping each
could afford some insight to the other. Our model was run
under random input and through different sized simulations.
End-point network connectivity was analyzed and compared to
its distance-dependent random initialization.

CLUSTERING EFFECT
Connectivity as illustrated in Figure 1B causes PC network to
gradually converge to separate synchronized competing regions,
as can easily be seen in firing patterns produced by simplified
models of small networks (Figure 2C). Clustered activity is not
surprising under “Mexican hat” shaped inhibition as imposed by
LBC inhibition. Indeed, networks without this type of cell exhibit
a steady influx of activity until almost saturation (Figure 2A).
However, clustering balance is apparently lost when MC inhibi-
tion is removed from dynamics.

ROLE OF MC INHIBITION
Absent MC inhibition, one area of the network will eventually
reach a critical mass of strength, which will cause it to be the most
driven region in the net for any outside stimulus. This region
breaks through dynamics and grows unequivocally dominant
with less and less competition (Figure 2B). The product of such a
network is therefore heavily unbalanced, as an average 5% of neu-
rons produces around a fourth of network activity and inequality
between firing rates is thus substantially larger (Figure 2D). This
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FIGURE 1 | Three-way inhibitive structure. (A) Average amount of
connected PCs (green) and LBCs (blue) from a single PC per
inter-somatic distance (avg. sum of neurons per distance surrounding a
single PC). PC and LBC distributions and connectivity functions allow for
Mexican hat shaped excitation, as connected PCs are generally closer

than connected LBCs. (B) Illustration of structure topology. Activation of
central PC immediately drives connected PCs while inhibiting others
which are connected via basket cell lateral inhibition. It also inhibits its
own local neighborhood within a certain delay, the effect attributed to
Martinotti cells.

FIGURE 2 | Inhibitive structure effects—a comparison of firing patters

produced by same network without LBC inhibition, without MC

inhibition and with both inhibitions in place. (A) Firing raster plot of a 64
neuron network absent LBC inhibition. In early stages firing is according to
input pattern. Very quickly, more and more neighboring neurons are recruited
until all fire regardless of input. Only breaks in activity are offered by MC
inhibition, which becomes in sync between all neurons. (B) Firing raster plot
of a network absent MC inhibition. Network dynamics eventually lock down

to one area, allowing it to grow perpetually stronger and remain active, while
shutting down others with no real competition. (C) Firing raster plot of similar
network with full structure in place. Firing gradually converges to separate
regions of clustered synchronized activity (D) Avg. firing rate in different
paradigms. Lack of MC (red bar) leaves firing rate similar to normal network
(in yellow) but at a greater variance as network becomes uneven. Removal of
LBC inhibition, on the other hand, results in homogeneous huge volumes of
firing (green).
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dominant group’s geographical locality is evident in analyzing
plasticity events the network underwent (Figure 3A). STDP activ-
ity does not spread equally across the net but is rather restricted
to a confined selected area, which produces all the firing activity.
Varying the amount of MCs in the network (randomly select-
ing a subset of PCs activating MC inhibition) reveals the graded
effect this inhibition has on network dominance (Figure 3B).
The more MC inhibition in the network the more balanced it
becomes, reducing activity disparity between clusters and their
overall domination of the net.

It appears MC inhibition has a regulatory role in competi-
tive dynamics. It enforces certain synchronization in inhibition
of pyramidal neighborhoods (Berger et al., 2010). When a region
becomes active and strengthens it is MC inhibition which is in
charge of shutting it down, allowing other areas to grow strong
as well. Both LBC and MC inhibition play a vital role in cluster
formation, therefore. It is LBC structure which imbeds an inher-
ent tendency to cluster, and MC regulation of it which makes that
tendency well-spread and useful throughout the entire network.
If LBC inhibition causes groups of neurons to compete with one
another, MC inhibition makes that competition fair.

COMPARISON WITH NEOCORTICAL CLUSTERS
Using the same paradigm used in real brain tissue analysis (Perin
et al., 2011), we next compared the clustering effect of LBC-MC
inhibition to empirically found connectivity traits, in order to
examine the possible relation between the two.

Full length simulation results in the elimination of a little
under half of all synapses, somewhat resembling cortical develop-
ment between early childhood and puberty (Chechik et al., 1998).
Connection probability remains distance dependent, but, in gen-
eral, connections become shorter and stronger, more “focused”
so to speak. AP analysis (see Materials and Methods) yields
40.4 ± 1.71 clusters at an average size of 24.8 ± 1.06 mem-
bers each. For comparison, a rerun of the simulation by Perin
et al. (2011) for 1000 neurons results in clusters of 31.58 ± 2.29
members.

Clusters in our network comprise an average connectivity
ratio of 30.06 ± 0.86%, almost four times higher than the overall
network ratio. These densely connected clusters, however, over-
lap substantially in between themselves as well, allowing vast
cooperation possibilities between one another (as illustrated in
Figure 4A). In terms of synaptic strength, while there are far

FIGURE 3 | Effect of MC inhibition. (A) Temperature plots indicate the
amount of STDP events which each synapse underwent in one full 1000
neuron simulation, on network connectivity matrices. Panel I (on the left)
depicts a standard simulation, while panel II is an example of a simulation
lacking MC inhibitive pathway. Removing MC ruins the even spread of STDP

events and causes them all to happen in one rather confined area (in very
high volumes). (B) Avg. percentage of overall network activity is plotted for
each of the 4 most active clusters, per different amounts of MCs in the
network. As more and more MCs are added, activity becomes more
balanced between clusters.
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FIGURE 4 | Pyramidal clusters. (A) Illustration of cluster overlap. On
the right—cluster distribution in 3d space. Clusters are drawn as
spheres using their calculated center point and average diameter. They
overlap substantially, as can be seen zooming in to a region (on the
left hand side). Two different clusters, colored green and orange,
interlace in this space. Black dots indicate neurons which belong to

neither of the two clusters. (B) Strong synapses constitute a larger
fraction of inner-cluster synapses than outer-cluster synapses (STD bars
shown in black. ∗p < 0.05, ∗∗p < 0.001). (C) Common neighbor rule.
Both the probability to connect (in red) and the average connectivity
strength (blue bars) rise as a function of the number of neighbors
two PC neurons share.

more synapses bridging different clusters than those connecting
neurons of the same cluster, synaptic strength tends to distribute
rather similarly in the two groups, with tremendous variance in
both. This bimodal distribution of synaptic weights is common
in naïve forms of STDP learning, and may be balanced using
additional parameters to plasticity (Van Rossum et al., 2000), a
complexity we thought unnecessary for our model. Despite this
large variability, strong synapses constitute a significantly higher
percentage of inner-synapses than outer-synapses (Figure 4B).
Synaptic strength inside clusters is on average 3.43 ± 0.31 mV
(in EPSP), while the average synapse outside clusters is of
2.29 ± 0.18 mV EPSP strength.

NCN was found by Perin et al. (2011) to constitute a stable
organizing principle for network connectivity, reliably predicting
both connection probability and strength between pairs of pyra-
midal neurons. It was used in this study for cluster identification
in the same manner that was done in the original paper. In light
of similar tendencies found and reported above, NCN rule proves
to apply to our networks as well. This is evident in Figure 4C, as
the more common neighbors two neurons share the more likely

they are to be connected, and the stronger the connection between
them tends to be.

FIRING PATTERNS
Since biologically resembling connectivity tendencies emerge, it
is interesting to examine network firing patterns, as such mini-
scale behaviors are so far inaccessible in real live brain tissues.
Network activity reaches high gamma frequency firing rates
(90 Hz on average) and becomes rather oscillatory. Prominent
clusters which have emerged during development compete for
input and alternate in activity in between them, firing rather
synchronously. In small networks, 2–3 clusters emerge as dom-
inant and share the bulk of network activity in between them
(Figures 2C, 5A). In large networks lateral inhibition extends to a
smaller portion of the network and dynamics are more complex,
creating 4–5 larger prominent clusters which overlap in activ-
ity. These clusters span the entire network but with an average
inter-somatic distance favoring neighbors (112.4 ± 4.8 μm).

Cluster oscillatory behavior is evident in triangular-like auto-
correlation analysis of their spiking activity (Figure 5B, upper
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FIGURE 5 | Firing pattern analysis. (A) Matrix of Victor-Purpura distance
between each neuron to all others. Clusters were identified using MOG
algorithm, marked on the figure in blue squares. Of each cluster, the
most active unit was selected to represent firing rate, marked in purple
for illustration. (B) Firing analysis of a sample 64 neuron network. Upper
row depicts auto-correlation of neurons from 3 prominent clusters (i.e.,

amount of intervals that occurred between spikes per different time
windows). Oscillatory behavior is manifested in repeating auto-correlation
interval peaks (around 300 ms). On the bottom row, cross-correlation
between neurons of different clusters illustrates alternating activity
between clusters. Activity oscillates between clusters at different
intervals.

row), and alternation between clusters evident in cluster cross-
correlation (Figure 5B, bottom row). Oscillatory time scale is
highly dependent upon MC temporal dynamics and the joint
activation time window they allow. These temporal dynamics are
over-simplified in our model and oscillations would be expected
to be much more varied in real dynamics, however recent findings
have shown that MCs do in fact behave in an oscillatory fashion
themselves as they do in our model, enhancing excitability and
alternating layer 5 PC firing mode (Li et al., 2013).

DISCUSSION
In this study we have shown that a unique inhibitory feedback
structure found in the neocortex may contribute in forming
a useful network circuit, embedding well-regulated competitive
learning within the net. Generalization of this architecture to the
entire cortex is questionable, as we know different areas harbor
specialized circuits. However, lateral inhibition as described in
this paper and the general structure of Martinotti inhibition are
widely prevalent throughout the cortex (Kätzel et al., 2011), and
so the dynamics described in this paper may be a general out-
line of circuit behavior, subject to local variations. The inhibitory
pathway of MC has been reported both between layer 2/3 and
layer 5 PCs (Adesnik and Scanziani, 2010), and in between layer
5 PCs themselves (Silberberg and Markram, 2007). Both of the
above would contribute to layer 5 PC tuning and would so pre-
dict the formation of regional layer 5 PC clusters, as were indeed
found to exist.

MARTINOTTI AS LEARNING CONSCIENCE
Self-inhibition in the form described by Silberberg et al.
(Silberberg and Markram, 2007) and naively incorporated in this
study has proven to be an important addition to local-excitation

lateral-inhibition dynamics. Delayed self-inhibition acts as a com-
petition regulator, inflicting restraint to powerful areas of activity
and so allowing other regions to compete fairly in between them
for response to following inputs. This regulation results in the
formation of many evenly distributed clusters instead of few dom-
inant ones, solving, in fact, the “dead unit” problem prevalent in
competitive learning paradigms.

“Dead units” are output units which do not eventually con-
tribute to computation, units which did not win enough com-
petitions and end up not representing anything in the input space
(usually due to bad initializations) (Xu et al., 1993). This affliction
is frequently suffered by hard competitive learning algorithms,
amongst others by classic SOM which our network somewhat
resembles in learning behavior. Extensions to SOM and other
techniques were developed in the field of AI to overcome this
shortcoming (Van Hulle, 2012).

Several approaches, most notably “neural gas” and its off-
shoots (Martinetz and Schulten, 1991; Fritzke, 1995), addressed
the dead unit problem by relaxing predefined constraints. Adding
or removing neurons online or rearranging locations freely
allowed them to converge onto an ideally utilized topology based
on cooperative interactions between neurons. Other approaches
left topology fixed and instead addressed the nature of competi-
tion itself by, for instance, considering neurons’ previous number
of wins (Ahalt et al., 1990), penalizing 2nd place winners (Xu
et al., 1993) or imbedding a “bad conscience” to frequent win-
ners which brings on self-restriction (DeSieno, 1988). This last
method is very reminiscent of MC behavior observed in this
study. It bears the same effect on learning and the same rational
on a system point of view, but most importantly it achieves global
regulation using only simple local conditions. Due to MC delayed
temporal dynamics, this inhibitive pathway manages to restrict
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excessively successful regions while being ignorant of the grand
network scheme and learning history, and without requiring rad-
ical topological rearrangement. Both latter AI approaches would
be implausible if not impossible in a living biological system.

Following the analogy of competitive learning, the necessity
for many well-spread clusters over few dominant ones is clear.
Competitive learning allows regions to grow separately suited for
different inputs. “Winning” response to an input means growing
more attuned to that certain stimulation and so, on the long run,
ideally matching it. Such input specification is lost if one region
“wins” every consecutive input. This one region would eventu-
ally be strong enough to match any given input, and therefore
no separation of inputs will be achieved by the network, and no
learning at all.

INTERLACED CLUSTERS
PC clusters were postulated to constitute elementary building
blocks of cognition. Individual experience, by this account, mixes
and matches such clusters to endless possible combinations, but
clusters themselves will always underlie such a structure, embody-
ing a theoretical limit to the freedom Hebbian plasticity has over
the network (Perin et al., 2011). This view is supported by our
findings, as it suggests pyramidal clusters are an outcome of activ-
ity rivalry and input selectivity. Internal wiring causes clusters
to develop, competing with one another for varying patterns in
external input. Granted an ever-existent plastic ability (embod-
ied in our model as a learning rate which diminishes but is never
zero) experience will mold clusters throughout life. This will form
different clusters in different animals in different times, always
subject to dynamic change and rewiring to some extent, but a
clustered formation is in anyway inevitable.

As was also reported in Perin et al. (2011) clusters appear to
be highly involved in one another. Certain groups of neurons
connect preferentially over time with many highly influential con-
nections between one another. However, they span a relatively
large space in the cortex, interlacing with other groups of neu-
rons and connecting to them as well. Therefore, clusters are by no
means separate islands of activity which simply transmit a binary
all-or-nothing output between them, but are rather cooperative
units, which have vast combinatorial possibilities to connect and
affect one another.

CONNECTION SPECIFICITY
The developmental process described in this paper allows for net-
work connectivity to be formed by chance. Although dependent
only upon distance, connectivity in the simulation inevitably cre-
ates larger more complex and repeating structures which would
otherwise seem non-random. This is all due to cell morphology
traits, i.e.: MC long ascending axon and LBC extensive axonal
branching, and no higher more complex design. It therefore con-
stitutes something of a compromise in the debate of neuronal
connectivity specificity (Hill et al., 2012).

Due to the intricacy of cortical wiring, it is still largely
unknown to what degree is neuronal connectivity specific (Fino
and Yuste, 2011). Some studies have found repeating circuits and
connectivity tendencies, supporting a view of highly predeter-
mined connectivity (Thomson and Lamy, 2007), while others

report a more promiscuous form of connectivity forming a “tab-
ula rasa” network for experience to mold (Fino and Yuste, 2011;
Packer and Yuste, 2011). Under our paradigm, although circuits
are rather mature, repeating and stable, and layer 5 pyramidal net-
work conforms to an organizing principle of predictable traits, no
innate goal-oriented connectivity is needed. Instead, these pat-
terns are a natural outcome of simple Hebbian plasticity, under
the influence of different types of inhibitory cells. These cells’
basic morphology and location will amount to useful complex
structures.
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