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A method based on a set of new theorems for the analysis of multichannel time series is
described, based on precise Fourier transform and coherence analysis of the restored
signals from a detailed set of frequency components. Magnetic field recordings of
spontaneous and evoked activity by means of magnetic encephalography demonstrated
that multichannel precise Fourier spectrum contains a very large set of harmonics with
high coherence. The inverse problem can be solved with great precision based on
coherent harmonics, so the technique is a promising platform of general analysis in brain
imaging. The analysis method makes it possible to reconstruct sites and timing of electrical
activity generated by both spontaneous and evoked brain function at different depths in
the brain in the millisecond time range.
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INTRODUCTION
Modern scientific studies are performed by means of new pow-
erful equipment, generating large amounts of detailed data.
Magnetic encephalography (MEG) provides an example of
a foremost biological technology, comparable with the most
sophisticated physical devices. Magnetic encephalographs reg-
ister magnetic field in hundreds of channels with sampling
frequency up to several thousand Hertz. Typical 5 min exper-
iment on the 275 channel device with sampling rate 1200 Hz,
provides 100 million field values, so the problem of data anal-
ysis appears a pressing challenge in the MEG technique. Many
approaches are used to solve various scientific and diagnostic
problems of encephalography. Fourier analysis in many imple-
mentations can be called the oldest and the most popular of
methods used for the brain data analysis (Dietsch, 1932; Jansen
et al., 1981; Halliday et al., 1995). Through the whole history
of this method it was connected with difficulties of calcula-
tions, so the development of the Fast Fourier Transform (FFT)
(Cooley and Tukey, 1965) dramatically advanced the application
of the Fourier analysis in many fields, including brain research
(Miyashita et al., 2003). Regularization of the FFT was performed
in multitaper method (Thomson, 1982; Percival and Walden,
1993), implemented in the studies of the evoked and sponta-
neous activity (Llinás et al., 1999; Mitra and Pesaran, 1999).
In the quantitative electric and magnetic encephalography stud-
ies, trying to study patterns of the Fourier coefficients, rough
spectral analysis is combined with statistical analysis of coher-
ence between channels or independent components (Tauscher
et al., 1998; Weiss and Rappelsberger, 2000; Jarvis and Mitra,
2001; Makeig et al., 2002; Delorme and Makeig, 2004; Garcia-
Rill et al., 2008; Muthuraman et al., 2010). Usually in appli-
cations of the Fourier analysis to brain studies the spectra are

calculated in short (<10 s) time windows, based on the well-
known property of instability of the brain processes (Llinás,
2001).

Typically brain studies register activity in many channels
simultaneously for protracted time periods (up to tens of min-
utes in hundreds of channels). Those registered data are usually
processed with two important methodological weaknesses: First
weakness is that in time dependence analysis the methods are
applied, which were developed for the solitary time series, mul-
tichannel recordings are implemented mainly to attempt inverse
problem solutions. The second weakness lies in the usage of short
time windows (less than 10 s), decreasing the resolution of the
Fourier transform.

These procedural limitations relate to the fact that only
descriptive conclusions can be drown from such studies. Thus,
it is often stated, that the particular pathology or evoked activ-
ity results in the spectral changes of some kind or another. Such
qualitative approach diminishes a detailed analysis quite drasti-
cally, while it can be useful from a general diagnostic perspective
of view or to study some general cognitive features. At the same
time that approach to data analysis loses practically all experimen-
tal information, and narrows encephalography to general sets of
particular observations.

Recently the method of precise frequency-pattern analysis to
decompose complex systems into functionally invariant entities
was proposed (Llinás and Ustinin, 2012). The method makes it
possible to address general spectra to the partial spectra of stable
functional entities and to restore their time series. The method is
based on the complete utilization of the long time series, while
the multichannel nature of the data is also completely taken into
account, making it possible to implement detailed reconstruction
of neuronal circuit activity.
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METHODS
In multichannel recording of the brain activity, such as those from
MEG, a magnetic field event is recorded by many channels at
discrete time moments, providing sets of experimental vectors
{bk}, where k is number of channel, the l-th component of vector
bk = bk(l) is the result of field measurement at the time moment
tl, l = 1, . . . , L.

The first step in the method proposed is the interpolation of
the experimental data in every channel, providing the continuous
function

B̃k(t) = F(bk, t), (1)

where F is a function, corresponding to the particular method of
interpolation (Boyd, 2001). The linear and spline interpolation
methods are used in our study with satisfactory results.

After interpolation the multichannel recorded signal is
described by the set of functions {B̃k(t)}, where t ∈ [0, T] , T =
tL − t1, T is the whole time of measurement, k = 1, . . . , K, K is
maximal number of channel.

The multichannel precise Fourier transform calculates a set of
spectra for interpolated functions {B̃k(t)}:

a0k = 2

T

∫ T

0
B̃k(t)dt, ank = 2

T

∫ T

0
B̃k(t) cos(2πνnt)dt,

bnk = 2

T

∫ T

0
B̃k(t) sin(2πνnt)dt, (2)

where a0k, ank, bnk are Fourier coefficients for the frequency νn

in the channel number k, and n = 1, . . . , N, N = νmaxT, where
νmax is the highest desirable frequency.

The term “Precise” is used in three different senses here and is
achieved by three distinct steps:

1. Precise calculation of the Fourier integrals. Gaussian quadra-
ture formulas are used to calculate integrals on any interval [0,
T], in the registration scale.

2. Building all spectra for the total registration time T, as opposed
to methods using moving or fractional window. The step in
frequency is equal to �ν = νn − νn − 1 = 1

T , thus frequency
resolution is determined by the recording time.

3. Tuning of the frequency grid by cutting the interval of integra-
tion T to build the optimal approximation of the frequency
selected. Tuning can be performed by little changes of the
integration time T.

The method can be implemented without interpolation, if
Fourier integrals can be calculated with a required accuracy on
the experimental set of time points tl, l = 1, . . . , L and if tuning
of the frequency grid is not necessary.

This precise transform leads to an accurate and reversible
representation of time data in the frequency domain for each
channel. As for the space domain, “space” is determined by the
simultaneous registration by multiple channels having differ-
ent positions with respect to the source. That is, if an accurate
representation of time series for all channels is used, spatial
characteristics of the signal can also be determined accurately.

Given a precise multichannel spectra it is possible to perform
the inverse Fourier transform using:

Bk(t) = a0k

2
+

N∑
n = 1

ank cos(2πνnt) +
N∑

n = 1

bnk sin(2πνnt),

νn = n

T
, N = νmaxT (3)

where a0k, ank, bnk are Fourier coefficients, found in (2).
This formula can also be written as

Bk(t) = a0k

2
+

N∑
n = 1

ρnk sin(2πνnt + ϕnk), νn = n

T
, N = νmaxT, (4)

where ρnk =
√

a2
nk + b2

nk, ϕnk = atan2(ank, bnk).

The transform (3) or (4) allows the possibility of implement-
ing precise filtering, including or eliminating any selected set of
frequencies when restoring the signal.

We propose to study the detailed frequency structure of the
brain, restoring multichannel signal at every frequency and ana-
lyzing the patterns obtained.

The multichannel signal is restored at particular frequency in
all channels:

Bnk(t) = ρnk sin(2πνnt + ϕnk), (5)

where t ∈ [
0, Tνn

]
, k = 1, . . . , K and Tνn = 1

νn
is the period of

this frequency.
The summary instantaneous power produced by all channels

at the frequency νn will be:

pn(t) =
K∑

k = 1

B2
nk(t).

The proximity of phases ϕnk in different channels can be char-
acterized by the value of empirical one-frequency coherence:

C1f = 1 −
min

t ∈ [0,Tνn ]
(pn(t))

max
t ∈ [0,Tνn ]

(pn(t))
, (6)

where min and max are calculated at the period Tνn . Possible
values of the coherence lay between 0 and 1: C1f ∈ (0, 1].
The physical sense of C1f follows from formula (5). If all
channels have equal phases ϕnk = ϕn at the frequency νn,
then C1f is equal to 1. If phases in different channels are
distributed uniformly and amplitudes are equal, then C1f

approaches to zero when maximal number of channels K is
growing.

The pattern of magnetic field at the time moment t is deter-
mined by relation between values of the induction in different
channels and by their average energy. Relative values make it pos-
sible to determine the spatial structure of the source from the
inverse problem solution, and this structure is the same for the
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same relative values of the channels. If ϕnk = ϕn, then formula
(5) can be written as

Bnk(t) = ρnk sin(2πνnt + ϕn) = �
ρnk ρn sin(2πνnt + ϕn), (7)

where ρn =
√∑K

k = 1ρ
2
nk and

�
ρnk = ρnk

ρn
.

From the formula (7) it follows that relative values of chan-

nels
�
ρnk are independent of time. The inverse problem solutions,

determined by the normalized pattern
�
ρnk, have the same spatial

structures for any moment of the restored time. The amplitude of
the source is determined by ρn sin (2πνnt + ϕn)—common for all
channels, meaning that this source is oscillating as a whole at the
frequency νn.

The following theorems have been proved.

Coherence Theorem 1. The equality of phases in all channels
is a necessary and sufficient condition for normalized pattern
invariance through reconstructed time.
Conclusion 1. If for particular frequency phases are equal in
all channels, then the spatial structure of the source at this fre-
quency can be found by the solution of inverse problem for the

pattern
�
ρnk.

Coherence Theorem 2. The equality of phases in all chan-
nels is necessary and sufficient condition for the equal-
ity of the empirical one-frequency coherence to 1, C1f = 1.
This theorem provides a directly calculable feature to esti-
mate the proximity of phases in all channels at any
frequency νn.
Coherence Theorem 3. The time course of the magnetic field
source, having arbitrary spatial structure, can be restored from
the partial Fourier spectrum. This partial spectrum consists of
the frequencies with C1f equal or close to 1, having the same
normalized pattern. Spatial structure of the source can be found
from this pattern.

Consider the equivalent current dipole (ECD), characterized with
two vectors: r0—is the location of the dipole and Q—is a dipo-
lar moment. The model of ECD in spherical conductor (Sarvas,
1987) is used to calculate the magnetic induction registered by
sensor, having the location r and direction n:

B(r0, Q) = μ0

4πF2
((F(Q × r0) − (Q × r0, r) ∇F) , n) , (8)

where F = a
(
ar + r2 − (r0, r)

)
, ∇F = (

a2r−1 + a−1 (a, r) + 2a
+ 2r) r − (

a + 2r + a−1 (a, r)
)

r0,

a = r − r0, a = |a| , r = |r| , |n| = 1, μ0 = 4π · 10−7.

It can be shown, that magnetic induction depends linearly on the
dipole moment and can be written as:

B (r0, Q) =
( μ0

4πF2
((r0 × n) F − (∇F, n) (r0 × r)) , Q

)
= (K,Q) ,

(9)
where K = μ0

4πF2 (F (r0 × n) − (∇F, n) (r0 × r)).

From the formula (9) and the principle of superposition it fol-
lows, that the induction, measured by the sensor number k from
J dipoles can be written as (Hamalainen et al., 1993):

B̃k =
J∑

j = 1

(
Kkj, Qj

)
. (10)

Consider a coherent system, consisting of J dipolar sources, hav-

ing similar time dependencies: Qj = cj

�

Qj Q(t), where Q(t) is a
function of time, common for all dipoles, cj gives the force of

dipole number j,
�

Qj is a unitary vector, giving the direction of
this dipole.

The formula (10) now can be written as

B̃k(t) = Q(t)
J∑

j = 1

Pkjcj, (11)

where Pkj =
(

Kkj, Q̂j

)
. The lead field matrix element Pkj is given

by the sensing character of the sensor number k in relation to the
source number j. After the summation

P̃k =
J∑

j = 1

Pkjcj, (12)

B̃k(t) = Q(t)P̃k. (13)

After the precise Fourier transform it follows from the for-
mula (13) that for every frequency the restored signal in the k-th
channel will be

Bnk(t) = P̃kρn sin(2πνnt + ϕn), (14)

where ρn sin (2πνnt + ϕn) = Qn(t) is the n-th Fourier compo-
nent of the function Q(t).

Formula (14) can be written in the form (7):

Bnk(t) = PP̂kρn sin(2πνnt + ϕn), (15)

where P =
√∑K

k = 1P̃2
k and P̂k = P̃k

P .

The instantaneous power will be: pn(t) = P2ρ2
n sin2 (2πνnt +

ϕn), and it has minimum = 0 in the period, so C1f is equal to 1 for
every frequency of the function Q(t). From (15) it also follows,
that normalized patterns at all frequencies of the function Q(t)
will be identical. This makes possible to extract the partial spec-
trum, corresponding to this source, from the full multichannel
spectrum. This is implemented by selecting frequencies with high
coherence, having equal or similar normalized patterns. From
this partial spectrum the time course Q(t) can be restored by the
inverse Fourier transform.

These theoretical considerations are the foundation for the
reconstruction of time courses of static functional entities (neural
circuits, or sources), performing detailed frequency analysis and
studying the similarity of the patterns with high coherence. Also
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spatial structure of the sources at separate frequencies with high
coherence can be restored, leading to the total decomposition of
the brain activity.

The algorithm of mass precise frequency-pattern analysis can
be summarized as:

(1) Precise Fourier Transform of the multichannel signal.
(2) Inverse Fourier Transform—restoration of the signal at each

frequency.
(3) If the coherence at the particular frequency is close to 1,

then use the pattern and frequency as elementary coherent
oscillation.

(4) If the restored signal consists of several phase-shifted coher-
ent oscillations, then extract those oscillations.
After the fourth step the initial multichannel signal will be
represented as a sum of elementary coherent oscillations.
Each elementary oscillation has distinct frequency, constant
pattern and being produced by the functional entity having
constant spatial structure. The set of elementary coherent
oscillations is unique for the subject and for the particular
experiment.

(5) Split the spectrum to the assembly of partial spectra, based
on the extraction of frequencies with similar normalized
patterns.

(6) Solve inverse problem for normalized patterns in order
to determine spatial structure of the functionally invariant
entities.

(7) Restore the time courses from partial spectra of functionally
invariant entities.

After the seventh step all brain activity recorded is decomposed
to the set of activities of functional entities, with known spatial
structures and time courses.

The method can be called “Frequency-Pattern Functional
Tomography,” because it reveals the structure and function of the
brain under study in the particular experiment.

EXPERIMENTAL RESULTS
The method proposed makes it possible to perform detailed study
of the brain structure and function by means of multichannel
measurements, such as magnetic or electric encephalography.
Note, that Theorems 1–3 make sense only if the coherence of
multichannel oscillations is high at the frequency under study.
In order to estimate the applicability of the method to the real
data, MEG experimental data sets for 19 persons (control sub-
jects and patients) were processed. Nine data sets were obtained
with a 148-channel magnetometer Magnes 2500 WH, and 10 data
sets were obtained with a 275-channel gradiometer. Both sys-
tems were installed in the Bellevue Hospital in the Center for
Neuromagnetism of New York University School of Medicine.
These experiments were performed during research studies of
human spontaneous and evoked activity, including control sub-
jects and patients with various disorders (Llinás et al., 1999;
Ustinin et al., 2010). The NYU Institutional Review Board and
Bellevue Hospital Research Protocol Review Group approved the
study and an informed written consent was obtained from all
subjects before the MEG recording.

As an example of the Precise Fourier analysis, consider the
auditory experiment JG03_01. The MEG data were obtained with
a 275-channel synthetic third order gradiometer (VSM MedTech
LTD) at Bellevue Hospital in the Center for Neuromagnetism at
the Department of Neuroscience and Physiology of the New York
University School of Medicine. The auditory stimulus was a 2 ms
click, presented at 14 Hz into the left ear of a healthy subject, and
the recording was implemented.

The precise multichannel Fourier spectrum was calculated,
using the whole registration time (∼300 s) and sampling rate
1200 Hz. Figure 1 illustrates the multichannel spectrum in the
frequency range 1.5–50 Hz. This spectrum was calculated with
�ν = νn − νn−1 = 1

300 Hz and contains 15,000 frequencies in
275 channels, plotted simultaneously. It can be concluded, that
this plot gives only general impression about the spectrum, and
detailed quantitative analysis is necessary. Such precise analysis is
illustrated in Figures 2–4.

The tuning of the frequency grid was done by minor cutting
the time of registration T to build an optimal approximation of
the basic stimulus frequency and its harmonics (Figure 2). This
tuning increases the signal to noise ratio by the order of magni-
tude in power, giving the possibility to solve the inverse problem
with high precision.

A large scale in frequency was utilized which produces a pre-
cise spectrum obtained that is fractioned into separate frequencies
with different patterns of Fourier amplitudes.

The fragment of the spectrum in narrow frequency band
shown in Figure 3, is close to the second harmonic of the stim-

ulus. The normalized patterns
�
ρnk (7) of the restored magnetic

fields are also presented for five neighboring frequencies. Also
illustrated in Figure 3 is the extraction of the response to stim-
ulus from spontaneous activity. The frequency peak at the second
harmonic of the stimulus produces normalized pattern, corre-
sponding to auditory cortical activity. The frequency to analyze
was selected from the precise Fourier transform of the stimu-
lus time course. Following the inverse Fourier transform of this
frequency, highly coherent oscillation presents second harmonic
of the brain response to auditory stimulus. The structure of the
functional entity, generating this response, can be found from the
inverse problem solution (Figure 4).

In order to study general properties of the restored multichan-
nel Fourier components, the statistical analysis of the coherence
distribution was performed (Figure 5). For every frequency, the
inverse Fourier transform (5) was performed and the empirical
coherence (6) was calculated. Also the summary energy for every
frequency was calculated.

It was found that, in this experiment, mean coherence was
0.51. Moreover 4.42% of frequencies have coherence greater than
0.8 and 0.25% of frequencies have coherence greater than 0.9.
(Figures 5E,F). This illustrates the fact, that the highest amplitude
frequencies have the greatest coherence.

For example, 4.42% of all frequencies, with coherence greater
than 0.8, represent 11.26% of all energy, while 0.25% of fre-
quencies with coherence greater than 0.9 produce 1.87% of total
energy. Statistical properties of the restored multichannel one-
frequency oscillations are illustrated by Figure 5. The conclusion
is that there are many frequencies with high coherence, providing
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FIGURE 1 | Precise multichannel Fourier spectrum for the auditory recording JG03_01. Multiple peaks corresponding to alpha activity can be seen near
10 Hz. Also the second harmonic of the stimulus frequency is well noticeable at 28 Hz.

FIGURE 2 | Tuning of the precise multichannel Fourier spectrum for the

stimulus frequency in auditory MEG experiment JG03_01.

(A) Multichannel spectrum close to the second harmonic of the stimulus,
calculated using T = 300 s. (B) The same spectrum, calculated using

T = 300 − 0.017 s. It can be concluded, that a negligible lost of information
significantly increases the signal to noise ratio (S/N), leading to much higher
coherence. More precise solution of the inverse problem can be obtained
after such optimization.

the direct information about the functional entities, generating
those frequencies.

Precise multichannel Fourier spectra were calculated for all
19 data sets, using (2). For all frequencies of the every spectrum
the multichannel inverse Fourier transform (5) was performed,
the empirical coherence C1f (6) was calculated, and the analysis
described in Figures 1–5 was performed. The results were simi-
lar to those described in Figures 1–5, with the average coherence
0.523.

It was found, that:

(1) Precise multichannel spectra of the MEG data parcel to
oscillations with different patterns.

(2) Both in spontaneous and evoked experimental spec-
tra there are many frequencies with coherence,
close to 1.

(3) MEG sensory evoked activity allow attaining data with high
coherence at the selected stimulus frequencies, which dis-
close the brain functional structure generating particular
responses.

The conclusion is that Theorems 1–3 can be applied to
the experimental data in multichannel magnetic and electric
encephalography, giving a direct nonparametric method to reveal
functional entities in the human brain, oscillating as whole
systems.
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In some cases, when applying the above method to real data,
the value of empirical coherence is less than 1.

This may occur for various reasons, namely:

1. Non-correlated noise, produced by the system under study,
including sensors noise. This noise can be reduced through
experimental design, for example, increasing the time of mea-
surement T.

FIGURE 3 | Detail of the Figure 2B, close to the maximum of spectrum

at 28 Hz, (the 2nd harmonic of the stimulus). Five normalized patterns
�
ρnk (7) of the restored MEG, corresponding to neighboring frequencies, are
shown.

2. Activity of different non-correlated sources, falling at the same
frequency band νn ± 1

2T .

This is typical for most methods utilizing Fourier analysis, espe-
cially when moving or fractional windows are utilized. The precise
Fourier transform can address the issue imaging activity from
different non-correlated sources by either increasing the record-
ing time T or/and by tuning of the frequency grid to an exact
frequency.

3. Activity of several coherent sources, shifted in phase, having
exactly the same frequency νn and also falling at the same
frequency band νn ± 1

2T .

In the third case, simultaneous activity of coherent sources with
different spatial structures can indicate functional connectivity.
To divide different coherent processes from the restored mul-
tichannel signal independent component analysis of patterns
activity can be used, or those processes can be separated directly.
This procedure leads to the extraction of patterns, produced by
several different sources with high coherence at the same fre-
quency. It can reveal the physiological dependence of the activity
sources at this frequency.

DISCUSSION
A very large set of multichannel MEG recordings have been pro-
cessed using precise frequency-pattern analysis. Following this
procedure it has been found, that for many frequencies, empir-
ical coherence (formula 6) is close to 1. As follows from the

FIGURE 4 | The inverse problem solution reveals the spatial structure of

the functional entity, producing the pattern of auditory response

(Figure 3, middle pattern). This structure is well described by the two-dipole

model. (A–D) Show the sections of the tomogram, going through the right
dipole. (E) Shows the map of experimental magnetic field. (F) Shows the
map of the field, produced by the inverse problem solution.
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FIGURE 5 | Statistical properties of the restored oscillations. C1f —one
frequency empirical coherence (6). (A) Shows relative number of
frequencies, falling in the 5%-bin of coherence. (B) Shows share of
frequencies, having coherence greater than chosen value. (C) Shows
relative summary energy of frequencies, falling in the 5%-bin of coherence.
(D) Shows share of common energy, produced by frequencies, having
coherence greater than chosen value. (E) Shows distribution of the relative
one-frequency energy, falling in the 5%-bin of coherence. For example,
average energy, produced by one frequency with coherence >0.95, is 11
times greater than average energy, produced by one frequency. (F) Shows
folded cumulated distribution functions, calculated from (B) blue and
(D) red.

Coherence Theorem 1, normalized pattern for the particular fre-
quency with high coherence is close to invariant. This means that
the functional entity, producing this pattern, is oscillating as a sin-
gle entity at this frequency. Thus, the activity of the elementary
subsystem of the brain can be extracted and its spatial structure
determined from the inverse problem solution. In the particu-
lar case of magneto-encephalography this spatial structure is very
robust as no arbitrary parameters were used to extract the pat-
tern. Also in case of the MEG the inverse problem solution does
not need subject parameters, except the head shape (Hamalainen
et al., 1993).

Given the above the technique described is capable of address-
ing the structure of the brain as a set of coherent functional
entities.

Note, that this method can also be applied in electroen-
cephalography. In the case of EEG the pattern will be also
extracted correctly, but the solution of the inverse problem will
involve complicated brain parameters, such as the spatial distri-
bution of conductivities. Those parameters are usually unknown,

adding the uncertainty to the inverse problem solution (Fuchs
et al., 2001; Hallez et al., 2005; Plis et al., 2007; Barnes et al., 2008).

Finally, our results indicate that precise spectra are sui generis
every subject, in particular concerning spontaneous activity. We
propose this new analysis paradigm for brain research, based on
the calculation of precise spectra and on their storage for future
reference concerning the development of pathological conditions,
among other uses. The general number of functional entities in
the particular experiment can be estimated as 5–10 thousand.
This number in the order of magnitude is close to the num-
ber of categories, introduced to describe cognitive processes in
Huth et al. (2012). Functional entities, revealed by the method
proposed (Llinás and Ustinin, 2012), correspond to emergent
functions of neural circuits (Alivisatos et al., 2012) and the study
of these entities can be the important component of the starting
Brain Activity Map project.
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