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We study the distribution of brain and cortical area sizes [parcellation units (PUs)] obtained

for three species: mouse, macaque, and human. We find that the distribution of PU

sizes is close to lognormal. We propose the mathematical model of evolution of brain

parcellation based on iterative fragmentation and specialization. In this model, each

existing PU has a probability to be split that depends on PU size only. This model

suggests that the same evolutionary process may have led to brain parcellation in these

three species. Within our model, region-to-region (macro) connectivity is given by the

outer product form. We show that most experimental data on non-zero macaque cortex

macroscopic-level connections can be explained by the outer product power-law form

suggested by our model (62% for area V1). We propose a multiplicative Hebbian learning

rule for the macroconnectome that could yield the correct scaling of connection strengths

between areas. We thus propose an evolutionary model that may have contributed to

both brain parcellation and mesoscopic level connectivity in mammals.

Keywords: evolution, brain regions, brain regionalization, whole brain connectivity, connectome, wiring diagram,

parcellation map

INTRODUCTION

The brain has many distinct regions defined anatomically and functionally. The evolutionary origin
of the diversity of brain regions is not well understood (Kaas, 2009). According to one theory, new
brain regions emerge from existing ones through the process of fragmentation and specialization
(Striedter, 2004; Kaas, 2009). Due to the abundance of brain regions, fragmentation is expected
to be an iterative process persisting through brain evolution. One can infer properties of this
process from the distribution of resulting fragments, i.e., brain region sizes. Here we examine the
distributions of brain region sizes, called here parcellation units (PU), for three species: mouse,
macaque, and human. We infer parameters of the brain fragmentation process that can lead to
these distributions. We argue that brain fragmentation followed a similar evolutionary mechanism
in the three species analyzed.

Interestingly, the problem of brain parcellation is mathematically related to the fragmentation
of shells of explosive projectiles and warheads as well as to rock grinding and crushing,
described previously in Epstein (1947), Grady and Kipp (1985), and Redner (1989). In
explosive shell and rock fragmentation, one original piece gives rise to a distribution of
fragments that independently undergo further crushing. The class of processes with independent
fragmentation was first analyzed by Kolmogorov (1941). Kolmogorov showed that under
appropriate conditions, sequential breakage yields a lognormal distribution of particle sizes
(mathematician was intrigued by the lognormal distribution of gold particles Kolmogorov, 1941).
The continuous crushing of rocks and explosive shells, just like the repeated subdividing of
brain regions, results in an evolving distribution of cluster sizes, which can yield information
about the underlying process. In the present study, we both evaluate the statistical distribution
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of brain region sizes and propose an evolutionary model that is
somewhat distinct from Kolmogorov’s theory. We also study the
implications of brain evolution by fragmentation for region-to-
region connectivity.

METHODS

We used MATLAB (Mathworks, Inc.) to perform computer
simulations and fits as described in the text. To implement our
parcellation model, we computed probabilities of the regions to
be split, according to Equation (1), normalized it for the entire
existing ensemble, and, using this set of probabilities, selected
one PU randomly on each iteration of the algorithm. This PU
was then split into two equal parts, producing two new PUs.
After two new PUs were generated, their volumes weremultiplied
by a random variable (normal distribution, mean equals to 1,
10% standard deviation) in such a way that their total volume
is preserved. This was done to make volumes of PUs deviate
from the exact powers of 1/2. We verified that the inclusion of
multiplicative noise did not affect noticeably our results. These
steps were repeated until a desired number of PUs was generated.

RESULTS

The Distribution of PU Sizes Is Close to
Lognormal
PU volume data is available for the three species: mouse (Dong,
2008; Osten and Kim, 2013), macaque (Markov et al., 2011, 2014;
Bakker and Kötter, 2016), and human (Mai et al., 2007). For the
mouse data, it is possible to reconstruct the tree formed by the
segmentation of the brain into PUs, as shown in Figure 1. To
analyze the distribution of PU sizes, we fit the distributions of
the logarithm of brain region volumes for all three species with
Gaussian distributions. Overall, the distributions appear to be
close to normal, suggesting that the distribution of PU sizes is
close to lognormal (Figure 2). The standard deviations of the
logarithm of PU sizes are similar for all three species (σ =1.47,
1.24 and 1.40 of natural logarithm units for mice, macaques
and humans respectively). Statistical tests [Kolmogorov-Smirnov
(KS) (Massey, 1951)] and quantile-quantile (QQ) plots (Figure 2)
show that the distributions of the logarithms of PU size are close
to normal (pKS = 0.07, 0.48, 0.97 for the three species). Larger
p-values indicate that the observed distributions of brain region
sizes are close to lognormal distributions.

The Evolutionary Parcellation Model
We propose a simple evolutionary parcellation model that can
explain these observations. Our process starts with a tabula
rasa brain containing only a single region (Figure 3A, step 1).
This region is then divided into two PUs of equal size (step
2). In the next step, we choose one of these two regions with
equal probability and divide it again into two equal parts (step
3). This sequence of steps, including picking a random region
independently of its size and dividing it, is repeated until the
target number of PUs is achieved (Figure 3). Iterating this model
results in a distribution of brain region sizes which is close to
log-normal (Figure 3).

The Biased Parcellation Model
The model presented above generates new PUs by randomly
selecting a region to be fragmented into two new regions
of similar size. In this model, which we call the model of
uniform parcellation, all PUs had the same probability to be
split independently on their volume. We showed that this model
leads to a distribution of PU volumes that is close to lognormal
(Figure 3), as observed in the experimental data (Figure 2). Is it
possible that the regions are selected to be fragmented according
to their size? To answer this question, we formulated the model,
in which the fragmentation probability is a function of the PU
volume.We assumed that the probability of fragmenting a region
number i at a given time step is described by the power law
distribution

pi = v
µ
i /Z. (1)

Here v
µ
i is the volume of PU number i, Z is the normalization

coefficient, while µ is a parameter (exponent) of the model. We
assumed the power law function in equation (1) because it allows
defining probability for a wide range of PU volumes spanning
several orders of magnitude. For µ = 0, the probability of
dividing a PU is independent of its size, which describes the
model of uniform parcellation we considered before (Figure 3).
For positive values of µ, larger regions are more likely to be
split, leading to a brain containing PUs of more similar size.
For negative µ, smaller PUs are expected to be split more often,
leading to a wide distribution of PU sizes. The more general
mechanism described by equation (1) will be called here the
model of biased parcellation.

To analyze quantitatively the parcellation process for various
values of µ we compute the standard deviation of the logarithm
of PU sizes as a function of µ (Figure 4). The standard deviation
defines the width of a PU size distribution. The width of a
distribution is dependent on the number of PUs. Indeed, since,
on every time step, our model increases the number of PUs by
one, the number of PUs determines the number of time steps
needed to evolve a given set of brain structures. Longer evolution
leads to a larger diversity in PU sizes, since PU distribution
is determined by a diffusion-like process. A simple calculation
shows that, for µ = 0, for example, the variance of logarithms of
PU sizes depends on time as σ 2(ln v) ∼ ln t, where evolutionary
time is measured by the number of PUs, t = NPU . For
any given µ, therefore, the diversity of PU sizes can depend
on the number of PUs. The three panels in Figure 4 present
the dependence of σ (ln v) on the exponent µ for the number
of PUs NPU matching the three species for which the data is
available (Figure 2). By obtaining the range of µ consistent
with the σ (ln v) observed in each of the species, one can infer
the exponent guiding brain parcellation in these animals. The
shaded region in Figure represents a 90% confidence interval
for the values of µ, obtained from a sample of 1000 simulations
for each data set. The 90% confidence intervals for µ overlap
in the three species within the interval 0.08 ≤ µ ≤ 0.20.
This suggests that the evolution of brain parcellation may have
followed a similar rule in the three organisms, with the selection
of next region for fractioning slightly biased toward larger PUs
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FIGURE 1 | The overview of mouse brain parcellation tree. The tree is based on Allen Brain Institute reference atlas anatomical structure hierarchy (Dong, 2008;

Osten and Kim, 2013). Each brain region (PU) is represented by a node. Root node represents the entire brain of the animal. Empty nodes represent branch points at

which division of a PU into smaller PUs occurs. Blue nodes designate leaves of the tree with non-zero volumes that are included into the histogram in Figure 2A.

Green nodes show some binary branch points (duplications). In our model, we assume that non-binary branch points corresponding to fragmentations into three or

more PUs (empty branch points) represent a series of duplications that have occurred at different times. Red nodes represent major brain structures annotated in the

Figure (root, the root of the tree; gray, basic cell groups and regions; CH, cerebrum; CTX, cerebral cortex; CTXpl, cortical plate).

(µ > 0). The model of uniform parcellation described above
(Figure 3) is therefore close to the model of parcellation with a
bias.

Outer Product Form of Region-to-Region
Connectivity
The evolutionary parcellation model described here has
implications for the connectivity strengths between different
brain regions. Such connectivity is defined through the total
number of wires running between a pair of regions and is
conventionally called the macroconnectome, to distinguish it
from the connectivity with a single-neuron precision, i.e., the
microconnectome. In the simplest parcellation model of the
macroconnectome, brain evolution starts from the tabula rasa
state in which every two neurons have a finite probability f to be
connected. The total number of connections is therefore equal to
C = fN2/2, where N is the total number of neurons and N2/2
is the total number of pairs. After the parcellation process has
run its course, the number of connections between any two areas
with volumes vi and vj is expected to be Cij = vifρ

2 vj/2. Here
ρ is the number density of neurons, assumed to be the same

for all areas (Carlo and Stevens, 2013). Within the parcellation
model, the macroconnectome defined by matrix Cij is therefore
expected to have the outer product form, i.e., Cij ∝ vivj. This
simple theory generates an experimentally testable prediction. In
particular, it predicts that the strength of connections for one of
the brain regions, number i, for example, with an array of other
regions, numbered by index j, should be proportional to the size
of these regions vj, which is a consequence of the outer product
form of the connection matrix Cij ∝ vivj.

To test the outer product form of the macroconnectome, we
analyzed the dependence of the number of connections between
three macaque visual areas, V1, V2, and V4, and an array of 91
cortical areas. The data was available from a recent study of the
distribution of the number of connections (Markov et al., 2011).
This data contained the number of neurons projecting to a given
target area obtained using retrograde tracing of connections. To
eliminate uncertainties associated with the dimensions of tracer
injection, the number of connections was normalized to one.
Thus the data is represented by a normalized connection matrix
C̃ij = Cij/

∑

k

Cik, called the fraction of labeled neurons (FLN).
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FIGURE 2 | Distributions of PU volumes are close to lognormal. Red

curves show Gaussian fits. Q-Q plots indicate the high quality of fits. (A)

Mouse brain: σ = 1.47 (B) Macaque cortex: σ = 1.24 (C) Human cortex: σ =

1.40. Units of volume: Number of voxels (mouse), mm3 (macaque), and cm3

(human).

It is easy to see that
∑

k

C̃ik = 1. If the original connection

matrix Cij is given by the outer product form Cij ∝ vivj, as our
model suggests, the FLN matrix is proportional to the volume of
the source, i.e., C̃ij ∝ vj. We therefore plotted the logarithm of

connection strength C̃ij as a function of the logarithm of source
volume vj expecting to observe a positive correlation. Indeed, we
find that for all three target areas, V1, V2, and V4, the logarithm
of normalized non-zero connection strength is correlated with
the logarithm of source area volume (Figure 5A). For the area V1,
for example, the correlation is close to R = 0.78, suggesting that
R2 = 62% of the connectivity data is explained by the source area
size. For other areas the correlation is weaker, however, and data
for these areas appears to be more variable due to fewer injections
(the number of injections yielding connectivity was 5, 4, and 3

for V1, V2, and V4 in Markov et al. (2011), producing R2 = 0.62,
0.54, and 0.25 respectively).

The Hebbian Model for Outer Product
Form of Connectivity
Although area-to-area connectivity appears to be close to the
outer product form (R2 = 0.62), the slope of dependences in
Figure 5A is not consistent with the simple parcellation model
presented above. Indeed, although linear fits to dependences
in Figure 5A account for large amounts of data (R2), these
linear fits result in a power law relationship between the area-
to-area connection strength and source volume, i.e., C̃ij ∝ v

η
j ,

with η = 2.67, 2.85, and 1.79, respectively, for V1, V2, and
V4. The exponent obtained from fitting combined data for V1,
V2, and V4 is η = 2.33 (R = 0.63). In contrast, the simple
parcellation model for connectivity presented above yields η = 1
(C̃ij ∝ vj). Thus, although the simple model predicts the outer
product form of area-to-area connectivity and the power-law
dependence of connection strength on PU volume (C̃ij ∝ vj),
the exponent in the law is not captured exactly; the observed
value of the exponent is larger. This is expected, however, since
the macroconnectome can be modified to be better suited for the
particular computations relevant for an organism’s survival after
the areas are split. Nonetheless, a substantial amount of data on
non-zero macroconnectivity (as much as 62% for area V1) can be
explained by the source area size through the power law described
above.

To gain insight into the mechanism of emergence of the
power law relationship between the number of area-to-area
connections and the source area size, we propose a model that
is based on a Hebbian learning rule. It was recently proposed that
the microconnectome (connections within a cortical column)
is determined by the scale-free multiplicative Hebbian learning
rules of the form (Koulakov et al., 2009)

dCij/dt = ε1f
α
i C

β
ij f

γ
j − ε2 Cij. (2)

Here, fi is the activity level in area number i, the first term
describes the correlations in neural activity, the second term
in the r.h.s. is the connection decay, ε1 and ε2 are constant
parameters, while α, β , and γ are exponents. By assuming that
connection strengths have already reached equilibrium for a
given activity configuration (dCij/dt = 0) and that the overall
activity levels are proportional to the area size (fi ∝ vi), we

obtain Cij ∝ v
α/(1−β)
i v

γ /(1−β)
j , i.e., the outer product power-law

form of connectivity with η = γ /(1 − β) and κ ≡ α/(1 − β).
To match our observations for area V1, we have to assume that
η = γ /(1 − β) ≈ 2.67. Thus, the same Hebbian learning rule
postulated in Koulakov et al. (2009) can be used to derive both
micro- (within area) and macroconnectivity (area-to-area).

Outer Product Form of Outgoing
Connections
The outer product form can also be tested for the outgoing
connections, i.e., Cij ∼ vκ

i . Recent studies make available
outgoing connectivity strengths for 295 target mouse brain
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FIGURE 3 | Evolutionary parcellation model yields distributions close to lognormal. (A) A parent region is chosen randomly and divided into two new regions.

This process is repeated until a target number of PUs is reached. (B,C) Distributions of PU sizes generated by the model. (B) 100 PUs: σ = 1.40; pKS = 0.93; (C)

1000 PUs: σ = 2.31; pKS = 0.33. In these and subsequent simulations, immediately after a division, two divided regions are varied in size by 10% randomly, while

maintaining the sum of their volumes constant. This was done to produce region sizes different from fractions of 2.

regions (Oh et al., 2014). This data suggests that the outer product
form of connectivity describes R2 = 30–50% of connection data
with an exponent κ ≈ 1.3 (Figures 5B,C). Data in Figures 5B,C

are presented for four regions with ≥ 3 injections. Although
Figure 5 includes only non-zero connections, it is notable
that the Hebbian learning rule (2) includes zero connections
(Cij = 0) as a solution, thus capturing both vanishing (Cij = 0)
and non-vanishing (Cij 6= 0) connections.

DISCUSSION

Here, we have studied an evolutionary model for the emergence
of a distribution of brain regions (PUs) according to their
size. We aimed at describing the ensemble of brain regions
statistically, without addressing the functional significance
of individual PUs. We assumed that brain regions emerge
through a sequential process of fragmentation and specialization.
Kolmogorov’s fragmentation model (Kolmogorov, 1941)
assumes that the splitting process for each fragment occurs
independently of other pieces. This model is appropriate to
describe explosive shell fragmentation or rock grinding (Epstein,
1947; Grady and Kipp, 1985; Redner, 1989). For such a process,
under conditions of stationary parameters, the total number of
pieces grows exponentially. Since there is no evidence for the
explosion in the number of brain regions that occurred recently,
we were motivated to find a different model that would describe
a more gradual proliferation of PUs, one at a time.

We find that, similarly to Kolmogorov’s model, the
distribution of PU sizes in our model is close to lognormal.
The variance of the logarithm in our model depends on the
scaling of the splitting probability with volume (Equation 1).
We find that in all three species, mouse, macaque, and human,
brain/cortex parcellation is consistent with a scaling exponent

within the range 0.08 ≤ µ ≤ 0.20, suggesting that common
evolutionary mechanisms may have shaped the brains of these
animals. It is conceivable that each PU undergoes multiplicative
variations in size between fragmentations, which should slightly
increase the values of µ. We find therefore that the probability
of PU fragmentation is dependent on PU size (Equation 1), by
contrast with the Kolmogorov theory.

Factors other than studied here may have contributed to the
diversity of brain region volumes. Indeed, PUs may continue
to expand or contract as a result of continuing trend inherited
from their parent PUs and determined by their functional
properties. PUs may undergo changes in relative volumes as a
result of their divergence in functional properties occurring after
fragmentation. The fragmentation may yield two PUs of different
sizes (our model includes this effect to a small degree to make PU
volumes deviate from exact powers of 2, see Methods). Ensemble
wide data on relative significance of these and other effects is not
available. One can speculate, however, about potential effects of
these factors on the diversity of PU volumes. It seems obvious
that including additional sources of variability in the model,
such as uneven duplications or ongoing changes in PU volumes,
should increase the width of the final distribution of PU sizes.
Thus, the curves in Figure 4 should be located at higher values
of standard deviation. This, in turn, will increase the estimates of
the parameter µ. Thus, it seems that including additional sources
of variability into our model, should make it trend further away
from the model of uniform parcellation. These effects should
introduce a higher bias in the selection of PU to be fragmented
toward larger regions. Quantitative accounting for these effects
would require detailed comparison of parcellation trees in related
species.

We analyzed the dependence of area-to-area (macro)
connectivity in the macaque cortex and its relation to PU
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FIGURE 4 | The standard deviation σ of the logarithm of PU size as a

function of exponent µ for the mouse (A), macaque (B) and human (C).

The shaded region represents a 90% confidence interval for σ , which was

obtained from a sample of 1000 simulations for each species with the

specified number of PUs. The horizontal line describes the observed value of

µ. Ranges consistent with the model are indicated by the dotted lines. (A)

Mouse brain. 0.08 ≤ µ ≤ 0.20. (B) Macaque cortex: −0.04 ≤ µ ≤ 0.34. (C)

Human cortex: −0.6 ≤ µ ≤ 0.24.

sizes that was suggested by our parcellation model. We found
that the incoming connectivity is well described by the outer
product power-law form with similar scaling relationships for
three visual areas: V1, V2, and V4. Remarkably, we find that
for area V1, 62% of information about its non-zero incoming
connection strengths to other areas is contained in the simple
scaling relation C̃ij ∝ v

η
j , with the scaling exponent η > 1.

Macro connection strength is therefore mostly determined by
the sizes of connected regions. The lognormal distribution of
connection strengths (Markov et al., 2011) may therefore result
from the lognormal distribution of PU sizes, reported here. The

FIGURE 5 | PU volumes contain information about connection

strengths. The dependences of connection strength on PU size. (A)

Non-vanishing (C̃ij 6= 0) incoming connection strengths for three target visual

areas in the macaque brain and various other areas as sources. The linear fit

(dotted line) has a slope of η = 2.33. Individual slopes for the three areas V1,

V2, and V4 are η = 2.67, 2.85, and 1.79. The scaling law C̃ij ∝ v
η

j
can explain

the fractions R2 = 0.62, 0.54, and 0.25 data variance for these areas. (B,C)

Non-vanishing outgoing connections in the mouse brain for four source

regions are described by a similar scaling relationship Cij ∝ vκ
i
, where the

exponent κ = 1.30 and 1.35 for ipsi- and contralateral connections is

obtained from the linear fits (dotted lines).
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remaining 38% of V1 connectivity may be attributed to non-
outer product features, such as connection locality (Klyachko
and Stevens, 2003; Markov et al., 2011), as well as important
functional requirements of the macroconnectivity that do not
have an outer product structure. The outer product form of
connectivity presented here could serve as a baseline model for
brain-wide connectivity with deviations from the outer product
form specifying the importance of individual connections. One
cannot rule out the contribution to the unexplained fraction
of connectivity from the residual noise in the data. We find
that the quality of power law fits (C̃ij ∝ v

η
j ) is dependent

on the number of injections into targets, suggesting that more
reliable data could improve fit quality. We proposed a Hebbian
learning paradigm that could explain the outer product form of
macroconnectivity. We thus proposed a universal evolutionary
law that could both guide the formation of brain regions and

contribute substantially to their connectivity. This law generalizes
across several mammalian species.
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