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The application of 2-photon laser scanning microscopy (TPLSM) techniques to measure

the dynamics of cellular calcium signals in populations of neurons is an extremely

powerful technique for characterizing neural activity within the central nervous system.

The use of TPLSM on awake and behaving subjects promises new insights into how

neural circuit elements cooperatively interact to form sensory perceptions and generate

behavior. A major challenge in imaging such preparations is unavoidable animal and

tissue movement, which leads to shifts in the imaging location (jitter). The presence

of image motion can lead to artifacts, especially since quantification of TPLSM images

involves analysis of fluctuations in fluorescence intensities for each neuron, determined

from small regions of interest (ROIs). Here, we validate a newmotion correction approach

to compensate for motion of TPLSM images in the superficial layers of auditory cortex

of awake mice. We use a nominally uniform fluorescent signal as a secondary signal to

complement the dynamic signals from genetically encoded calcium indicators. We tested

motion correction for single plane time lapse imaging as well as multiplane (i.e., volume)

time lapse imaging of cortical tissue. Our procedure of motion correction relies on locating

the brightest neurons and tracking their positions over time using established techniques

of particle finding and tracking. We show that our tracking based approach provides

subpixel resolution without compromising speed. Unlike most established methods, our

algorithm also captures deformations of the field of view and thus can compensate e.g.,

for rotations. Object tracking based motion correction thus offers an alternative approach

for motion correction, one that is well suited for real time spike inference analysis and

feedback control, and for correcting for tissue distortions.

Keywords: motion correction, mesoscale neuroscience, calcium imaging, image registration, TPSM data

registration

BACKGROUND AND INTRODUCTION

Behaviorally relevant information in the brain does not reside in the firing events of individual
neurons, but instead in the collective activity of groups of neurons. Thus, understanding
the collective behavior of neurons is essential for understanding how the brain processes
information and encodes memory. Two-photon laser scanning microscopy (TPLSM) of
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neuronal activity using Ca2+ indicators is a powerful approach
that allows for analysis of the inner workings of the brain at
the level of single cells for large groups of neurons within
an awake behaving organism (O’Connor et al., 2009; Peron S.
et al., 2015). While electrophysiology approaches allow for very
accurate measurements of the neuronal circuit a few neurons
at a time, TPLSM allows for the simultaneous observation of
hundreds to thousands of neurons (Peron S. P. et al., 2015) and
thus yields information on the collective behavior of groups of
neurons.

Measurements of collective dynamics require accurate
detection of neuronal activity of tens to thousands of individual
neurons. Since detection errors grow exponentially with the size
of the observed neuronal population, detection inaccuracies
would lead to spurious measurements and conclusions. For
example, with 97% accuracy for identification of a single
neuronal spike one can only achieve 74% accuracy for identifying
simultaneous activity of 10 neurons. Thus, to detect synchronous
activity of 100 neurons with more than 95% confidence, the
detection of single neuron events must be made with close to
100% accuracy.

Precise spike inference is particularly challenging in two-
photon Ca2+ imaging data where neuronal activity is inferred
by brightness fluctuations of imaged pixels within the regions
of interest (ROI). Current indicators, such as GCaMP6 (Chen
et al., 2013) are expressed in the cytoplasm of the neuron,
forming a ring surrounding the nucleus, thus when imaging a
large population of neurons, relatively few pixels contribute to
the cellular signal. Displacement of the neuronal somata over
time from the defined ROIs can therefore perturb the inferred
activity. Therefore, before extracting neuronal activity from the
image plane, it is essential to accurately correct for motion which
can be particularly large in awake behaving preparations. A
number of motion correction algorithms have been developed
and adopted over the past two decades. For example, a line by
line motion correction method based on Hidden Markov Model
(HMM) was introduced to correct for line to line jitter notable at
slower scanning rates (Dombeck et al., 2007). Other algorithms
have been used for correction of both slow and fast movements
(Greenberg and Kerr, 2009). However, the line to line jitter
became less relevant at higher frame rates and frame-to-frame
motion correction is the main challenge today. One solution is a
cross-correlation based algorithm to find the translational shift of
each frame with a reference image (Miri et al., 2011). TurboReg
(Thevenaz et al., 1998) is a commonly used implementation of
this approach. A faster and more accurate implementation called
MoCo has recently been developed for Fiji Toolbox (Dubbs et al.,
2016). Fourier transform based methods, e.g., the DFT approach
(Guizar-Sicairos et al., 2008) are fast, but do not detect rotation.
However, imaging ever-increasing fields of view to capture the
activity of millions of neurons (Sofroniew et al., 2016) will require
methods that go beyond rigid body translations and include
rotations and also deformations in the field of view. Moreover,
to facilitate closed loop experiments, motion correction has to
operate fast enough to extract neuronal activity in real time.
Two recent preprints (Pachitariu et al., 2016; Pnevmatikakis
and Giovannucci, 2017) indicate complementary ongoing studies

using a block-wise phase-correlation algorithm. The preprints
highlight either real time capability or the ability to detect
deformations, but not both. Here we introduce a particle-tracking
based approach that is fast enough for real time implementation
yet suitable for detection of large jitter and of image rotations and
can be simply expanded to correct for distortions.

We have developed a suite of analytical tools to quantify brain
motion that adapts sub-pixel accuracy object-tracking tools from
the field of soft-matter physics. We use these tools to characterize
brain motion and to compensate for it with sub-pixel resolution
at real time speed. In addition, we compare the performance
of our tools to established algorithms that are used widely for
motion correction. Specifically, we introduce a particle-tracking
based image analysis pipeline capable of significantly reducing
in-plane motion, which yields more accurate spike inference
measurements. Though we only tested the algorithm off-line, the
algorithm is fast enough (processing up to 85 frames per second)
to be used in real time analysis of calcium transients, and is
amenable to extensions for 3D motion correction.

METHODS

Animals
All procedures were approved by the University of Maryland
Institutional Animal Care and Use Committee.

Adult wild type (C57) mice (>P40, range P40–P100
at the time of experiments) of both genders underwent a
single aseptic surgical procedure in which they received an
implant of a titanium headplate, intracortical injections of
adeno-associated virus delivering the gene of a genetically
encoded calcium indicator, and chronic cranial windows
(Goldey et al., 2014). The titanium headplate design was
a modified version of headplate presented in Guo et al.
(2014) to allow access to auditory cortex. Adeno-associated
virus AAV1.hSyn1.mRuby2.GSG.P2A.GCaMP6s.WPRE.SV40
(Addgene50942) (Rose et al., 2016) was obtained from UPenn
Vector Core and injected into several locations (∼30 nL per
site; ∼300–350µm from pial surface; 3–6 sites) in the auditory
cortex using a Nanoject system (Drummond). This sequence
allows for the expression of mRuby2 throughout the neuron
as well as expression of Gcamp6s. The craniotomy was sealed
with a chronic cranial window (Goldey et al., 2014). The entire
implant except for the imaging window was then coated with
black dental cement created by mixing standard white powder
(Dentsply) with iron oxide powder (AlphaChemical, 3:1 ratio)
(Goldey et al., 2014). At the conclusion of the procedure, the
animals were given a subcutaneous injection of meloxicam
as an analgesic. After complete recovery from surgery (>1–2
weeks), animals were habituated to the restraint system over
several sessions. After 1 week of habituation, 2-photon imaging
experiments commenced.

Imaging
For 2-photon imaging, we used a scanning microscope (Bergamo
II series, B248, Thorlabs) coupled to a pulsed femtosecond
Ti:Sapphire 2-photon laser with group velocity dispersion
compensation (Vision S, Coherent). The microscope was
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controlled by ThorImageLS software. The laser was tuned to
λ = 940 nm in order to simultaneously excite GCaMP6s and
mRuby2. Red and green signals were collected through a
16× 0.8 NA microscope objective (Nikon). Emitted photons
were directed through 525/50-25 (green) and 607/70-25 (red)
band pass filters onto cooled GaAsP photomultiplier tubes
(Hammamtsu). The field of view was 370 × 370µm. Imaging
frames of 512 × 512 pixels (pixel size 0.72µm) were acquired
at 30Hz by bidirectional scanning of an 8 KHz resonant scanner.
Beam turnarounds at the edges of the image were blanked with
a Pockels Cell. The average power for imaging was <70 mW,
measured at the sample. For single plane imaging, imaging sites
were∼150–270µm from the pia surface.

For volume scanning, axial motion was controlled with a piezo
collar (Physik Instrument) attached to the microscope body.
The microscope objective was moved smoothly through a z-
distance of ∼60µm across 13 imaging planes, two frames as the
objective returned to the starting position (i.e., flyback frames)
were discarded. All images were acquired at 352 × 352 pixels
(253µm × 253µm). The inclusion of multiple z-planes reduced
our temporal resolution to∼3 frames per second.

Motion Correction Algorithm
We use a cell tracking approach for motion correction, which
consists of three steps: cell extraction, tracking cells and
calculating offsets and rotations of each frame, and correcting
for it.

Cell Finding Algorithm
To extract the position of cells in the invariant channel
over background we use bandpass filtering and peak finding.
Figure 1A shows a sample image of a neuronal population with
low signal to noise ratio (SNR). In this example, we use a 16x
objective and image 512× 512 pixels (at 0.72µm per pixel) such
that a cell diameter is about 15 pixels. To enhance the SNR,
the image is bandpassed with a lower threshold of 4 pixels to
remove pixel scale noise and an upper threshold comparable
to (typically slightly smaller than) the cell size (13 pixels). The
resulting image is shown as Figure 1B. On this filtered image we
use automatic peak finding routines (Crocker and Grier, 1996)
to locate the position and size of each peak in the image above
a threshold that yields extraction of a user-defined number of
cells. The center is interpolated based on the brightness of all
pixels in the bandpassed image within a user-defined region of
radius R. The extent of interpolation R is independent of the
bandpass thresholds, and should be chosen smaller than the
upper bandpass limit, since features of size larger than the upper
bandpass limit are suppressed in the filtered image. In this part,
the user defines three parameters: lower bandpass (noise level in
the image), higher bandpass (cell size), and the number of cells
that are extracted in a sample frame.

Cell Tracking Algorithm
Once cell positions are determined in each frame, individual cells
are mapped from frame to frame to enable unique identification
of each cell. This is accomplished by mapping cells from one
frame to the next in such a way that the cumulative square

displacement between frames is a minimum value. Define A as
the set of all one to one mappings from {1, . . . , n} to itself. Let
a∗ǫ A be the arrangement that minimizes the cumulative square
displacement value, i.e.,:

a∗ , argmina ǫ A

{

∑

n
k = 1

[

xa(k) (t + δt) − xk (t)
]2

}

,

where xk(δ) refers to the position of the k th cell at time δ. Observe
that the above optimization is a bipartite minimum matching
problem, which can be solved in polynomial time.

The tracking software can also be adjusted with a memory
parameter to account for the possibility that some cells may not
be visible enough to be located in a subset of the frames. Cells
are then “remembered” for the subset of frames in which they
are not visible. This mapping yields trajectories for each cell that
could be mapped through the image sequence. The user defines
three tracking parameters in this section. Apart from thememory
parameter, the user sets the maximum frame to frame translation
expected in the dataset and the number of frames in which a track
should last to be valid.

Motion Correction
From the shift in all measured trajectories in each pair of frames
we then infer the overall shift and rotation of each frame. While
the shift in the positions of all tracked neurons does not perfectly
fit a rotation and translation (local distortions are also possible)
we compute the rigid body transformation (translation and
rotation) that minimizes residual displacements from one frame
to the next using the Kabsch algorithm (Kabsch, 1976, 1978).
These rigid body transformations are calculated for all frames to
carry out motion correction for the whole image sequence.

Define V = (x1,i , x2,i, . . . , xN,i) ∈ R
2×N and W = (x1,f

, x2,f , . . . , xN,f ) ∈ R
2×N as position vectors for extracted cells

where i represents the positions in the frame (source) and f the
average positions we want to correct toward (target). Using the
Kabsch’s algorithm it can be easily observed that the optimal
rotation matrix is:

R = (STS)
1
2 S−1,

where S = VWT .
The Code is available through the github link: https://github.

com/saghayee/Tracking-based-registration.

Validation of Subpixel Motion Correction
Subpixel precision can be achieved via peak finding, but only
if each peak spans a sufficient number of bright pixels. If
subpixel precision is achieved, the cell positions and subsequently
the frame to frame motion, when measured in pixels, fall
anywhere between integer pixel values with equal probability.
Thus, the residuals have a random distribution between 0 and 1.
Conversely, if peak finding and motion correction only achieved
pixel resolution, the distributions would peak around both 0 and
1. Examples of uniform histograms for the residual values of both
cell motion and frame jitter are shown in Figure 2.
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FIGURE 1 | Particle finding via bandpass filtering in the static channel. The scale bar is 100µm. (A) Typical frame acquired by TPSM. The low signal to noise ratio is in

most cases unavoidable due to high speed scanning. (B) Bandpassed image of the same frame with lower and higher bandpass of, respectively 4 and 13 pixels. (C)

The four brightest cells extracted by the algorithm (yellow circles) Scale bar is 100 microns. White arrows show the brightest cells in the bandpassed image.

FIGURE 2 | Validation of subpixel resolution particle finding and motion

correction. (A) Distribution of the residual cell position after extraction for

67,148 cells extracted from 15,000 frames. (B) Distribution of the

frame-to-frame residual displacement. The uniform distributions indicate

sub-pixel resolution of both cell tracking and motion correction.

RESULTS

We quantify brain motion using object-tracking methods
adapted from the field of soft-matter physics outlined above. Fast,
robust particle tracking algorithms have been first introduced two
decades ago (Crocker and Grier, 1996) and refined extensively
since then by others (Blair and Dufresne, 2008) and us (Losert
et al., 2000). The particle tracking approach, described in the
Methods section in detail, takes advantage of the fact that
neuronal cell bodies are roughly spheroidal and resemble each
other in size and shape. Our approach works best with a
signal that is independent of neuronal activity and thus under
ideal circumstances would appear at uniform brightness. This
is achieved by transfecting neurons with constructs that besides
supplying a Ca2+ indicator also label the nucleus or cytosol with
activity independent label, e.g., mRuby2 or others (Peron S. P.
et al., 2015; Rose et al., 2016).We benchmark our algorithm using
image sequences obtained from the primary auditory cortex in
awake mice using GCamp6s for Ca2+ and mRuby2 as a somatic
marker (AAV-syn-mRuby2-GCaMP6s).

Applying peak finding and particle tracking, detailed in
the Methods section, yields the motion of each neuron

independently. The time dependent position of a single neuron
is shown in Figure 3A. Since tracks of nearby neurons look very
similar (Figure 3B) it is reasonable to use the tracks for motion
correction as described above. We compute the translational and
rotational shift of an image from tracks of more than two points
(N > 2). Two reference points, though sufficient in principle, are
not enough given the uncertainty and errors in both imaging
and processing. Since peak finding increases in accuracy with
increased neuronal brightness, we use the brightest N tracked
neurons for the motion correction algorithm outlined in the
Methods section. To evaluate which frequencies contribute the
most to the motion, the power spectrum of jitter is shown in
Figure 3C. The power spectrum shows notable peaks on top
of a regular noise spectrum at frequencies of 7. 7 and 9.7 Hz
comparable to the expected heartbeat of a mouse. Correcting the
position of each point for this jitter yields close to stationary
points, with only very weak residual fluctuations, as shown in
Figure 3D. We note that natural jitter can include deformations
and rotations of the tissue. In the sample datasets, the algorithm
detected rotations in the range of 0.6 degrees which corresponds
to displacements of up to 3.6µm in a 370× 370µm image.

When benchmarking for processing speed, our algorithm
yields analysis of 500 images in 5.87 s or 85 frames per second
on a six core 3.5 GHz Intel Xeon Mac with OSX and 64 Gb of
RAM.

The next step is to use the motion compensated images to
identify neuronal ROI to be used for measurement of time traces
of activity. Motion correction yields a sharp averaged image
(Figure 4B) compared to the uncorrected average (Figure 4A).
While a single frame is so noisy that peak finding only captures
the brightest neurons accurately (Figure 1), peak finding on the
averaged image reliably yields most of the cells visible by eye
(Figure 4C). These brightness peaks provide automated input for
established algorithms to identify ROI around each cell center,
and to trace the image intensity in the ROI over time (Chen et al.,
2013).

To measure motion correction quality, we run the algorithm
on a simulated data-set with known translational offsets and a
known rotation of 1.2◦ in order to compare the tracking-based

algorithm (blue) to the conventional DFT method (magenta)

and MoCo algorithm (green). Figure 5A shows the correlation

between the detected offset along the y-axis vs. the actual
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FIGURE 3 | Particle tracking and residual cell motion. (A) Tracks of a single neuron in time. (B) Tracks for three neuronshighlight the similarities in trajectories.

(C) Power spectrum of image jitter, (D) Tracks after motion correction.

offset applied to each frame where the maximum translational
shift applied to the sequence is 10 pixels. Figure 5B plots the
Pearson correlation coefficient between the detected and actual
translational offsets vs. the maximum translational offset applied
to the image sequence for the three methods.

Moreover, to show the effects of motion on the fluorescence
signal we take advantage of the nominally uniform brightness
of the second (in this case red) fluorophore with time,
which we capture in a second, static channel. Therefore, the
fluorescence intensity in each of the motion compensated ROI
should be constant for the static channel. In fact, fluctuations
in the static channel are indicative of both inaccuracies in
motion correction and acquisition noise that is present in
each individual frame as seen in Figure 1. We first measure
the time sequence of these fluctuations using the z-score as
a normalized measure (Kato et al., 2015). Figure 6 shows
the z-score of one representative cell as a function of time
for the original image sequence, after full image registration
with TurboReg (Thevenaz et al., 1998), and after tracking-
based motion correction. The unregistered image sequence
has several sudden jumps in z-score indicative of sudden
large changes in position, as well as slow drift in z-score
indicative of slower shifts in the imaging location. Motion
events (blue arrows) in particular may be misidentified as
neuronal activity in spike inference algorithms. Both TurboReg
and particle tracking based motion correction eliminate these

artifacts. For all tracked neurons, the z-scores obtained with
both motion correction methods are comparable for both the
second control fluorophore (Figure 6B) and for the calcium
signal (Figure 6C).

To assess how the quality of motion correction depends on
tracking parameters and the number of tracked cells, we analyzed
the same image sequence with different choices for parameter
values, and compared the results with the DFT approach. For
a robust baseline comparison to established practice, we used
manual cell identification from the averaged images for all cases.
Figure 7A shows the intensity fluctuation in the static channel
measured from the four brightest cells (red) and for all 254
cells detectable in the averaged image (blue). The tracking-based
analysis is robust to changes in parameters (for the number
of neurons N between 4 and 10 and bandpass levels of 13–15
pixels, comparable to the size of a neuron), and comparable
to the performance of DFT. Since the fluorescence from the
static channel should be constant in time for each neuron, and
at the same time the fluorophore uptake and thus fluorescence
intensity levels vary significantly from neuron to neuron, we can
determine whether fluctuations in measured intensity depend
on the brightness of the neuron. Figure 7B shows that after
motion correction, the fluctuations decrease with increasing
brightness of the cell. For unregistered images, on the other hand,
fluctuations are independent of brightness. The dependence
on brightness approximately follows an inverse square root
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FIGURE 4 | Cell finding from motion compensated averaged images in the static channel. The scale bars are 100µm (top) and 20µm (bottom). (A) Averaged image

for the unregistered image sequence. (B) Averaged image after motion correction. (C) Automated cell finding. Yellow circles show the extracted cells.

FIGURE 5 | (A) Correlation of the detected frame to frame translation along the y-axis vs. the actual offset applied for tracking-based registration, DFT method and

MoCo, where the corresponding simulated sequences were shifted by a maximum of 10 pixels. (B) Is a plot of the Pearson correlation coefficient between the

measured translation and actual translation along the x-axis (dotted lines) and the y-axis (solid lines) vs. the maximum translational shift applied to the simulated

sequence for each of the three algorithms.

dependence on intensity, with a small intensity offset, as expected
for a noisy system.

Finally, we assess whether our new tracking based motion
correction yields a good SNR for the Ca2+ signal that
represents neuronal activity fluctuations in the GCamp6
channel. The SNR is calculated as the mean of the signal
(defined as the local maxima of the transient crossing a
threshold at z-score of 3) divided by the standard deviation
of the noise (defined as anything below this threshold). This
measurement is particularly sensitive to the robustness of the
algorithm, since the SNR depends on peaks in brightness

above a threshold as shown in Figure 8A. We find very
similar, if not slightly higher, SNR for each neuron with our
tracking-based motion correction approach when compared
to TurboReg. Figure 8B compares the SNR from all neurons
in the tracking-based motion corrected sequence with that of
TurboReg.

As an added benefit, the tracking-based approach to motion
correction also registers volume images. Volume imaging has
become feasible due to the availability of faster scanningmethods.
Since Ca2+ signal has a time constant of 500ms (Chen et al.,
2013) it is now possible to record neuronal activity in several
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FIGURE 6 | (A) Comparison of normalized intensities (z-scores) of the static channel vs. time for one representative neuron. (B) The z-scores obtained with tracking

and TurboReg based motion correction match for one representative neuron, and all neurons. (C) Comparison of z-scores in the calcium imaging channel (green) for

tracking and TurboReg corrected images.

FIGURE 7 | (A) Comparison of intensity fluctuations in the static channel for different tracking parameters with the DFT corrected sequence and unregistered stack.

Blue, all cells; Red, four brightest cells. (B) Intensity fluctuation vs. average brightness of each cell in the static channel. The blue cross represents ROI extracted from

the tracking registered stack while the circles in magenta are shows the ROI extracted from the unregistered stack. The red line shows the fitted curve to the

registered ROIs ( 1√
x−13.79

).

z-regions with a frame rate of 30Hz without significantly
diminishing acquisition concurrency. Volume imaging can allow
for imaging of neurons in different layers, or to provide
additional information about the same neurons. When applying
our in-plane motion correction approach to image sequences,
we shift each frame so neurons in the compensated image
appear at the mean position when compared to all uncorrected
images (i.e., we choose the mean image position as a reference
position). For long enough image sequences, the mean positions
of different z-planes coincide as we can see when identifying
neuronal positions in multiple planes. Thus, correcting each
plane to its mean position is sufficient to align a whole 3D
volume. This is demonstrated in Figure 9. Six neurons that

are extracted from a single frame are shown in Figure 9A.
Figure 9B shows the uncorrected position overlays of six bright
extracted neurons from different z-planes over time. Note
that often the same neuron is picked-up by the algorithm
in multiple neighboring z-planes. The corrected overlays are
illustrated in Figure 9C after motion correction was carried
out for each image plane independently. Motion correction to
the average position yields a simple, yet powerful approach
to create aligned 3D volume time lapse images. From such
registered image stacks it is then possible to identify the average
z-position of a neuron as well, based on the z-dependent
fluorescence intensity of the ROI around a peak, as shown in
Figures 9D,E. Thus, our approach can be extended to ultimately
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compensate for motion perpendicular to the imaging plane as
well.

DISCUSSION

We introduce peak finding and particle tracking as a new
motion correction approach that is fast and compatible with

the low SNR nature of TPLSM neural activity data. It performs
best with a time-invariant fluorescent signal generated with a
secondary fluorophore. While having a second fluorophore adds
experimental complexity, it not only facilitates accurate and
fast motion correction but also yields independent fiduciary
markers for each neuron. This allows for identification of all
neurons independent of their activity levels. One alternative
suitable for FRET based imaging is to add rather than subtract

FIGURE 8 | (A) SNR calculation for one neuron. (B) SNR correlation of tracking registration vs. TurboReg for all neurons in the FOV.

FIGURE 9 | Extension of peak finding to three dimensions. Images are from the static channel. (A) Sample image with 6 extracted cells. (B) Overlay of the six cells

identified in all layers at all times (unregistered). (C) Overlay of cell position after motion correction. (D) Brightest cells are extracted independently from each z-plane of

the volume data image. Extracted cells are tracked through data acquisition timepoints for every plane. (E) Intensity of two sample cells in different Z planes. Yellow

circles show the extracted cells.
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intensities of the two channels of a FRET probe, such as YC2.6
(Whitaker, 2010), which would yield an approximately constant
total fluorescence intensity.

The tracking-based motion correction introduced in this
paper does not rely on an averaged image for accuracy. Instead, it
extracts the position of a few reliable bright cells in every frame,
tracks them over time, and corrects for the displacement without
using the averaged image as reference. Tracking only the brightest
cells is both more reliable and faster computationally. Subpixel
accuracy increases with the pixel size of a neuron, and does
not require additional computations, such as up-sampling. Since
each tracked cell is corrected to its mean position independently,
the tracking method can be expanded for use in cases where
distortions of the tissue become important, e.g., near blood
vessels or when imaging very large areas. In addition, it can
correct for rotations of the FOV that lead to displacements
of 7µm in a 370 × 370µm as confirmed by simulations.
While we only detect rotations of up to 0.6 degrees in the
experiments when imaging an area of 370 by 370 microns, a
comparable rotation would be very problematic when imaging
at the mesoscale of several mm (Sofroniew et al., 2016; Stirman
et al., 2016).

Our particle tracking based approach complements prior
published work including whole image/region based registration
algorithms, such as TurboReg or MoCo (Dubbs et al.,
2016), and Fourier based methods, such as DFT registration
(Guizar-Sicairos et al., 2008). Our approach has comparable
accuracy, but as noted above yields subpixel resolution
and rotation tracking without loss of performance. Since
motion correction is based on measured displacements of
individual cells, it will be possible to fit the measured
displacements to image deformations as well. These advances
in motion correction and spike inference methods should aid
in improving data quality in imaging experiments (Harris
et al., 2016), especially for mesoscale microscopy where image
deformations and rotations are expected to become too large to
neglect.

Peak finding has a second purpose in the workflow we
introduce: Once image sequences are motion compensated

(by any method) the peak finding algorithm is applied to the

averaged images to determine the position of almost all cells
visible to the eye in an unbiased way. Having a reference signal
that is time invariant allows for calibration of the SNR and aids
in robust peak finding. Conversely, the subpixel accuracy motion
correction—and the ability to adjust for local deformations of
the image field if needed based on the independent track of
each neuron—is a strong basis for advanced spike inference
and analysis tools. A novel phase correlation based method
for example, assumes motion correction (Pnevmatikakis and
Giovannucci, 2017).

Since the analysis yields in-plane motion correction that is
registered across planes for three-dimensional image sequences,
our approach provides a basis for motion correction in all three
dimensions, which promises to further enhance the signal to
noise and thus enable even more accurate determination of the
neuronal code.
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