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weak or absent elsewhere. Whether such a functionally clustered 
spatial organization of synaptic efficacy patterning may emerge 
as a result of synaptic plasticity is a question that is still being 
actively pursued.

Notably, why would clustering be a desirable emergent prop-
erty? Firstly, previous studies have illustrated non-linear summa-
tion between nearby synchronous (or near-synchronous) synaptic 
inputs (Koch et al., 1983; Tuckwell, 1986; Polsky et al., 2004), allow-
ing for easier spike generation in regions with clustered inputs. 
Other studies have shown that altering the spatial configuration 
of inputs changes firing properties (Mel, 1993; Poirazi et al., 2003; 
Iannella et al., 2004), while correlated activity can alter the integra-
tive properties of neurons (Destexhe and Paré, 1999; Rudolph and 
Destexhe, 2003). Such clusters may provide part of the scaffolding 
underlying the emergence of functional dendritic compartments, 
subregions where activity tends to be correlated and where local 
signal integration permits some state-dependent non-linear com-
putation to take place, but simultaneously different to what is hap-
pening in other compartments (Polsky et al., 2004; Gasparini and 
Magee, 2006; Rabinowitch and Segev, 2006a,b).

Importantly, various studies have indicated that plasticity may 
lead to arrange afferent fiber contacts into spatial clusters. Three-
eyed frog experiments have shown that synapses contributed by 

IntroductIon
In all the cortical brain areas studied so far, neurons can modify 
their input/output characteristics, usually via activity-dependent 
modification of synaptic efficacies of the afferent axons targeting 
their dendrites. Experiments have shown that the pattern of syn-
aptic inputs can trigger either long-term potentiation (LTP, Bliss 
and Collingridge, 1993) or long-term depression (LTD, Kirkwood 
and Bear, 1994) at stimulated synapses. The discovery of spike 
timing-dependent plasticity (STDP, Markram et al., 1997a; Bi and 
Poo, 1998; Debanne et al., 1998; Zhang et al., 1998) illustrated that 
temporal specificity and timing information plays an important 
role, typically characterized by a temporally asymmetric window for 
synaptic change, where the temporal order of pre- and postsynaptic 
firing determines whether a synapse is potentiated or depressed. 
However, for a neuron with spatial extent, not only is timing impor-
tant, but also biophysical properties and the strengths and spatial 
arrangement of synaptic inputs across the dendrite, as these will 
dictate neuronal firing properties.

Whether the mechanisms underlying synaptic change also 
leads to the emergence of some preferred form of spatial organi-
zation of synaptic inputs across the dendrite, still requires further 
elucidation. Converging groups of afferent fibers form synapses 
which may be strong in some localized regions of the dendrite but 
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eye-specific afferent form spatially segregated but interdigitated 
series of clusters across the dendrite (Katz and Constantine-Paton, 
1988). In some cases, the axons are actually restricted to specific 
parts of the dendritic arborization as in the hippocampus, both in 
vivo (CA3 to CA1 connections) and in culture (Glanzman et al., 
1991; Kavalali et al., 1999; Cove et al., 2006). For the neocortex, 
however, the rule seems to be scattered afferents (Hellwig et al., 
1994; Hellwig, 2000; Anderson et al., 2002; Stepanyants et al., 2002, 
2008; Binzegger et al., 2004). Little can be inferred, however, regard-
ing functional consequences, since the presence of a synapse does 
not indicate strength (Somogyi et al., 1998; Megías et al., 2001; 
Thomson et al., 2002; Binzegger et al., 2004; Kalisman et al., 2005) 
and efficacies are heterogeneous (Cotrell et al., 2001; Frick et al., 
2001), but see Magee and Cook (2000). Recent experiments support 
the clustered plasticity model (Govindarajan et al., 2006) having 
illustrated that LTP not only gives rise to cooperativity and coor-
dinated regulation between nearby synapses (Harvey and Svoboda, 
2007; Harvey et al., 2008), but also leads to the selection of inputs 
promoting spatiotemporal coincidence and thus promotes the crea-
tion of hotspots of functional synapses (De Roo et al., 2008). Taken 
together, these investigations suggest that the efficacy of synapses 
contributed by different afferent groups display a functionally clus-
tered spatial arrangement.

Understanding how synaptic plasticity controls the strengths 
and spatial organization of synapses across dendrites is experi-
mentally challenging since simultaneously tracking the formation, 
changes and elimination of sets of synapses remains extremely dif-
ficult. Instead, simulation provides a viable means to gain important 
insights. One may ask whether STDP in a compartmental model 
neuron can lead to some spatially heterogeneous distribution of 
synaptic strength akin to what has been predicted by the clustered 
plasticity model. For neurons receiving stimulation from several 
different input streams, such as layer 4 stellate cells in the visual cor-
tex, could such a model provide insights into how plasticity maps 
the information contained in the activity originating from multiple 
input streams onto the dendrites, and whether the emergence of 
spatially segregated synaptic clusters form a substrate for such a 
mapping, such as those seen in ocular dominance formation. Our 
previous study is the only investigation so far to have shown that 
the emergence of such a spatial organization is feasible (Iannella and 
Tanaka, 2006). This model only incorporated sodium and delayed 
rectifier k

dr
 potassium channels, lacking many other ion chan-

nels known to exist in real pyramidal cells (Stafstrom et al., 1985; 
Schwindt et al., 1988; Lorenzon and Foehring, 1995; Hille, 2001; 
Larkum et al., 2001). Our previous study, however, did not address 
the role of STDP in the emergence of such a spatial organization in 
a biophysically realistic model nor did it examine the alteration of 
spatial organization when multiple groups are considered. Here we 
investigate how STDP, admitting different degrees of competition, 
shapes the spatial organization of synaptic efficacies originating 
from multiple groups and factors which affect this organization. 
We show that when a neuron is stimulated by multiple independent 
groups of afferent fibers, spatially segregated efficacy clusters can 
emerge via STDP, forming a dendritic efficacy mosaic. Collectively, 
our results suggest that spike timing may play an important role in 
the mapping of information contained in multiple input streams 
onto dendrites.

Materials and Methods
assessing the degree of segregation between Multiple 
spatial patterns
The first systematic analysis of spatial segregation was conducted 
by Duncan and Duncan (1955) who introduced the spatial dis-
similarity index (SDI). This index has historically been the measure 
of choice. However, measuring the segregation between two pat-
terns has limited real world applications, which typically require 
measuring segregation between multiple spatial patterns. Since the 
1980s, there have been many advances in measuring the segre-
gation between multiple patterns along with the development of 
comprehensive methods and criteria with which measurements 
are evaluated (James and Taeuber, 1985; Massey and Denton, 1988; 
Reardon and Firebaugh, 2002). Recent studies have shown that the 
M-index, a segregation measure based upon mutual information 
was first proposed by Theil (1971), satisfies more quality criteria 
than previous measures (Frankel and Volij, 2005, 2009; Mora and 
Ruiz-Castillo, 2009). The M-index will be used herein to assess the 
degree of spatial segregation between different streams of inputs. 
Before we present the expression for this segregation index, we 
will introduce the following set of notation, subscripts j denotes 
dendritic location and m indexes the particular afferent group:

W Wj
m

mj⋅ = Σ  total synaptic efficiency at dendritic location j.

W Wm
j

mj⋅ = Σ  total of group m’s synaptic efficacies.

W W
m j

mjtot = Σ
,

 total synaptic efficacy contributed by all groups.

πm mW W= ⋅ / tot proportion of group m synaptic weights.
π jm mj jW W= ⋅/  proportion of group m synaptic weights at j.

The mutual information M-index is defined as
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This index can be interpreted as a likelihood-ratio measure 
between variables respectively indexing dendritic location j and 
group membership.

the neocortical layer 2/3 pyraMidal cell Model
A biophysically detailed compartmental model of a reconstructed 
layer 2/3 pyramidal neuron receiving randomly timed excitatory 
and inhibitory synaptic inputs across the dendrite, was simulated 
using the NEURON simulation package (Hines and Carnevale, 
2001). The model consisted of 119 sections with 294 segments in 
the dendrite. The model also included a simplified myelinated axon, 
similar to those used previously (Mainen et al., 1995; Iannella and 
Tanaka, 2006), consisting of a hillock, initial segment, five nodes 
and five myelin internodes, respectively. The parameters and chan-
nel types used in the simplified axon were similar to those used by 
others (Mainen et al., 1995; Iannella and Tanaka, 2006). A variety 
of synaptic receptors, voltage- and calcium-dependent ion channels 
experimentally found in layer 2/3 pyramidal cells were incorpo-
rated into the model. These included four types of synaptic currents; 
AMPA, GABA

A
, GABA

B
, and calcium permeable NMDA and vari-

ous voltage-dependent currents such as, a passive leak (I
leak

), a fast 
sodium (I

Na
) and delayed rectifier potassium (IKdr

), a transient A-type 
potassium current (I

A
), a hyperpolarization activated potassium (I

h
), 

a muscarinic potassium (I
M

), a low voltage activated T-type  calcium 
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where ∆t = tpost − tpre denotes the timing difference between pre- and 
postsynaptic events. A+ and A− are positive constants scaling the mag-
nitude of individual weight changes, and τ+ and τ− are time constants 
determining the size of the temporal learning window in which poten-
tiation and depression occurs. The presynaptic event tpre denotes the 
arrival time of presynaptic input to some specific dendritic location, 
while the postsynaptic event tpost typically denotes the time when a local 
dendritic spike was generated. When ∆t is positive, synaptic efficacy is 
potentiated, and depressed otherwise; where individual changes in syn-
aptic efficacy W

j
 are also weight dependent. This weight dependence has 

the form of a power law where the exponent μ is a positive constant. The 
case when μ = 0 corresponds to the additive STDP rule, where changes 
in synaptic efficacy are independent of W

j
; while μ = 1 corresponds to 

the multiplicative STDP rule, where such changes are linearly depend-
ent on the weight. For intermediate values of μ the weight dependence 
is non-linear. The parameters used for the non-linear STDP learning 
rule were A+ = 0.0025, A− = 0.001125, τ+ = 13.5 ms and τ− = 34.5 ms, 
in agreement with previous experiments (Froemke and Dan, 2002). 
Postsynaptic events were detected when the local membrane potential 
surpasses a pre-specified threshold θ = −20 mV.

Froemke Rule: Quadruplet spike interaction based non-linear 
STDP
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where ∆t = tpost − tpre is the temporal difference between pre and post-
synaptic spikes, A+ = 0.025, A− = 0.01125, ε τχ χ χ χ= − − − −1 1exp( ( )/ )t ti i s  
χ = {pre, post} denotes the pre-/postsynaptic suppression factor, ti

χ 
and ti −1

χ  are the event times of the ith and (i − 1)th pre-/postsynaptic 
spikes, and τχ

s = { , }28 88 ms  denotes the pre-/postsynaptic suppres-
sion time constants, respectively.

Measures of functIonal spatIal assocIatIon
Developing methods for measuring how related two different entities 
are in space has lead to the emergence of a relatively new field, called 
Spatial Analysis. This field has already lead to novel yet widely used 
analytical and computational techniques, and whose objective sets 
out to provide robust methods for measuring the spatial association 
between events, is currently under active development. It is often 
assumed that entities which are close to each other share more features 
in common than those entities which are distant. Spatial dependencies 
between entities can arise via either correlation, causality or interac-
tion, and formal measures often rely on calculating the spatial autocor-
relation. Historically, Moran’s I index (Moran, 1950) is a widely used 
global measure of spatial association which assesses the correlation 
or similarities amongst the attributes of neighboring observations in 
a spatial pattern. Moran’s I index is a tool which measures the spa-
tial autocorrelation of a pattern and evaluates whether the pattern is 
clustered, dispersed or random in space. This index is best interpreted 
as a weighted correlation coefficient used to detect departures from 
spatial randomness (Moran, 1950). It is defined as

I
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(I
T
), high voltage activated N- and L-type calcium current (I

N
) and 

(I
HVA

), three types of Ca2+-dependent potassium channels: (I
C
), 

medium AHP (I
mAHP

); and slow AHP (I
sAHP

) currents. These active 
channels were included throughout the axon, soma, and dendrites 
with densities and distributions based upon available experimental 
data mostly from the rat, or those used in previous studies. Passive 
properties used for the dendrite were similar to previous studies 
(Mainen et al., 1995; Iannella et al., 2004; Iannella and Tanaka, 2006): 
the membrane capacitance in the dendrite was C

m
 = 0.9 μF/cm2, 

the resting potential was −80 mV and the internal resistivity R
a
 was 

200 Ωm. The effect of dendritic spines was included by correcting 
both the membrane capacitance and leak by a scaling factor.

The descriptions of the ionic currents used in the simulations 
were the same or similar to those used in previous modeling studies 
(Rhodes and Gray, 1994; Mainen et al., 1995; Rhodes and Llinás, 
2001; Traub et al., 2003; Iannella et al., 2004; Iannella and Tanaka, 
2006) and are given in the Supplementary Materials.

Stimulation was provided by a group of 250 inhibitory afferent 
fibers and typically four equally sized groups of 250 correlated 
excitatory afferents, unless stated otherwise. Inhibitory and exci-
tatory afferents are not correlated with each other. Furthermore, 
we ascertain that any afferent from one excitatory group was not 
correlated with any afferent from the other excitatory group. Each 
fiber, either excitatory or inhibitory, forms five synaptic contacts in 
the model, as suggested by current anatomical data (Thomson et al., 
1994, 2002; Markram et al., 1997b; Feldmeyer et al., 2002).

Simulations proceeded by initially connecting each excitatory 
afferent fiber to five randomly selected locations across the dendrite. 
Similarly, each inhibitory afferent also formed five synapses at ran-
dom locations throughout the initial segment, hillock, soma, and 
dendrite. All synapses were activated at random times. The activ-
ity of inhibitory fibers were modeled by temporally homogeneous 
Poisson processes with a mean frequency of 10 Hz. The activity of 
excitatory afferents were modeled by a previously published realiza-
tion of correlated Poisson processes where the ensemble activity of 
a group of fibers contains higher order statistics (Kuhn et al., 2003). 
The higher order interactions are mediated by synchronized activity 
involving only subsets of afferents belonging to a single group. The 
mean firing rates of all excitatory afferents used in the simulations 
was typically 40 Hz, with a within group correlation coefficient of 
C = 0.05, except where otherwise stated. A typical simulation took 
500 s of simulated time, unless stated otherwise.

stdp learnIng rules
Two different STDP rules were used to change only the weights 
of AMPA conductances W

j
(t) ∈ [0,1], (NMDA, GABA

A
, and 

GABA
B
 conductances were not altered). The first rule is a previ-

ously described non-linear STDP rule (Gütig et al., 2003), while 
the remaining two are non-linear generalizations of two previously 
published multispike interaction based STDP rules. For clarity, we 
will simply call these the Gütig and Froemke STDP rules, respec-
tively. These rules are given below.

Gütig Rule: Pair based non-linear STDP
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various locations and at different critical frequencies in the dendrite. 
Figure 1B indicates how the peak dendritic voltage amplitude varies 
non-linearly as a function of input pulse frequency for two different 
color-coded dendritic locations (as indicated in Figure 1A). One 
begins to see the generation of dendritic spikes in the model at a 
critical frequency of 130 Hz. This is in excellent agreement with 
recent experimental data from layer 2/3 pyramidal cells indicating 
that a critical frequency of 128 Hz is required for dendritic spike 
generation (Larkum et al., 2007). Figure 1C shows the correspond-
ing peak calcium concentration as a function of frequency for the 
same color-coded locations (see Figure 1A). Figure 1D depicts the 
normalized peak calcium transient amplitudes (dF/F

peak
) during 

trains of six APs at increasing input frequencies for proximal and 
distal positions as indicated in Figure 1A. For increasing input 
frequencies, these trains lead to similar increases in calcium at 
proximal dendritic locations, however peak calcium transients 
(dF/F

peak
) at distal dendritic locations, were significantly larger 

during AP trains at and above the critical frequency for triggering 
a dendritic spike when compared with trains evoked at 100 Hz. 
This behavior is in agreement with recent experimental observa-
tions (Kampa et al., 2006). Figure 1E shows the normalized ratio 
of peak calcium transients evoked by three somatic APs relative to 
one AP at different distances from the soma along the indicated 
path and depicts a non-linear distance-dependent increase similar 
to the one observed experimentally (Kampa et al., 2006). Finally, 
Figure 1F shows how pairing a dendritic injection of EPSP-shaped 
current with a back-propagating action potential (BPAP) gives rise 
to a facilitatory effect where the threshold for dendritic spike gen-
eration was reduced by 25%, when a somatic spike was evoked 
by a brief current pulse 10 ms before dendritic current injection. 
The magnitude of this effect is again in excellent agreement with 
experimental observations from layer 2/3 pyramidal cells (compare 
to Figure 6C in Larkum et al., 2007).

the dendrItIc effIcacy MosaIc and functIonal consequences
Prior to applying any learning rule, a decision needs to be made 
regarding how the model neuron is to be simulated. Past studies 
have investigated the temporal evolution and outcome of STDP in 
models where stimulation is primarily driven by two neural popu-
lations (Gerstner et al., 1996; Song et al., 2000; Song and Abbott, 
2001; Gütig et al., 2003). More recently, multispike interactions 
have also been explored (Froemke and Dan, 2002; Izhikevich and 
Desai, 2003; Burkitt and Grayden, 2004; Appleby and Elliott, 2005, 
2006, 2007; Pfister and Gerstner, 2006). In order to better under-
stand the impact of plasticity and spike timing in cortical circuits, 
recent studies have focused on network-level simulations and the 
outcome of stimulations driven by the activity of multiple afferent 
groups, mimicking different neuronal populations that may, for 
example, encode different sensory modalities (Meffin et al., 2004; 
Wenisch et al., 2005; Burkitt et al., 2007; Masquelier and Thorpe, 
2007; Gilson et al., 2009a,b,c,d; Masquelier et al., 2009). Here, we 
will adopt this multiple stream approach and compare the out-
come of both spike-pair and multispike interaction based STDP. 
Stimulation to our spatially extended model neuron is provided 
by multiple equally sized groups of afferent fibers where the spike 
activity within a single group was correlated, but was independent 
of the activity in other groups. This stimulation paradigm is similar 

where N is the total number of dendritic locations j, ϑ
ij
 is a spa-

tial weight matrix of proximity where the simplest case is that of 
nearest neighbor (1 if location i is the neighbor of location j and 0 
otherwise), Wj

G is the total synaptic weight of group G at dendritic 
location j, and W

G
 is the mean synaptic weight of a single group 

G. Calculated values range from −1 to 1, whose positive (nega-
tive) values indicate positive (negative) spatial autocorrelation, and 
where each extreme indicates either perfect dispersion or perfect 
correlation, respectively.

Alternatively, another index which has been used for assessing 
spatial autocorrelation is the Geary C index (Geary, 1954). Despite 
being inversely related, the Geary C index is not the inverse of 
Moran’s I index. Furthermore, while Moran’s I index is a global 
measure of spatial functional association, the Geary C index is 
sensitive to local autocorrelations and can be regarded as local 
indicator of functional association. The Geary C index is defined 
as follows,

C
N W W

W W

ijji i
G

j
G

ijJI k
G G

k

=
− −( )
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,
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ϑ

where the meanings of the symbols N, ϑ
ij
, WG, and W

G
 are the same 

as those defined for Moran’s I index. Calculated values range between 
0 and 2, where numbers smaller or larger than one indicate positive 
or negative autocorrelation, respectively. Note that a Geary C index 
of 1 means that there is no spatial autocorrelation present.

results
ValIdatIon of a detaIled Model of a layer 2/3 pyraMIdal cell
Biophysically detailed models typically try to embrace the full com-
plexity of real cells, by incorporating as much of the morphology 
and known biophysical details as is feasibly possible, so that the 
model can replicate as much of the behavior of the cell under con-
sideration. To investigate the emergence of spatially heterogeneous 
patterns of synaptic strengths in dendrites, a biophysically detailed 
model is required since STDP depends locally on the postsynaptic 
depolarization and calcium, thus the description and distribution 
of voltage-dependent conductances should be accurate. Note how-
ever, that the adopted STDP rule (see Materials and Methods) used 
in this paper does not have an explicit calcium dependence.

In constructing our biophysical model of a layer 2/3 pyramidal 
cell, detailed in the appendix, emphasis was placed on reproducing 
a variety of dendritic responses, including the frequency depend-
ence of dendritic spike generation and distance-dependent cal-
cium accumulation, similar to those seen in recent experiments 
(Kampa et al., 2006; Larkum et al., 2007). Figure 1 summaries 
model responses to a variety of experimental stimulus protocols. 
First, a short train of six simulated current pulses was injected into 
the soma to produce six somatic action potentials (APs). Figure 1A 
illustrates the dendritic voltage responses from six different loca-
tions in the dendrite to the somatically injected pulses delivered at 
a frequencies of 130 and 200 Hz, respectively. Dendritic spikes are 
clearly present but do not occur at every location in the dendritic 
tree. The position of dendritic responses are color-coded for clarity. 
Dendritic spike generation is caused by electrogenesis occurring at 



Frontiers in Computational Neuroscience www.frontiersin.org July 2010 | Volume 4 | Article 21 | 5

Iannella et al. Clustered efficacy engrams via STDP

Figure 1 | The biophysical model of a layer 2/3 pyramidal cell is shown to 
reproduce several experimentally observed properties, (A,B) including 
frequency dependent dendritic spike generation, a non-linear distance-dependent 

increase in (C) peak calcium and (D,e) the normalized ratio of peak calcium 
transients, and (F) a 25% reduction in the threshold for generating dendritic spikes 
when somatically generated spikes precede dendritic current injection by 10 ms.
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is  important to determine how and under what conditions such 
an efficacy mosaic emerges. A key feature of Gütig’s rule is the 
presence of the exponent μ. This parameter controls the weight 
dependence of the rule and thus the degree of competition, since 
for μ = 0 the rule corresponds to the original additive STDP 
used by Abbott and Song (Song et al., 2000) and exhibits strong 
competition (Song et al., 2000; Song and Abbott, 2001); while 
for μ = 1 recovers the multiplicative STDP rule, a rule known to 
display stable yet weak competition between synapses (van Rossum 

to previous STDP studies (Gerstner et al., 1996; Song et al., 2000; 
Gütig et al., 2003) where STDP leads to the activity-dependent 
formation of heterogeneous spatiotemporal patterns of synaptic 
efficacy. Similar to our previous study (Iannella and Tanaka, 2006), 
when the biophysical model receives inputs from multiple inde-
pendent groups of afferent fibers with correlated activity, STDP, in 
conjunction with strong competition between synapses, leads to 
synaptic efficacies being arranged into spatially segregated clusters 
which effectively forms a partitioning of the dendritic tree. The 
resulting dendritic imprint effectively forms a tessellated spatial 
pattern of synaptic strength across the dendrite, as seen in Figure 2, 
which we will simply call a dendritic efficacy mosaic hereafter. When 
stimulating with four groups, Figure 2 shows the spatial organiza-
tion of synaptic efficacies, before and after STDP, for each respec-
tive group. These plots display the relative dominance of a single 
groups compared to the total, defined as the ratio between the 
total efficacy by a single group and total efficacy of all groups for 
each location on the dendrite. Figure 2B shows the corresponding 
dendritic efficacy mosaic by color-coding the strongest group at 
each dendritic location after STDP. Before analyzing how synaptic 
competition affects such a dendritic partitioning, it is instructive 
to observe how voltage responses have changed before and after 
STDP. Figures 3A,B provides an example of the voltage response to 
stimulation from a single group of afferents, taken from the soma 
before and after STDP learning. Note that before STDP (Figure 3A), 
the somatic voltage trace contains no clear APs and is depolarized 
to an unusually high level. After STDP however, spikes are readily 
observed and the mean baseline depolarization is about −60 mV. 
These somatic spikes occurred since STDP led to an overall reduc-
tion in the total synaptic currents being generated throughout the 
neuron. The high level of depolarization observed in Figure 3A is 
simply attributed to the synaptic weight for the AMPA conductance 
initialized to w

j
(t) = 0.5. Starting from a lower initialization does 

not disrupt the emergence of either spatially segregated clusters 
or the dendritic mosaic (data not shown). The main difference 
is a reduction in the firing rate of the pyramidal cell after STDP. 
Figures S1A,B in the Supplementary Materials is one such example 
where the weights were initialized to w

j
(t) = 0.1; before STDP the 

somatic membrane recording shows that many spikes are present, 
but after STDP there are clearly fewer APs present. Figures 3C–F 
shows the voltage traces from two different (color-coded) dendritic 
locations (blue and green as shown in Figure 3) when stimulation 
is provided by a single afferent group before and after STDP. Note 
the presence of dendritic spikes in both Figures 3D,F, which have 
emerged, where STDP has led to clear changes to both somatic and 
dendritic voltage responses.

forMatIon of the dendrItIc effIcacy MosaIc depends  
on coMpetItIon
The formation of spatial patterns displaying a clustered spatial 
organization typically emerge by competing for some limited 
resource (Murray, 2003). In the case of our biophysical neuron 
model, the processes by which STDP leads to the emergence 
of a dendritic efficacy mosaic was implemented using Gütig’s 
non-linear rule (see Materials and Methods for details), where 
synapses compete both spatially and temporally to control the 
timing of somatic and/or dendritic spike generation. Therefore it 

Figure 2 | (A) STDP learning changes the initial spatial organization of 
synaptic strength and leads to emergence of regions dominated by a single 
group of afferent fibers. (B) After STDP learning the four competing groups 
form spatially segregated efficacy clusters. Here only the winning group is 
color-coded at each dendritic location.
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Figure 3 | Changes to the voltage responses recorded at the soma and two different locations on the dendrite before and after STDP to stimulation from 
a single group of afferent fibers. Recording positions have been color-coded: (A,B) soma (red), (C,D) first dendritic position (blue), and (e,F) the second 
location (green).
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strong and weak competition. In the case of strong competition, 
for A− = 0.001125 and frequencies less than 20 Hz, the small values 
for the M-index indicates that spatial segregation and hence the 
degree of spatial partitioning between the efficacies contributed 
by all four afferent groups is poor. As mean afferent input frequen-
cies are increased, the magnitude of the M-index, which meas-
ures the degree of spatial segregation, increases. For frequencies 
higher than 30 Hz, spatial segregation is good (indicated by the 
high M-index values) where maximal spatial segregation between 
efficacy patterns occurring for a mean input frequency of 35 Hz. 
In contrast, when synaptic competition is weak, the magnitude 
of the M-index remains low even when the mean frequencies of 
afferent inputs to the dendrite is increased. For the A− = 0.001125 
case, high mean input frequencies of 30 Hz or more are needed 
to produce a high degree of spatial partitioning. This suggests 
that bursts may have a role to play, however for comparison, 
simply increasing A− by 10% to A− = 0.0012375 leads to higher 
M-index values over the range of selected mean input frequen-
cies. Importantly for this specific case, we observe that a mean 
input frequency of 20 Hz is sufficient for a dendritic mosaic to 
emerge. Note that the selected values for A− were chosen so that 
the ratio A−/A+ lies within the experimentally observed range for 
this ratio (Froemke and Dan, 2002).

We have observed that the mean input frequency of afferent 
fibers alters the M-index, however, what are the consequences of 
these frequency effects on the response properties of the model 
neuron? Figure 6 shows how the firing rate of the pyramidal cell 
changes as a function of mean input frequency. Interestingly, the 
firing rate displays a dip, initially decreasing from 51.1 to 31.1 Hz 
for a mean input rate of 20 Hz and then rising almost linearly to 

et al., 2000). For intermediate values of μ the weight dependence 
is  non-linear. We can now assess how the formation of such a 
dendritic efficacy mosaic is affected by changing the degree of 
synaptic competition, through the parameter μ of the STDP rule 
(Gütig et al., 2003). Figure 4 illustrates how the M-index, which 
quantifies the degree of spatial segregation between the spatial 
arrangements of synaptic strengths, contributed by four independ-
ent groups of correlated afferent fibers, changes as a function of 
the exponent μ. Note that the index is high for small μ, indicating 
that efficacy clusters are spatially segregated while for μ > 0.25 this 
segregation is poor. Spatial segregation occurs for small μ since 
STDP implementing strong competition between synapses, along 
with an active membrane, is seen to implement a winner-take-
all self-organization process in space, where a single group can 
dominate some dendritic regions at the expense of others, while 
surrendering the remainder of the dendrite.

the effect of frequency on spatIally segregated clusters
The frequency of input spikes has previously been shown to influ-
ence the outcome of STDP via changes to the final distribution 
of synaptic weights (Song et al., 2000). For the case of spatially 
extended excitable neurons stimulated by various independent 
groups of fibers with correlated activity, we examine the impact 
of altering input frequency on the degree of spatial segregation 
and overall spatial organization. For the case when non-linear 
STDP admits strong competition, one expectation is that spa-
tial segregation should be adversely affected for low frequencies 
when compared to higher input frequencies, primarily due to 
a reduction in the amount of potentiation; while for the weak 
competition case, there should be little change between the initial 
and final spatial distributions of synaptic efficacies across the 
dendritic tree, irrespective of the mean frequency of input spike 
activity. Figure 5 shows how the M-index changes as a function 
of mean input frequency when non-linear STDP admits both 
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Figure 4 | A plot of the M-index as a function of μ. Notice the high value of 
the M-index occurs when the non-linear STDP rule admits strong competition, 
but its value is small when synaptic competition is weak.
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Figure 5 | Plot of the M-index as a function of the mean frequency of 
input afferent fiber activity for two different values of μ; μ = 0.03 
(representing strong competition) and μ = 1 for weak competition 
between synapses. When synaptic competition is strong, for frequencies 
less than 20 Hz, the indices indicate that the degree of spatial segregation and 
the degree of partitioning is poor but improves as input frequency is 
increased. Computation times for the μ = 0.03 and μ = 1 were 4000 and 500 s 
of simulated time, respectively.
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STDP rules are inadequate for reproducing observed changes 
in synaptic efficacy induced by either varying the frequency of 
presynaptic inputs or when triplets or more spikes are used in 
experimental protocols. STDP rules based upon multiple spike 
interactions, such as a recent rule based upon triplets of spikes 
(Pfister and Gerstner, 2006), are important to explain both the 
changes in efficacy when driven by multiple spike based stimu-
lation and frequency effects observed during classical pairing 
protocol experiments (Sjöström et al., 2001). We next examine 
the impact of such type of rule (Froemke rule – see Materials and 
Methods) on the final spatial organization of synaptic efficacies 
after the learning process.

Figure 7 illustrates how varying the degree of synaptic competi-
tion affects the M-index. There are clear differences between spike-
pair (Figure 4) and multispike interaction (Figure 7) based rules 
for small values of μ. By comparing Figures 4 and 7, we observe 
that the M-index was larger for STDP based upon multispike inter-
actions (Froemke rule) rather than spike-pair based rules (Gütig 
rule). Explaining why these differences occur for small values of μ 
is difficult because a theoretical framework for studying changes 
in synaptic efficacy in realistic neuron models, as used here, is 
still lacking.

45.7 Hz for higher (mean) input rates. There are likely to be any 
number of contributing reasons for such non-linear  behavior, 
including a reduction in firing rate via sodium inactivation and 
the non-trivial effects of noise in Hodgkin–Huxley based neuron 
models (Gutkin et al., 2009). Although the non-linear behavior 
of the somatic firing rate initially falls and then rises, we want to 
stress that the monotonous increase of the M-index suggests that 
what happens in the dendrite is more important than the activity 
in the soma, which is critical for STDP models based upon BPAPs. 
Also displayed are the corresponding changes to the probability 
density function (PDF), and the coefficient of variation (CV) as a 
function of mean input frequency. Raw interspike interval histo-
grams are presented in Figure S2 in Supplementary Materials.

eMergence of spatIally segregated clusters VIa MultIspIke 
stdp rules
So far spatially segregated efficacy clusters have emerged through 
spike-pair based STDP rules, however, previous STDP experi-
ments have shown that changes to synaptic efficacy depends 
upon several factors including multiple spike interactions 
(Froemke and Dan, 2002; Froemke et al., 2006) and the fre-
quency of presynaptic inputs (Sjöström et al., 2001). Pair based 

Figure 6 | input frequency affects the firing properties of the model layer 
2/3 pyramidal cell after STDP learning. Here four groups of excitatory fibers 
and one group of inhibitory fibers were active. (A) Plot of the M-index as a 
function of the afferent fiber mean input frequency for μ = 0.03 (repeated from 
Figure 5, after 4000 s). (B) The corresponding changes to the somatic firing 

rates, (C), Coefficient of variation (CV), and (D) Probability density function (PDF) 
as a function of mean input frequency of afferent inputs, respectively. Note that 
the initial decrease in the firing rate may be attributed to several factors including 
sodium inactivation and the non-trivial effects of noise in neuron models (see 
Figure 1A of Gutkin et al., 2009).
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spatial analysis. Both Moran’s I and Geary C indices were adopted 
as these (as previously stated in Section “Materials and Methods”) 
are essentially measures of spatial autocorrelation, widely used for 
testing the presence of spatial dependencies.

To sample more finely the effect of increasing the number of 
groups but keeping the total number of axons close to 1000, we 
selected groups so that the integer number of axons per group mul-
tiplied by the number of groups was 1000 ± 1. Figure 8A illustrates 
how the M-index changes as a function of increasing number of 
independent afferent fiber groups. Significantly, Figure 8B depicts 
both the Moran’s and Geary C indices, being respective global and 
local indicators of functional association, showing that there is a 
decrease in the degree of functional clustering when the number 
of groups increases. Note that there is a clear reduction in the rate 
of loss of functional clustering, where both indices are respectively 
expected to eventually asymptote to some finite non-zero values, 
keeping some degree of functional clustering between neighbor-
ing synapses. This suggests that only a finite number of afferent 
groups are represented in a manner where nearby synapses are 
functionally related and a high degree of spatial segregation can 
be maintained.

dIscussIon
synaptIc coMpetItIon and stdp joIntly regulate clustered 
effIcacy engraM forMatIon
In this current study, we have extended our original study (Iannella 
and Tanaka, 2006) by further investigating the issue of forming 
clustered synaptic efficacy engrams within the dendritic tree via 
STDP, subject to multiple input streams. A biophysical model, 
whose channel types and distributions are based upon available 
experimental findings, was used suggesting that the phenomena 
may exist in vivo. Specifically, when stimulation to the model was 
provided by four groups of correlated afferent fibers with no inter-
group correlation, STDP allowed each respective group to domi-
nate mutually exclusive regions of the dendrite, resulting in the 
emergence of spatially segregated clusters. These emergent clusters 
possess a unique spatial organization where they form a tessellated 
pattern which effectively partitions the dendritic tree, a patterning 
which we have termed a dendritic mosaic. This organization was 
stable in both space and time.

Significantly, we further showed that this spatial organization 
was robust to variations in the type of STDP (either spike-pair or 
multispike interaction based) rule used in the simulations. The 
emergence of the dendritic mosaic was prevented only when the 
number of independent input streams exceeded a critical value.

functIonal consequences of clustered synaptIc  
effIcacy engraMs
The presence of a clustered spatial organization of synaptic effi-
cacy within the dendrite can play important functional roles. One 
immediate consequence is clear; for inputs originating from a single 
group of afferents, activating potentiated synapses within efficacy 
clusters will favorably take part in neuronal firing. Specifically, 
activating such synapses will typically result in a larger dendritic 
depolarization when compared to the activation of synapses dis-
tributed diffusely in the dendritic tree, therefore making a bigger 
contribution toward spike generation. Previous experimental and 

robustness of dendrItIc effIcacy MosaIc and spatIally 
segregated clusters
So far, we have seen that four independent groups of correlated 
afferent fibers each gives rise to spatially segregated synaptic efficacy 
clusters. Being contributed by each respective afferent group, these 
segregated clusters possess a unique global organization in space, 
where they form a tessellation or a mosaic which partitions the 
dendritic tree whereby each group dominates mutually exclusive 
regions of the dendrite. This leads to the question of how robust 
is this type of spatial patterning when the number of groups is 
increased. This indirectly permits one to explore the spatial scale 
for information storage and representation that is preferred after 
STDP. In particular, recent studies have emphasized that informa-
tion may be stored over several nearby synapses, rather than at a 
single synapse (Govindarajan et al., 2006; Harvey and Svoboda, 
2007; De Roo et al., 2008; Harvey et al., 2008; Larkum and Nevian, 
2008; Yoshihara et al., 2009). Since information storage over several 
nearby synapses is indeed the main mode of information storage, 
one would expect that only a finite number of independent affer-
ent groups, less than the number of synapses, can be represented 
throughout the dendrite. The key questions are therefore, how input 
representation as efficacy clusters changes and, more importantly, 
whether the degree of functional association between synapses 
degrades as the number of groups increases.

Functional association between synapses from a single group of 
afferent fibers is created on the postsynaptic side by STDP, resulting 
in local and stable potentiation of a group of synapses receiving 
correlated activity. Stability results because the group of synapses 
mutually re-enforce each other (association), where they all become 
more resistant to spurious changes of synaptic weight triggered ran-
dom events, permitting them to maintain their function. Put simply, 
function is improved by the fact that they are locally associated, 
leading to a more robust system. In order to quantify the association 
between synapses, we have adopted two indices extensively used in 
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Figure 7 | Spatially segregated efficacy clusters can emerge from 
multispike based STDP rules. To quantify how competition influences the 
final spatial organization of synaptic weights, again the M-index are displayed 
as a function of μ.
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It is now pertinent to ask what would happen if only the BPAP 
was used to convey postsynaptic timing information? A single 
theoretical study using a reconstructed CA1 pyramidal cell has 
shown that by assuming somatic spikes in two different models 
of dendritic excitability, one with a high capacity and the other 
with a low capacity to generate dendritic spikes, stimulated by a 
single group of afferents led to a large portion of highly potentiated 
synapses (Rumsey and Abbott, 2006). For the low capacity model 
potentiated synapses were typically located closer to the soma than 
depressed synapses (see Figure 10 in Rumsey and Abbott, 2006). 
Now if one considers the case when stimulation is provided by mul-
tiple groups of afferents, the results of Rumsey and Abbott (2004) 
seems to indicate that most synapses close to the soma, irrespective 
of the contributing group, would be potentiated, suggesting that 
the dendritic mosaic would not emerge.

Allowing the synapse to detect spikes locally has the advantage 
that different dendritic regions will have different sequences of 
postsynaptic times, and these different times essentially provides a 
“seed or scaffold” for clusters to emerge. This can be simply under-
stood by the following intuitive example. When an afferent group 
begins to dominate some dendritic location(s) then the strength 
of its contributed synapses to neighboring locations are also like 
to be strengthened since dendritic spike generation at locations 
where the group dominates will also strongly depolarize adjacent 
locations. Synaptic inputs to these adjacent locations are likely to 
generate dendritic spikes and this eventually strengthens some of 
the synapses contributed by the dominant group, while weakening 
those of other groups, leading to the formation of a cluster.

Although the current STDP model provides useful insights into 
cluster formation, it is inadequate for understanding the biophysi-
cal mechanisms responsible such processes. Given that calcium 
signaling is known to be an important factor, not only for STDP 
(Nevian and Sakmann, 2006), but also for synaptic plasticity in 
general (Bliss and Lomo, 1973; Bienenstock et al., 1982; Brown et al., 
1988; Dudek and Bear, 1992; Hille, 2001), we would argue that a 
biophysical model of STDP, based upon calcium and known (and/
or yet to be discovered) biochemical signaling cascades is required 

 theoretical studies support this, having shown that near  synchronous 
 activation of nearby synapses within a dendritic branch can lead 
to supralinear summation of their synaptic inputs. However, only 
linear summation was observed when synapses were activated on 
different dendritic branches (Poirazi et al., 2003; Gasparini et al., 
2004; Polsky et al., 2004; Gasparini and Magee, 2006; Losonczy 
and Magee, 2006).

local Vs global postsynaptIc tIMIng InforMatIon: the case 
for dendrItIc spIkes
In classical STDP models, synaptic weights are modified accord-
ing to the timing difference between presynaptic input tpre and a 
postsynaptic spike tpost. Such studies assume a somatic spike can 
reliably back propagate to all regions of the dendritic tree, where 
this BPAP “tells” synapses about when the neuron fired a spike. In 
real pyramidal cells, however, spike generation is not restricted to 
the soma/axon initial segment region, but can be generated almost 
anywhere in the dendrite. This raises an important question as what 
signal conveys postsynaptic timing information and whether it 
should be local or global in nature. There is now mounting evidence 
from numerous experiments showing that the BPAP is an unreli-
able global signal since its known that it cannot fully invade the 
entire dendrite (Larkum et al., 2001; Stuart and Häusser, 2001). The 
extent of back-propagation varies depending upon various influ-
ences including potassium channel activation (Kampa and Stuart, 
2006), synaptic background activity (Paré et al., 1998; Mickus et al., 
1999), and inhibitory inputs (Larkum et al., 1999). Importantly, 
experimental studies have shown that synaptic efficacy can change 
without the need of a BPAP. Specifically, these studies illustrated 
that generating a local dendritic spike, by spatially clustered and 
near synchronous synaptic inputs, can lead to changes in synaptic 
strength (Schiller et al., 2000; Golding et al., 2002; Holthoff et al., 
2004). For models, assuming that local dendritic spikes carry post-
synaptic timing information are detected locally at each synapse is 
true, then the results of this paper and our previous work (Iannella 
and Tanaka, 2006) suggest that spatially segregated clusters emerge 
as a consequence.

Figure 8 | (A) Increasing the number of independent afferent fiber groups 
leads to an increase in the M-index indicating that there may be an increase in 
the degree of spatial segregation. (B) Interestingly, both the Moran and Geary 
indices show that there is a loss in the degree of functional clustering and 
association between nearby synapses, however, the rate of loss slows and is 

eventually seen to reduce to 0 where both indices are expected to asymptote to 
finite values, suggesting that functional clustering, both globally and locally 
between neighboring synapses persists. This suggests that smallest spatial 
scale for information storage (and representation) in the dendrite is likely to be 
distributed over several nearby synapses.
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and Constantine-Paton, 1988). Our biophysical model supports 
this hypothesis but shows that the segregation appears only when 
spatiotemporal competition was strong. When competition was 
weak, the dendritic efficacy mosaic fails to emerge. In this case both 
clustering and spatial segregation was severely degraded.

Our model also predicts that the spatial organization of synaptic 
efficacies along the dendrite is not random, but ordered, despite 
being heterogeneously distributed (Cotrell et al., 2001; Frick et al., 
2001). It may reflect the nature and occurrence of correlations 
embedded in the spiking activity originating from different afferent 
groups. Support for this comes from previous studies illustrat-
ing supralinear summation of near synchronous inputs between 
neighboring synapses (Gasparini et al., 2004; Polsky et al., 2004; 
Gasparini and Magee, 2006; Losonczy and Magee, 2006); and cou-
pling this form of electrical cooperativity with STDP then leads to 
the selective potentiation of those correlated inputs which led to 
dendritic spike generation. However, the most compelling support-
ing evidence comes from two recent studies by Harvey and Svoboda 
(2007) and De Roo et al. (2008). Harvey and Svoboda illustrated 
that inducing LTP at a synapse with suprathreshold stimuli, reduces 
the threshold of LTP induction in neighboring synapses on the 
same dendritic branch, allowing such synapses to be potentiated 
using subthreshold stimuli. This cooperativity between groups of 
nearby synapses (within a dendritic neighborhood) clearly leads to 
their coordinated regulation (Harvey and Svoboda, 2007). While 
the second study by De Roo et al. (2008) showed that LTP leads 
to the selection of inputs promoting spatiotemporal coincidence, 
thus promoting the creation of hotspots of functional synapses 
Indicating that any information or features embedded within a 
stimulus, such as correlations, are likely to be stored across several 
neighboring synapses forming a clustered engram. Using natural 
stimulation in vivo (such as visual), combined with recent advances 
in optical imaging of dendritic voltage using either organic dyes 
(Bradley et al., 2009) or red-shifted genetically encoded voltage sen-
sitive proteins (Perron et al., 2009) in vivo would enable to directly 
test the presence of a dendritic efficacy mosaic.

lIMItatIons of the Model
The present model was designed to test the hypothesis that STDP 
could serve as a mechanism involved in the formation of synaptic 
efficacy clusters within the dendritic tree. Despite the biophysical 
detail of the current neuron model, no effort was made to embed the 
neuron into a realistic network. The current study only considered 
a simple feed forward network structure, where the biophysically 
detailed model received feed forward inputs from neurons modeled 
as simple stochastic processes. Non-linear membrane dynamics 
and more appropriate model representations of these constituent 
neurons should be considered in future models.

An important issue is to elucidate both the molecular mecha-
nisms and the role of calcium influx underlying the induction 
of STDP (as well as other forms of synaptic plasticity). Current 
STDP learning rules possess no dependence on calcium or any 
other molecular factors, and are exclusively parameterized by the 
precise timing of presynaptic inputs and postsynaptic spike genera-
tion (Zhang et al., 1998; Froemke and Dan, 2002; Froemke et al., 
2005, 2006; Pfister and Gerstner, 2006). Experiments have shown 
that the induction of synaptic plasticity, including STDP, relies 

(see Larkum and Nevian, 2008 for an excellent review). This model 
may provide useful insights for understanding the basis of synaptic 
plasticity and potential biophysical mechanisms, such as synaptic 
cross-talk, underlying cluster formation. Such a study, including 
the development of such a new calcium based model of STDP, is 
currently being pursued and whose results will be presented in a 
future publication.

relatIonshIp to preVIous Models
Standard theoretical STDP studies are typically conducted using 
simplified point or single compartment models having mainly 
focused on computational approaches toward the evolution of 
synaptic weights or the development of selective functional prop-
erties (Song et al., 2000; Song and Abbott, 2001; Gütig et al., 2003). 
Such investigations have provided useful insights into the role of 
spike timing in neuronal circuit formation or the emergence of 
some functional property.

However, to investigate how plasticity and active dendritic 
properties influences synaptic strength, the use of an elaborated 
compartmental model with active dendrites is gaining popular-
ity (Rumsey and Abbott, 2004, 2006; Rabinowitch and Segev, 
2006a,b). To date, few studies have addressed the formation of 
spatial patterns of synaptic efficacies. The model presented here 
improves upon our previous model (Iannella and Tanaka, 2006). 
This previous study provided some indication that STDP may be 
an important mechanism involved in the development of spatially 
segregated efficacy clusters. Significantly, the model presented here 
is fundamentally different to the previous one since it not only 
includes several types of postsynaptic receptors, but also various 
voltage- and calcium-dependent ion channels, with their densities 
and distributions based upon data from the rat neocortex. Such 
biophysical detail was previously not included. The model response 
to high frequency stimulation patterns is now in good agreement 
with experimental findings.

The model presented here addresses a potentially important 
role for STDP in the development of spatially patterned functional 
synaptic inputs across the dendritic arbor. Previous models have 
proposed different plasticity mechanisms underlying the emer-
gence of distance-dependent scaling in synaptic strength associated 
with location independent synapses (Rumsey and Abbott, 2004, 
2006). In other studies, different homoeostatic plasticity mecha-
nisms (Rabinowitch and Segev, 2006a,b) were used to examine 
the emergence of functional compartments within the dendrite. 
The current model complements these earlier studies by employ-
ing a biophysically realistic model neuron to not only illustrate 
a connection between the degree of clustering in the resulting 
arrangement of synaptic efficacies and the level of competition 
associated with STDP, but also the robustness of this emergent 
mode of spatial organization.

predIctIons of the Model
Our biophysical model predicts that competition between synapses 
in both space and time underlies the emerging spatial arrangement 
of functional synaptic inputs. For neurons innervated by independ-
ent groups of afferent fibers with correlated activity, strong spatio-
temporal competition may be essential for developing a dendritic 
efficacy mosaic, as observed in ocular dominance patterns (Katz 
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