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Balanced states in large networks are a usual hypothesis for explaining the variability of
neural activity in cortical systems. In this regime the statistics of the inputs is characterized
by static and dynamic fluctuations. The dynamic fluctuations have a Gaussian distribution.
Such statistics allows to use reverse correlation methods, by recording synaptic inputs and
the spike trains of ongoing spontaneous activity without any additional input. By using this
method, properties of the single neuron dynamics that are masked by the balanced state
can be quantified. To show the feasibility of this approach we apply it to large networks of
conductance based neurons. The networks are classified as Type I or Type II according to
the bifurcations which neurons of the different populations undergo near the firing onset.
We also analyze mixed networks, in which each population has a mixture of different neu-
ronal types. We determine under which conditions the intrinsic noise generated by the
network can be used to apply reverse correlation methods. We find that under realistic
conditions we can ascertain with low error the types of neurons present in the network.
We also find that data from neurons with similar firing rates can be combined to perform
covariance analysis. We compare the results of these methods (that do not requite any
external input) to the standard procedure (that requires the injection of Gaussian noise into
a single neuron). We find a good agreement between the two procedures.
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1. INTRODUCTION
Neurons in the cortex tend to display very irregular firing patterns.
This behavior has been considered paradoxical (Softky and Koch,
1993), because if the inputs are uncorrelated or weakly correlated
the central limit theorem holds and the temporal fluctuations of
a large number of synaptic inputs should be much smaller than
the mean. Combining this with the fact that when the neurons are
stimulated with a constant input the firing is regular (Holt et al.,
1996) we should obtain an approximately regular firing pattern.
One explanation of the irregularity is that excitatory and inhibitory
inputs could almost balance the mean values but add their fluctu-
ations. In that way it would be possible to achieve high variability.
Surprisingly, this regime can be achieved without any fine tun-
ing of the network parameters or the intrinsic parameters of the
neuron dynamics (van Vreeswijk and Sompolinsky, 1996, 1998).
The only condition is that the neurons are sparsely connected with
strong synapses. In the limit of infinite size and infinite number of
connections (but keeping the ratio between the number of con-
nections per neuron and the number of neurons very small), a
balanced state can be achieved for a two-population network of
excitatory and inhibitory neurons.

The balanced state displays some interesting features. On the
one hand the input–output relation of the population activity is
a linear function independently of the dynamics of the individ-
ual neurons. The input–output function of the neurons in the
network, on the other hand, is strongly affected by the temporal
fluctuations of the input. For binary neurons it is the convolution

of the single neuron f–I curve with a Gaussian function whose
variance can be evaluated self-consistently (van Vreeswijk and
Sompolinsky, 1998). In general, whatever the single neuron model,
the individual f–I curve of a neuron in a network will always be
continuous even if the single neuron displays a discontinuous
onset of firing. The temporal fluctuations of the input smooth
the f–I curve in such a way that is difficult to identify the behavior
of the single neuron.

In a previous work (Mato and Samengo, 2008) we used reverse
correlation methods (Agüera y Arcas and Fairhall, 2003; Agüera
y Arcas et al., 2003; Bialek and De Ruyter von Steveninck, 2003;
Paninski, 2003; Rust et al., 2005; Hong et al., 2007; Maravall et al.,
2007) to analyze the relation between the intrinsic dynamics of
a neuron and the optimal stimuli that generate action potentials.
In these methods a noisy input is applied to a neuron and the
stimuli that precede the actions potentials are analyzed in order
to extract information on the neuron dynamics. We found that
Type I neurons (that undergo a saddle–node bifurcation, with a
continuous f–I curve) have a depolarizing optimal stimuli, while
Type II neurons (that undergo a Hopf bifurcation, with a dis-
continuous f–I curve; Izhikevich, 2001, 2007; Brown et al., 2004)
have optimal stimuli with well defined temporal frequencies, that
depend on the resonant frequencies of the model. This classifi-
cation has been shown to be relevant for functional purposes.
For instance in (Muresan and Savin, 2007) it has been found that
networks with Type I neurons are more responsive to external
inputs while networks with Type II neurons favor homeostasis
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and self-sustainability of the network activity. (Baroni and Varona,
2007) have suggested that the differences in the input–output
transformation carried out by Type I and Type II neurons may
have evolved to activate different populations of neurons, depend-
ing on the specific temporal patterns of the presynaptic input. For
these reasons it is relevant to identify the neuronal type inside
a network. Reverse correlation methods require a random input
to a neuron. In principle this can be achieved in vitro with elec-
trode stimulation. On the other hand, in vivo networks have a
highly variable input, that in the ideal conditions of the balanced
state could be used to identify the relevant features and intrinsic
neuronal properties.

In this work we study the statistical properties of the synaptic
input on individual neurons and on groups of neurons in order
to determine if reverse correlation methods can be used without
any external input. Specifically we ask: will the covariance analysis
still be useful even if the input to the network is not purely Gauss-
ian but generated by the network dynamics? Will we be able to
discriminate between the different single neuron dynamics using
this method? Is it possible to collect spikes from different neu-
rons in order to shorten the total time that is needed for the
simulations? We analyze these questions under reasonably real-
istic conditions for the synaptic time constants and strength of the
synaptic interactions.

The paper is organized as follows. In the Section 2 we intro-
duce the network architecture and we review the properties of
the balanced state and the covariance analysis for extracting the
relevant features. In the Section 3 we show examples of Type I
(Wang–Buszàki) and Type II networks (Hodgkin–Huxley). We
also analyze “mixed” networks motivated on experimental data.
The results are summarized and discussed in the last section.

2. MATERIALS AND METHODS
2.1. MODELS OF LARGE NETWORKS
Our network model represents a local circuit in the cortex. It
consists of NE excitatory and NI inhibitory conductance based
neurons that represent pyramidal cells and GABAergic fast-spiking
interneurons, respectively (see Figure 1). The membrane poten-
tial of neuron i in population k (k = E, I, i = 1,. . ., Nk,) follows the
dynamics given in Section 1 in Appendix (Wang–Buszàki neurons,
WB) and Section 2 in Appendix (Hodgkin–Huxley neurons, HH).
The total input any neuron receives, denoted by I TOT

ik , is composed
by an external input I ext

k , that for simplicity is taken as the same for

all the neurons in one population, and the synaptic input I
syn
ik (t ).

The synaptic input that a neuron i in population k receives due to

FIGURE 1 | Diagram of the network model. Excitatory connections are
represented by circles and inhibitory connections by bars.

all its interactions with other neurons in the network is

I
syn
ik (t ) =

∑
jl ,t s

jl ,n

Jik,jl Gkl fl
(

t − t s
jl ,n

)
, (1)

where t s
jl ,n is the time at which neuron j in population l fires its

nth action potential and the connectivity matrix of the network
is: Jik,jl = 1 if neuron (j, l) is connected pre-synaptically to neu-
ron (i, k) and Jik,jl = 0, otherwise. The probability of connection,
between a pre-synaptic neuron (j, l) and a post-synaptic neuron (i,
k; i.e., the probability that Jik,jl = 1) depends only on the type of
these neurons, i.e., Pik,jl = Pkl = Kkl/Nl. The total number of con-
nections that a neuron in population k receives from population l
is in average Kkl. For simplicity we will take Kkl = K for all k, l.

The function fl(t ) which describes the dynamics of individual
post-synaptic currents is taken to be (Koch, 1999),

fl(t ) = exp (−t/τl)

τl
� (t ) , (2)

where τ l is the synaptic decay time, and �(t ) = 0 (resp. 1) for t < 0
(resp. t ≥ 0).

In Eq. 1 Gkl is the maximal efficacy of the synapses from popu-
lation l to population k. In (van Vreeswijk and Sompolinsky, 1996,
1998) it is shown that the notion of balance of excitation and
inhibition can be formulated rigorously in the limit of very large
networks and sparse connectivity, i.e., in the limit: 1 = K = Nk, Nl.
In that limit, balance of excitation and inhibition emerges nat-
urally if the synapses are “strong” in the sense that the maximal
strength of post-synaptic current, Gkl, is of the order of 1/

√
K . This

requirement implies that the total input that a neuron in popula-
tion k receives from the neurons in population l is of the order of√

K and it is therefore very large. To emphasize this requirement
we parameterize the maximal synaptic efficacy as

Gkl = gkl√
K

, (3)

where gkE > 0 and gkI < 0. Since there are in average K non-zero
connections on a given neuron in population k coming from pop-
ulation l, the total synaptic input scales as

√
K . We also take the

same scaling for the external input:

I ext
k = iext

k

√
K , (4)

with iext
k is independent of K. In this way we have that I TOT

E ,ik and

I TOT
I ,ik are proportional to

√
K .

As we will see below, it is useful to split the total input into
excitatory and inhibitory components, i.e.,

I TOT
ik (t ) = I

syn
ik (t ) + I ext

k = I TOT
E ,ik (t ) + I TOT

I ,ik (t ) , (5)

where I TOT
E ,ik ≥ 0 incorporates the excitatory part of the synaptic

interaction and the external input and I TOT
I ,ik ≤ 0 takes into account

the inhibitory part of the synaptic interaction.
We shall consider three different combinations for the intrinsic

dynamics of the different populations:
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• Type I network: both populations (E and I) evolve according
to the equations of the WB model. These neurons undergo a
saddle–node bifurcation. They have a continuous f–I curve and
a non-resonant behavior.

• Type II network: both populations (E and I) evolve according to
the equations of the HH model. These neurons undergo a sub-
critical Hopf bifurcation. They have a discontinuous f–I curve
and a resonant behavior generated by the spiral stability of the
fixed point.

• Mixed network: 95% of the neurons in population E evolves
according to the equations of the WB model and 5% accord-
ing to the HH model. For the I population the proportions are
the opposite (95% for HH and 5% for WB). The motivation
for this choice is that it has been found that regular-spiking
pyramidal neurons and fast-spiking inhibitory interneurons in
layer 2/3 of somatosensory cortex tend to exhibit Type I and
Type II behaviors, respectively (Tateno et al., 2004; Tateno and
Robinson, 2006).

The network parameters are given in Section 3 in Appendix. Let
us note that with these parameters the individual synapses have
values that are in the physiological range (see for instance Reyes
et al., 1998 or Rozov et al., 2001). The peak synaptic potentials
(excitatory or inhibitory) go from a few tenths of mV to a few mV
depending on the type of interaction (E to E, E to I, etc.), on the
connectivity (the individual synapses are weaker when K is larger),
and on the post-synaptic neuron dynamics.

2.2. BALANCED STATE
According to the definitions of the previous section the total exci-
tatory and inhibitory inputs to a given neuron can be extremely
large and their value increases with the square root of the connec-
tivity. However there is a situation where, without any fine tuning
of the parameters, these inputs almost cancel each other gener-
ating a finite firing rate. This is the balanced state (van Vreeswijk
and Sompolinsky, 1998). This solution can be understood in the
following way. Le us suppose that the average firing rate of the
excitatory (resp. inhibitory) population is given by fE (resp. fI).
The total input on a given excitatory neuron will be approximately

IE = K
(
GEE fE + GEI fI

)+I ext
E = √

K
(
gEE fE + gEI fI + iext

E

)
. (6)

Similarly for an inhibitory neuron

II = K
(
GIE fE + GII fI

) + I ext
I = √

K
(
gIE fE + gII fI + iext

I

)
. (7)

In the limit of infinite K the only possibility for having a finite
value of the total input and therefore a finite firing rate is that

gEE fE + gEI fI + iext
E = 0, (8)

gIE fE + gII fI + iext
I = 0. (9)

Let us note that this means that, independently of the details
of the neuron dynamics, there is a linear relationship between the
mean firing rate of each population and the external input. This
model has been analyzed in detail in (van Vreeswijk and Som-
polinsky, 2003; Lerchner et al., 2006; Hertz, 2010), showing, for
instance that it leads to highly irregular firing patterns.

2.3. EXTRACTION OF RELEVANT STIMULUS FEATURES IN A
BALANCED STATE

Here we review briefly reverse correlation methods and discuss
how to apply them to networks in the balanced state. In order to
explore the stimuli that are most relevant in shaping the proba-
bility of spiking, spike triggered covariance techniques have been
proposed (Bialek and De Ruyter von Steveninck, 2003; Paninski,
2003; Schwartz et al., 2006). If P[spike at t 0|s(t )] is the probability
to generate a spike at time t 0 conditional to a time-dependent stim-
ulus s(t ), we assume that P only depends on the noisy stimulus s(t )
through a few relevant features f1(t − t 0), f2(t − t 0),. . ., fk(t − t 0).
The stimulus and the relevant features are continuous functions
of time. For computational purposes, however, we represent them
as vectors s and fi of N components, where each component
sj = s(jδt ) and f i

j = f i(jδt ) is the value of the stimulus evalu-

ated at discrete intervals δt. If δt is small compared to the relevant
time scales of the models this will be a good approximation.

The relevant features f1. . .fk lie in the space spanned by those
eigenvectors of the matrix C−1

priorCspikes whose eigenvalues are sig-

nificantly different from unity (Schwartz et al., 2006). Here, C spikes

is the N × N spike triggered covariance matrix

(
Cspikes

)
ij = 1

Nspikes

∑
t0

s (ti + t0) s
(
tj + t0

) − STA (ti) STA
(
tj
)

,

(10)
where the sum is taken over all the spiking times t 0, and STA(t ) is
the spike triggered average (STA)

STA (t ) = 1

Nspikes

∑
t0

s (t + t0) . (11)

Similarly, Cprior (also with dimension N × N ) is the prior
covariance matrix

(
Cprior

)
ij =< s (ti + t ) s

(
tj + t

)
> − < s >2, (12)

where the brackets <. . .> represent a temporal average. For any
function g (t ),

< g >= 1

T

∫ T

0
dt g (t ) , (13)

where T is the total simulation time. Those eigenvalues that are
larger than 1 are associated to directions in stimulus space where
the stimulus segments associated to spike generation have an
increased variance, compared to the raw collection of stimulus
segments. Correspondingly, those eigenvalues that lie significantly
below unity are associated to stimulus directions of decreased vari-
ance. We define as the most relevant eigenvector the one whose
eigenvalue is more separated from 1 (see Figure 2). Let us remark
that the method requires that stimulus s(t ) has a Gaussian distri-
bution but it can incorporate temporal correlations, because these
are taken into account by the term C−1

prior.

In the network, the role of stimulus s(t ) is taken by the total
current I TOT

ik (t ). As we will see below, in the balanced state the
total input on any neuron has a Gaussian distribution and it could
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FIGURE 2 | Examples of the eigenvalues of the matrix C
−1

prior
C spikes. The

matrices are diagonalized and the eigenvalues are ordered from higher to
lower. The most relevant eigenvalue is the one more separated from 1. (A)

Type I network. (B) Type II network.

be directly used to perform covariance analysis. This technique has
been developed for analyzing one neuron at a time. The main dis-
advantage is that in order to have enough statistics, at least several
thousands spikes are needed, which implies very long recordings.
On the other hand if we have a large network, it would be possible
to collect a large number of spikes in a short time by recording
simultaneously a large number of neurons. This is what we do in
the present work. Of course, mixing spikes from an arbitrary set
of neurons is not theoretically justified because their inputs can
have different statistical properties. However we can make use of
the fact that in the balanced state the statistical properties of the
inputs are completely controlled by the mean firing rate of the
neurons. This can be seen from the analysis in (Lerchner et al.,
2006). Using the scaling of the synaptic efficacies and the central
limit theorem it is found that the inputs have fluctuations with
static and dynamic components. The total input can be written as

I TOT
ik (t ) = Uk + Bk xi + yi (t ) , (14)

where Uk is a constant, xi is a Gaussian random variable with
zero mean and variance 1 that does not depend on time and is
uncorrelated across neurons and yi(t ) is a Gaussian random vari-
able with zero mean. The constant Uk, the variance of the static
noise (Bk) and the autocorrelation function of the dynamic com-
ponent can be evaluated self-consistently (see Lerchner et al., 2006
for the details). The autocorrelation functions are the same for all
the neurons in a given population. This means that all the neu-
rons in one population that have the same value of xi will have
the same input statistics and they will have the same average fir-
ing rate. If M identical neurons receive a set of inputs during a
time T with the same statistical properties, then the STAs and the
matrices Cprior and C spikes evaluated by combining the vectors
from all these neurons will give the same result as for one neuron
during a time MT. In other words, it is approximately the same
to do a very long simulation recording only one neuron than to
do a shorter simulation recording a set of neurons that have very
similar firing rates.

2.4. CHARACTERIZATION OF THE DYNAMICAL STATE
The dynamical state of large network of conductance based neu-
rons will differ from the theoretical predictions for the balanced
state for several reasons. On the one hand we are limited to a finite

number of neurons (Nk) and finite values of connectivity (K ).
On the other hand conductance based neurons have an internal
dynamics with several time constants, in contrast with the binary
neurons where the state is determined instantly by the strength of
the input. And finally, synaptic interactions are also characterized
by their own time constants. Therefore we need to characterize
the dynamical state to see if we are under (or near) the conditions
given by the balanced state.

The criteria we analyze are the following:

• The dependence of the average firing rate of each population on
the external input. The prediction of the balanced state theory
is that independently of the neuron dynamics, the average firing
rate should be a linear function of the input.

• The scaling of different components of the total synaptic input
for individual neurons on the connectivity. The prediction of the
theory is that the total excitatory and inhibitory inputs should
increase as the square root of the connectivity.

• The statistics of the synaptic input for individual neurons. The
distribution should be Gaussian.

The autocorrelation function of the total synaptic input to
neuron i in population k is defined by

ACik (τ ) =< I TOT
ik (t + τ) I TOT

ik (t ) > − < I TOT
ik (t ) >2 . (15)

The autocorrelation time (τAC,ik ) is evaluated by

τAC ,ik =
∫ T

0 dτACik (τ )

ACik (0)
. (16)

Let us note that if ACik(τ ) has a purely exponential decay:
ACik(τ )∝ exp(−τ /τ 0) and T � τ 0 then we recover τAC,ik = τ 0.

2.5. INDIVIDUAL NEURONS WITH GAUSSIAN INPUT NOISE
We compare the statistical results obtained with neurons from the
different networks with individual neurons with Gaussian input
noise. We simulate one cell with an input current given by

I (t ) =< I > +σξ (t ) , (17)

where <I> is the DC term, σ is the variance, and ξ is a
Gaussian noise. The noise ξ(t ) is such that (<ξ(t )> = 0 and

< ξ(t )ξ(t ′) >= exp(−|t−t ′|/τAC )

2τAC
. This input current has three

parameters to be set: <I>, σ and τAC . These parameters can be
determined from the statistics of the input that one neuron (or a
group of neurons) receives in the network. Let us note that we are
assuming here a purely exponential dependency for the autocor-
relation. The discrepancies between the results for the simulation
in the network with the individual neurons with Gaussian input
noise will therefore reflect additional correlations, such as oscil-
latory components in the input. The comparison can be done in
two different ways. In the first we compare one neuron in the
network with one neuron with Gaussian input noise. In this case
the duration of the simulation is the same in both cases. In the
second we compare a group of neurons in the network (that have
similar firing rates) with one neuron with Gaussian input noise.
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In this second case, as we combine all the spikes from the group
to evaluate the STA and the matrix C−1

priorCspikes, the simulation of

one neuron with Gaussian noise must be longer to obtain similar
statistics as in the network simulation.

2.6. SIMULATION METHODOLOGY
In all the results the network has NE = 16000 excitatory neurons
and NI = 4000 inhibitory neurons. The simulations were per-
formed using a fourth-order Runge–Kutta algorithm (Press et al.,
1992) with a time step of 0.01 ms. We checked that taking smaller
time steps does not affect the results. The initial conditions are cho-
sen randomly and there is a transient of 50 ms before recording
the values of the membrane potential and the synaptic currents.
These values are written every 0.5 ms. The total simulation time
for each set of parameters was 50 s for Figures 3–5 and 300 s for
Figures 6–12. We detect every time there is a spike when the mem-
brane potential crosses the value 0 mV with positive slope. At that
point we record the values of the excitatory and inhibitory currents
during the previous 50 ms. These vectors (each one with N = 100
components) are used to evaluate the STA and the matrix C spikes.
We use only the spikes that are separated from the previous one
in the same neuron by at least 50 ms. We also record the same
vectors of excitatory and inhibitory currents every 500 ms without
concern if there is a spike at the end or not. These vectors are used
to evaluate the matrix Cprior.

3. RESULTS
3.1. CHARACTERIZATION OF THE DYNAMICAL STATE
We first show the results regarding the characterization of the
dynamical state. We analyze Type I and Type II networks. In
Figures 3A,B we show the f–I curve for both neurons. We can
see that they are very different. The first one is continuous
while the second is discontinuous and with a bistable region. In
Figures 3C,D we show the mean network activity as a function
of the external input (keeping iext

E = iext
I ), see Eq. 4. We can

see that for Type I neurons even a connectivity K = 25 is enough

FIGURE 3 |The f–I curves of the populations approach a linear behavior

for large connectivity. (A) f–I curve of Type I neurons. (B) f–I curve of Type
II neurons. (C) Mean activity of the excitatory population (D) Mean activity
of the inhibitory population. Black dots: Type I network with K = 25. Green
dots: Type II network with K = 25. Red dots: Type II network with K = 100.

to transform the f–I curve of the individual neuron in almost a
linear one at the population level. We can also see that, as pre-
dicted by the theory of the balanced state, the threshold is now at
zero current. The behavior for Type II neurons is quantitatively

FIGURE 4 |The positive and negative inputs to one neuron tend to

cancel even as they grow stronger with larger connectivity. For Type II
networks synchronized oscillations are found if connectivity is above some
threshold. Left panels: traces of one neuron. Different curves have been
shifted by 100 mV. Right panels: total excitatory (curves above 0) and
inhibitory (curves below 0) currents (in μA/cm2). (A,B) Type I network with
K = 25 (black), K = 100 (green), and K = 400 (red) i ext

E = i ext
I = 0.85 μA/cm2.

(C,D) Type II network with gII = −30 μA ms/cm2. K = 25 (black) and K = 100
(green). (E,F) Type II network with gII = −45 μA ms/cm2. K = 100 (black) and
K = 400 (green). i ext

E = i ext
I = 0.1 μA/cm2. Other parameters inTable A1 of

Section 3 in Appendix.

FIGURE 5 |The inputs to one neuron have a statistics that is

approximately Gaussian with a short autocorrelation time. Mixed
network. (A,B) Histograms of total input on one neuron. Black: WB neuron.
Red: HH neuron. Left panels: Excitatory population. Right panels: Inhibitory
population. Insets show the mean value and variance of each curve in
μA/cm2. In yellow: Gaussian functions with the corresponding values of
<I> and σ . (C,D) autocorrelation function of the total input for the same
cases as in the upper panels. Parameters inTable A2 of Section 3 in
Appendix.
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FIGURE 6 |The average firing rate of the neurons is controlled by the

average value of the total input, while the variance and the

autocorrelation time are almost constant. Each point represents an
average over a subpopulation of neurons with firing rate in a given window.
The widths of the windows are: 3.1 Hz (Type I, E pop.), 4.2 Hz (Type I, I pop.),
0.63 Hz (Type II, E pop.), 0.65 Hz (Type II, I pop.). (A) Type I network. (B)

Type II network. Green: mean value of the total current (E pop.). Blue: mean
value of the total current (I pop.). Black: variance of the total current (E pop.).
Red: variance of the total current (I pop.). Orange: average autocorrelation
time (E pop.). Violet: average autocorrelation time (I pop.). Mean values and
variances in μA/cm2. Autocorrelation time in ms. As the average firing rate
of the E pop. is lower than the firing rate of the I pop. the green, black and
orange dots appear at lower firing rates than the blue, red, and violet points.

FIGURE 7 | Autocorrelation functions of the total inputs averaged over

a subpopulation of neurons with similar firing rates. (A,B) Type I
networks. (C,D) Type II networks. Left panels: E population. Right panels: I
population. The firing rate windows are centered around the values shown
in the inset and the widths are: 3.1 Hz (Type I, E pop.), 4.2 Hz (Type I, I pop.),
0.63 Hz (Type II, E pop.), 0.65 Hz (Type II, I pop.).

different. Connectivity K = 25 is not enough to suppress the dis-
continuity of the f–I curve at the population level. But taking
K = 100 strongly reduces the minimal average firing rate and
makes the f–I population curves more similar to the theoretical
prediction.

We can also analyze the dynamical state from the point of
view of the total excitatory and inhibitory inputs on an indi-
vidual neuron. For Type I networks we performed simulations
with connectivity K = 25, 100, and 400, and for each case we
choose a neuron with an average firing rate of about 30 Hz.

FIGURE 8 | Spike triggered averages in the mixed case allow to

determine the identity of the neuron. (A,B) Spikes triggered average of a
two neurons. Black: WB neuron. Red: HH neuron. Left panel: neurons in the
excitatory population. Right panel: neurons in the inhibitory population.
(C,D) Spike triggered averages of individual neurons with purely Gaussian
input (see Eq. 17). The parameters of the noise (mean value, variance, and
autocorrelation time) are determined by the statistics of the neurons in the
upper panels.

FIGURE 9 | Spike triggered averages inType I networks do not depend

on firing rate and can be predicted from simulations of isolated

neurons with noise. (A,B) STA averaged over a subpopulation of neurons
with similar firing rate. Left: E population, right I population. Width of the
firing rate windows: 3.1 and 4.2 Hz respectively. (C,D) STA of a single
neuron with Gaussian noise. Parameters of the noise obtained from
averaging the parameters (<I>, σ , τAC ) of each subpopulation. For clarity
error bars are not shown.

Traces are shown in Figure 4A. In Figure 4B we can see the
total excitatory and inhibitory inputs. As connectivity grows the
individual components increase as predicted by the theory, with
the square root of K. On the other hand the net result is almost
the same, showing the cancelation between the two components.
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FIGURE 10 | Relevant eigenvectors inType I networks do not depend

on firing rate and can be predicted from simulations of isolated

neurons with noise. (A,B) Most relevant eigenvector of a subpopulation of
neurons with similar firing rate. Left: E population, right I population. Width
of the firing rate windows: 3.1 and 4.2 Hz respectively. (C,D) Most relevant
eigenvector of a single neuron with Gaussian noise. Parameters of the
noise obtained from averaging the parameters (<I>, σ , τAC ) of each
subpopulation.

FIGURE 11 | Spike triggered averages inType II networks depend only

weakly on firing rate. (A,B) STA averaged over a subpopulation of neurons
with similar firing rate. Left: E population, right I population. Width of the
firing rate windows: 0.63 and 0.65 Hz respectively. (C,D) STA of a single
neuron with Gaussian noise. Parameters of the noise obtained from
averaging the parameters (<I>, σ , τAC ) of each subpopulation. For clarity
error bars are not shown.

For Type II neurons the behavior is more complex. As connec-
tivity grows the network tends to develop synchronized oscil-
lations that manifest themselves in periodic fluctuations of the
total currents on any given neuron. The value of the connec-
tivity where this phenomenon arises depends on the network

FIGURE 12 | Spike triggered averages inType II networks depend only

weakly on firing rate. (A,B) Most relevant eigenvector of a subpopulation
of neurons with similar firing rate. Left: E population, right I population.
Width of the firing rate windows: 0.63 and 0.65 Hz respectively. (C,D) Most
relevant eigenvector of a single neuron with Gaussian noise. Parameters of
the noise obtained from averaging the parameters (<I>, σ , τAC ) of each
subpopulation.

parameters. For instance for gII = −30 μA ms/cm2 this happens
between K = 25 and K = 100 (Figures 4C,D). Taking a more neg-
ative value of gII allows us to increase the connectivity. For instance
for gII = −45 μA ms/cm2 the instability occurs between K = 100
and K = 400 (Figures 4E,F). The possibility of losing the bal-
anced state because of oscillatory instability has been analyzed in
(van Vreeswijk and Sompolinsky, 1998), where it is found that the
instability depends on the couplings and the time constants of the
populations. Here we find that balanced states in Type I networks
are much more robust with respect to this instability than Type II
networks. This is consistent with the results, shown for instance in
(Ermentrout, 1996; Galan et al., 2007), that Type II neurons (res-
onators) synchronize more reliably and more robustly than Type
I neurons (integrators).

Another of the predictions of the theory is that the total input
to a given neuron should have a Gaussian distribution. To check
this we evaluate the histogram of these inputs for neurons in the
excitatory population and in the inhibitory population. The results
are shown in Figure 5 for the mixed network. Similar results are
obtained for Type I and Type II networks in the regime where
there are no oscillations. Black curves show the results for two WB
neurons (that are 95% of the E population and 5% of the I popu-
lation) and red curves the results for two HH neurons (that are 5%
of the E population and 95% of the I population). Figures 5A,B
show that the distribution is approximately Gaussian with mean
values and variances given in the inset of the figure. Figures 5C,D
panels show the autocorrelation functions for the same neurons
and the autocorrelation time evaluated according to Eq. 16. We
can see that the autocorrelation is dominated by a fast decay term
(that gives rise to an autocorrelation time between 1 and 2 ms)
but there is a very small additional oscillatory component with a
period of about 20 ms.
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A crucial prediction of the balanced state theory is that iden-
tical neurons with the same firing rate have total inputs with the
same statistical properties, i.e., the same mean value and variance.
Moreover, comparing different firing rates in a given population
we should see that only the mean value changes but not the vari-
ance. To test these facts we divided each population according to
the average firing rate of the neurons. The firing rate intervals were
divided in windows with a fixed width. For each neuron we eval-
uated the mean value and variance of the total input current and
then averaged those results over all the neurons with an average
firing rate inside a given window. We show the results in Figure 6
(Figure 6A for Type I networks and Figure 6B for Type II net-
works). In each case the error bars represent the variance of the
result over the corresponding subpopulation. We can see that the
predictions of the balanced state theory are verified. On the one
hand neurons inside each subpopulation have a well defined value
of average total current and variance, with a small relative error.
On the other hand, changing the firing rate affects strongly the
mean value of the current but not the variance. It is interesting to
notice that this condition is satisfied more precisely for Type II net-
works than for Type I networks. The same behavior is observed for
the autocorrelation time. We can see that it is almost independent
on the firing rate and also that all the neurons in a given window
have the same autocorrelation time, giving rise to very small error
bars. In fact, for Type II neurons the error bars are about 1% of
the autocorrelation time. These results prove that neurons in a fir-
ing rate window have the same statistical properties and therefore
their inputs can be combined to perform covariance analysis as
proposed in the previous section. We must remark that this result
is valid only if all the neurons in a given population are identical
(i.e., they have the same dynamical behavior). In the last section
we will discuss how this assumption limits the pooling of spike
trains for the covariance analysis.

We finally show in Figure 7 the autocorrelation functions of
neurons in Type I and Type II networks. For the purpose of com-
parison with the results of the covariance analysis we show the
autocorrelation functions averaged over subpopulations of neu-
rons with similar firing rate and not for individual neurons. The
results obtained from for individual neurons are qualitatively sim-
ilar but slightly noisier. The parameters are in Table A1 of Section 3
in Appendix. Let us note that keeping the same values of coupling
parameters, autocorrelations in Type II networks show slightly
stronger oscillations than in Type I networks. This is compatible
with the results shown in Figure 4.

3.2. SPIKE TRIGGERED AVERAGE IN THE MIXED NETWORK
We now analyze the inputs to individual neurons in the mixed net-
work. As we have seen in Figure 5 the total input has a distribution
that is approximately Gaussian and a short autocorrelation time.
We use the inputs that precede the spikes to evaluate the STA using
Eq. 11. In Figure 8 we show the results for four different neurons.
In Figure 8A we show two neurons in the excitatory population.
The black curve corresponds to a WB neuron (such neurons are
95% of this population) and the red one is an HH neuron (5%
of the population). The error bars represent the statistical error of
the STA at each point. In Figure 8B we show the two neurons in
the inhibitory population, using the same convention. We can see

that in both cases the STA of the HH neurons display a significant
negative region, in contrast to the WB neurons. In order to test
quantitatively this feature we have chosen the following criterion:
we classify a neuron as Type II if the minimum value of the STA
is below the average of the STA over the interval [−50:−25] ms by
an amount that is larger than five times the average of the variance
over the same interval. If this criterion is not satisfied we say the
neuron is Type I. Applying this criterion to the neurons of Figure 8
gives the right classification. We have analyzed systematically all
the neurons in the network and we have found an error rate of
7.4%, i.e., 92.6% of the neurons can be correctly classified using
this simple criterion.

We compared the STA obtained from the network simulation
with the one obtained from individual neurons that receive as
input Gaussian noise with a mean value, variance, and autocor-
relation time determined from the input in the network (see Eq.
17). The results are shown in panels C and D. We can see that these
“isolated neuron” STAs are qualitatively similar to the ones seen
in the network. This shows that the non-Gaussian effects and the
non-exponential part of the autocorrelation functions are small
enough not to affect significantly the results.

3.3. SPIKE TRIGGERED AVERAGE AND COVARIANCE ANALYSIS IN
TYPE I NETWORKS

We now analyze the dependence of the STA and the relevant
features identified by the covariance analysis on firing rate. In
Figures 9A,B we show the STA averaged over a subpopulation of
neurons whose frequencies are in a window around the firing rate
shown in the inset (width of the windows in the caption). We show
four cases, with firing rates going from 6.2 to 46.5 Hz (excitatory
population, left panel) and 8.3 to 46 Hz (inhibitory population,
right panel). We can see that the STA shows only a very weak
dependence on the firing rate. This seems to be in contradiction
with the results found in (Mato and Samengo, 2008), where it
is shown that as firing rate grows the STA becomes sharper. The
reason for the discrepancy is that in that case the firing rate is
controlled by changing the variance of the noise, while here the
most important factor is the change in the mean value of the input
current. To check this interpretation we have performed simula-
tions of one neuron with Gaussian noise. The parameters of the
noise are determined by averaging the mean value, variance, and
autocorrelation time of the total input to each one of the neurons
inside one group. The results are shown in Figures 9C,D. We can
see again that the STA does not depend substantially on the fir-
ing rate when the parameters of the noise are the ones given in
Figure 6.

Similar results are obtained for the most relevant eigenvec-
tors (see Section 3) in the covariance analysis. In this case we
do not perform the analysis for individual neurons. The reason
is that covariance analysis requires very good statistics in order
separate the relevant eigenvalues from the background. Typically
tens or hundreds thousand spikes are required (Agüera y Arcas
et al., 2003), and performing extremely long simulations of large
networks is impractical. Instead, because of the statistical prop-
erties of the balanced state mentioned in Section 3 and verified
by the results in Figure 6, we can improve the statistics by aver-
aging over a subpopulation of neurons with similar firing rates.

Frontiers in Computational Neuroscience www.frontiersin.org October 2011 | Volume 5 | Article 41 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Pool and Mato Inferring single neuron properties

In Figures 10A,B we show the most relevant eigenvector for the
different firing rates. In this case the covariance and prior matrices
(Eqs 10 and 12) are evaluated using all the vectors in the neurons
that belong to the corresponding firing rate window. As we have
mentioned in the previous section, this is justified by the fact that
the inputs have essentially the same statistical properties if the fir-
ing rate is the same. In the lower panels we show the most relevant
eigenvector for the simulation of one neuron with Gaussian noise,
as in the previous figure.

3.4. SPIKE TRIGGERED AVERAGE AND COVARIANCE ANALYSIS IN
TYPE II NETWORKS

We now show the results for Type II networks. As we have seen in
Section 1 Type II networks have a strong tendency to develop syn-
chronized oscillations. These oscillations appear both in the STA
and in the relevant eigenvalues. As in the previous case we com-
pare the STA and the most relevant eigenvector from a group of
neurons with a similar firing rate to the same functions obtained
from a neuron that receives Gaussian noise.

In Figure 11 we see the results for the STA. We observe that for
all the firing rates the STA displays a significant trough character-
istic of Type II neurons (Mato and Samengo, 2008). However now
there is a significant difference between the network simulations
(Figures 11A,B) and the one neuron simulations (Figures 11C,D).
The STA from the network simulation displays a more oscillatory
shape, with a positive component in the range [−30:−20] ms.
This component does not appear in the one neuron simulation
and therefore is a manifestation of the oscillatory input.

Similar results are obtained for the most relevant eigenvector.
See Figure 12. The network simulation shows a more oscillatory
behavior in the network evolution than in the one neuron simula-
tion. But in any case the curves are essentially the same in the range
[−15:0] ms. This shows, that independently of the synchronized
oscillations of the input it is possible to identify without ambiguity
the type of intrinsic neuron dynamics. Let us note that the discrep-
ancies between the results from the network and the results from
the isolated neuron can be understood looking at the autocorrela-
tion functions from Figures 7C,D. The excess autocorrelation at
about 20 ms translates into the additional STA at −20 ms, and also
affects the relevant eigenvector. In contrast, Type I autocorrelations
are much flatter and there is no significant discrepancy between
relevant features in the network and in the isolated neuron.

4. DISCUSSION
We have analyzed the dynamical behavior of large networks of
conductance based neurons. The network parameters (connectiv-
ity, synaptic strength) are chosen in such a way that the system is
approximately in a balanced state. This approximation is clearly
better for Type I neurons (such as WB) than for Type II neu-
rons (such as HH). On the one hand Type II networks require a
higher connectivity to suppress the discontinuity of the f–I curve
found in the individual neuron and also these networks have a
stronger tendency to develop synchronized oscillations. But in
both cases we can easily find situations where the total neuronal
input has a statistical distribution that is approximately Gaussian
and with an autocorrelation function that is dominated by a short
exponential decay. We have also studied additional aspects of the

dynamical behavior such as the cross-correlations of the inputs to
different neurons. We have found that these cross-correlations are
extremely small, with normalized cross-correlations coefficients
(cross-correlation functions divided by the product of the vari-
ances) always less than 3% (which is in agreement with the results
of Hertz, 2010). We have not shown these data because they are
not directly relevant for the identification of single neuron prop-
erties, but they lead to the same conclusion as before, that we are
approximately in a balanced state.

Even if we are not in the perfectly ideal conditions of the the-
ory of the balanced state (van Vreeswijk and Sompolinsky, 1998)
we can use the noisy input to evaluate STAs and perform covari-
ance analysis (Agüera y Arcas and Fairhall, 2003; Bialek and De
Ruyter von Steveninck, 2003; Paninski, 2003). We have found that
under reasonably realistic conditions the results of this analysis
closely resemble the result one would obtain from single neuron
simulations with external Gaussian noise. Let us remark that this
is the standard way of performing covariance analysis and fea-
ture extraction. For the cases we have analyzed this is enough to
discriminate the different neuronal types. As far as we know this
is the first method that allows the identification of neuron prop-
erties inside a network without any external stimulation, besides
the constant currents I extk . We have tested that reverse correlation
methods can be used even in“mixed”networks, where a small frac-
tion of neurons of one population differs from the dominant type.
In these cases, evaluating the STA of individual neurons allows to
make a prediction with an error rate lower than 10%. In prin-
ciple, improving the statistics would allow to extract even more
information about the neuronal dynamics. Using our technique
we have found that a few hundred seconds of simulations are
required to discriminate a second eigenvector, although we have
not performed a systematic analysis of its properties.

As a very good statistics is required for the evaluation of the
eigenvectors of the covariance matrix, we have not performed this
analysis for individual neurons but for subpopulations of neurons
with similar firing rates. This can be justified theoretically from the
statistical properties of the balanced state. This pooling of spike
trains from different neurons can be performed only if the neu-
rons are identical. If they are not we cannot infer from the firing
rate itself that the statistics of the input currents are the same.
However the method could be used even if homogeneity of neu-
rons in each population cannot be assumed. This could be done by
performing preliminary measurements of the STA and the statis-
tics of the input. Combining data from several neurons in which
these quantities are very similar would still be valid, assuming that
similar STAs reflect similar intrinsic dynamics. The purpose of
implementing this procedure would be to extract more detailed
information than the one given by the STA by itself. As it is shown,
for instance, in (Mato and Samengo, 2008) the study of additional
eigenvectors in Type II neurons gives information of the different
intrinsic frequencies in the model.

Besides the assumption of homogeneity, another possible con-
cern regarding the validity of the findings is that we are using
current based synapses instead of the more realistic conductance
based synapses. These synapses have been shown to be problem-
atic in balanced states because when they are very strong they can
generate a very small effective time scale that, interacting with a
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finite autocorrelation time in the input current, originates burst-
ing firing patterns with long autocorrelation times. This problem
is really severe for linear integrate-and-fire neurons, as shown in
(van Vreeswijk and Sompolinsky, 2003). However, for conduc-
tance based neurons it is expected that the problem is not so
severe because the absolute or relative refractory periods of the
intrinsic neuron dynamics will control the bursts. In (Hertz, 2010)
conductance based networks with conductance based synapses
are simulated with network sizes and connectivities similar to
ours, and no bursting behavior is found, suggesting that the bal-
anced state has not been substantially altered by the conductance
based synapses. We have performed some simulations with con-
ductance based synapses and found a similar qualitative behavior
as for current based synapses. Input currents have a distribution
that is approximately Gaussian and STAs are very similar to the
results shown here. Therefore they can be used to discriminate

between the different neuronal types. We also checked that the
autocorrelation time of the input is of order of 1 ms (let us note
that Hertz, 2010 obtains a few milliseconds for a different model).

Summarizing, we have shown that an approximate balanced
state allows the use reverse of correlation methods to infer intrinsic
neuronal properties. This state can be achieved in realistic condi-
tions for a wide variety of networks. The method could be applied
to extract information of the neuron properties without external
perturbations.
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APPENDIX
WANG–BUZSÁKI (WB) MODEL
The dynamical equations for the conductance based Type I neuron
model used in this work were introduced by (Wang and Buzsáki,
1996). They are

C
dV

dt
= I − gNam3∞ (V ) h (V − VNa) − gKn4 (V − VK)

− g� (V − V�) (A1)

dh

dt
= h∞ (V ) − h

τh (V )
(A2)

dn

dt
= n∞ (V ) − n

τn (V )
. (A3)

The parameters g Na, g K, and gl are the maximum conductances
per surface unit for the sodium, potassium, and leak currents
respectively and V Na, V K, and Vl are the corresponding rever-
sal potentials. The capacitance per surface unit is denoted by C.
The external stimulus on the neuron is represented by an external
current I. The functions m∞(V ), h∞(V ), and n∞(V ) are defined
as x∞(V ) = ax(V )/[ax(V ) + bx(V )], where x = m, n, or h. In turn,
the characteristic times (in milliseconds) τ n and τ h are given by
τ x = 1/[ax(V ) + bx(V )], and

am = −0.1 (V + 35) /
(
exp(−0.1(V + 35)) − 1

)
, (A4)

bm = 4 exp (−(V + 60)/18) , (A5)

ah = φ 0.07 exp (−(V + 58)/20) , (A6)

bh = φ/
(
exp(−0.1(V + 28)) + 1

)
. (A7)

The other parameters of the sodium current are: g Na = 35 mS/
cm2 and V Na = 55 mV. The delayed rectifier current is described
in a similar way as in the HH model with:

an = φ 0.01 (V + 34) /
(
1 − exp(−0.1(V + 34))

)
, (A8)

bn = φ 0.125 exp (−(V + 44)/80) . (A9)

Other parameters of the model are: V K = −90 mV,
VNa = 55 mV, V� = −65 mV, C = 1 μF/cm2, g� = 0.1 mS/cm2,
g Na = 35 mS/cm2, g K = 9 mS/cm2, φ = 3.

HODGKIN–HUXLEY (HH) MODEL
The dynamical equations of the Hodgkin–Huxley model
(Hodgkin, 1948; Hodgkin and Huxley, 1952) read

C
dV

dt
= I − gNam3h (V − VNa) − gKn4 (V − VK)

− g� (V − V�) , (A10)

Table A1 | Parameters forType I andType II networks.

gAMPA
EE = gNMDA

EE 10 μA ms/cm2

gAMPA
IE = gNMDA

IE 17.5 μA ms/cm2

gEI −30 μA ms/cm2

gII −30 μA ms/cm2

Table A2 | Parameters for mixed networks.

gAMPA
EE = gNMDA

EE 7.5 μA ms/cm2

gAMPA
IE = gNMDA

IE 45.15 μA ms/cm2

gEI −24.38 μA ms/cm2

gII −41.25 μA ms/cm2

dm

dt
= m∞ (V ) − m

τm (V )
, (A11)

dh

dt
= h∞ (V ) − h

τh (V )
, (A12)

dn

dt
= n∞ (V ) − n

τn (V )
. (A13)

For the squid giant axon, the parameters at 6.3˚C are:
V Na = 50 mV,V K = −77 mV,Vl = −54.4 mV„ g Na = 120 mS/cm2,
g K = 36 mS/cm2, gl = 0.3 mS/cm2, and C = 1 μrmF/cm2. The
functions m∞(V ), h∞(V ), n∞(V ), τm(V ), τ n(V ), and τ h(V ),
are defined in terms of the functions a(V ) and b(V ) as in the WB
model, but now

am = 0.1 (V + 40) /
(
1 − exp((−V − 40)/10)

)
, (A14)

bm = 4 exp ((−V − 65)/18) , (A15)

ah = 0.07 exp ((−V − 65)/20)) , (A16)

bh = 1/
(
1 + exp((−V − 35)/10

)
, (A17)

an = 0.01 (V + 55) /
(
1 − exp((−V − 55)/10)

)
, (A18)

bn = 0.125 exp ((−V − 65)/80) . (A19)

NETWORK PARAMETERS
The network sizes are NE = 16000, NI = 4000. The synaptic time
constants are given by: τAMPA

E = 3 ms,τNMDA
E = 50 ms,τ I = 2 ms.

The external inputs are: iext
E = iext

I = 0.85 μ A/cm2 for Type
I, iext

E = iext
I = 0.1 μ A/cm2 for Type II, and iext

E = iext
I =

0.6 μ A/cm2 for mixed networks.
The rest for the parameters for Type I, Type II, and mixed

networks are given in Tables A1 and A2.
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