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High-frequency oscillations (HFOs) are an important part of brain activity in health and dis-
ease. However, their origins remain obscure and controversial. One possible mechanism
depends on the presence of sparsely distributed gap junctions that electrically couple the
axons of principal cells. A plexus of electrically coupled axons is modeled as a random
network with bi-directional connections between its nodes. Under certain conditions the
network can demonstrate one of two types of oscillatory activity. Type I oscillations (100–
200 Hz) are predicted to be caused by spontaneously spiking axons in a network with
strong (high conductance) gap junctions.Type II oscillations (200–300 Hz) require no spon-
taneous spiking and relatively weak (low-conductance) gap junctions, across which spike
propagation failures occur. The type II oscillations are reentrant and self-sustained. Here
we examine what determines the frequency of type II oscillations. Using simulations we
show that the distribution of loop lengths is the key factor for determining frequency in
type II network oscillations. We first analyze spike failure between two electrically coupled
cells using a model of anatomically reconstructed CA1 pyramidal neuron. Then network
oscillations are studied by a cellular automaton model with random network connectivity,
in which we control loop statistics. We show that oscillation periods can be predicted from
the network’s loop statistics. The shortest loop, around which a spike can travel, is the
most likely pacemaker candidate. The principle of one loop as a pacemaker is remarkable,
because random networks contain a large number of loops juxtaposed and superimposed,
and their number rapidly grows with network size. This principle allows us to predict the
frequency of oscillations from network connectivity and visa versa. We finally propose
that type I oscillations may correspond to ripples, while type II oscillations correspond to
so-called fast ripples.

Keywords: network, loop, pacemaker, gap junction, axon, pyramidal neuron

INTRODUCTION
High-frequency oscillations (HFO) are ubiquitous in mammalian
hippocampus in both physiological and pathological conditions
(Engel et al.,2009; Bragin et al.,2010; Girardeau and Zugaro,2011).
HFO in the range of 80–200 Hz (ripples) are readily recorded in
normal hippocampus of rodents and non-human primates, in vivo
and in vitro (Buzsaki et al., 1992; Ylinen et al., 1995; Chrobak
and Buzsáki, 1996; Maier et al., 2003; Skaggs et al., 2007). High-
frequency ripples occur on top of sharp waves and they may
be important for episodic memory consolidation in animals and
humans (Buzsáki, 1998; Axmacher et al., 2008).

Pathological HFO in the range of 250–600 Hz (fast ripples)
occur in hippocampus and parahippocampal structures in patients
with mesial temporal lobe epilepsy (Bragin et al., 1999, 2002,
2010). These pHFO are recorded in dentate gyrus, hippocampus
proper, and entorhinal cortex, and are used as biomarkers of foci
of epileptic seizures.

The neuronal generators of normal and pathologic HFOs
remain obscure (see Discussion). Coupling of axons by gap junc-
tions can be the origin of hippocampal high-frequency oscilla-
tions, as suggested by experiments and simulations (Draguhn et al.,

1998; Traub et al., 1999, 2001, 2002, 2010; Traub and Bibbig, 2000;
Roopun et al., 2010, see reviews in Traub et al., 2011, and Traub
and Whittington, 2010).

Gap junctions are ubiquitous in the nervous system (Söhl et al.,
2005; Dere and Zlomuzica, 2011). In general, non-rectifying gap
junctions are bi-directional and symmetric in their electrical con-
ductance, although rectifying gap junctions are found, too (Phelan
et al., 2008). In our model we assume that axons of pyramidal cells
are sparsely coupled by non-rectifying gap junctions to form a
random network (axonal plexus). Connections are strong, which
means that a spike in one axon elicits a spike in another connected
axon, without the need of multiple spike summation.

The model of axonal plexus can demonstrate rich patterns com-
posed of growing and coalescing spatial waves (Traub et al., 1999,
2010; Lewis and Rinzel, 2000; Vladimirov et al., 2011). Under cer-
tain conditions the system oscillates, although the units (axons) are
non-oscillatory intrinsically: only after their neighbor fires, they
fire, too.

Oscillations in the network can be elicited in several ways. When
units are connected by strong gap junctions, spontaneous spiking
of random units generates externally driven oscillations due to
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birth and coalescence of multiple excitatory waves, similar to rain
drops falling onto a still pond and making circular waves that grow
in diameters with time. Essentially, spontaneous random inputs
are multiplied in the network by creating waves of excitation.
Wave dynamics determines the characteristic time scale, which
sets the preferred oscillation period of the network. When waves
meet, they coalesce (Traub et al., 2010). At sufficiently frequent
spontaneous spiking of units, the system oscillates with frequency
about 150 Hz (Traub et al., 1999). In the present paper, we call this
oscillation mode “type I”; it requires highly conductive gap junc-
tions (implying no spike propagation failures), and spontaneous
random activations or external stimulation.

Alternatively, oscillations can be reentrant and self-sustained
(type II). This can occur in a network containing a mixture of
strong and weak gap junctions, if some axons elicit spike doublets.
We further refer to gap junctions that fail to pass the second spike
in a spike doublet as “weak” gap junctions. Failures on weak gap
junctions break the symmetry of spike propagation: spike doublets
remain doublets when they pass through strong gap junctions, but
reduce to single spikes when they cross a weak gap junction. Prop-
agation of a spike doublet in one direction and a single spike in
another direction results in a single spike in the end, after 2 + 1
collision due to Hodgkin-Huxley properties of an axon. The sur-
viving spike continues to travel and reenter around the loop if it is
sufficiently long.

Reentrant oscillations due to symmetry breaking were pre-
dicted in networks of electrically connected axons (Lewis and
Rinzel, 2000; Munro and Boergers, 2010) and were shown exper-
imentally in crayfish axons in (Tseng et al., 2008). In their experi-
ments, Tseng and co-authors stimulated an axon in an electrically
coupled LG (lateral giant) network by paired spikes, and observed
network oscillations with periods ranging from 2.99 ms (334 Hz)
to 1.45 ms (686 Hz), corresponding to loops from 14 to 4 neurons,
respectively. The effect of gap junction failure was also studied in
simulations where neurons have hyperpolarized somatic voltage,
lowered gap junction conductance, or both (Munro and Boerg-
ers, 2010). The axons which are highly connected to other axons
(hubs) are more prone to gap junction failures, because they are
more strongly shunted by their neighbors, and thus have longer
refractory times.

Spikes can fail at weak gap junctions because of electrotonic
properties of the latter. When spike doublet with short interspike
interval (1–3 ms) is elicited in an axon, the second spike lies in the
relative refractory period of the first, and it is affected by first spike’s
remaining activation of K+ channels. This makes the second spike
harder to elicit (more current required), lower in amplitude and
propagation speed, and more prone to failure at gap junctions
(Tseng et al., 2008). Effectively, an axon with a weak gap junction
has a longer refractory time, if the spike comes through a weak gap
junction.

In our model, heterogeneity in gap junction conductances
introduces heterogeneity in axonal refractory times, which in turn
leads to self-sustained reentrant activity around loops. If a net-
work contains some weak gap junctions, a pair (or burst) of spikes
at one axon can elicit self-sustained oscillations.

Frequency prediction for such oscillations is challenging,
because large networks contain multiple loops juxtaposed and

superimposed, and how the loop interactions contribute to the
frequency of total network activity is non-trivial. We have ana-
lyzed several basic configurations of loops, and found that in most
cases the smallest loop with a weak gap junction becomes the
pacemaker which drives oscillations in longer loops by “injecting”
spikes into them. This suggested the principle “smallest loop is the
pacemaker”: the smallest loop that contains a weak gap junction
drives the rest of the network. To prove the concept, we simulated
random networks of electrically coupled axons where a fraction of
gap junctions is weak. We used a cellular automaton model which
simulates second spike failures by imposing longer refractoriness
of axons with weak gap junctions. In those networks, we moni-
tored the periods of self-sustained oscillations and the statistics of
loop length distribution. To control the loop lengths, we designed
an algorithm to break loops of defined lengths, and monitored the
resulting periods of reentrant oscillations in networks altered in
this way. In agreement with the proposed principle, the periods
are set by the smallest available loops, confirming their role as the
pacemakers of network oscillations.

Our work shows that the shortest loops of random networks
determine the most likely period of reentrant network oscillations.
The pacemaker loop must contain one weak gap junction or other
kind of symmetry breaking, and it drives the rest of connected net-
work. The period of oscillation around the pacemaker loop must,
however, be longer than the refractory time of its slowest axon,
which sets the minimum length of possible pacemaker loops.

MATERIALS AND METHODS
MODEL OF ANATOMICALLY RECONSTRUCTED PYRAMIDAL NEURON
We used one of few available pyramidal neurons with anatomi-
cally reconstructed axonal (and dendritic) arbors, rat hippocampal
CA1 neuron from NeuroMorpho database1. This cell was recon-
structed from serial sections originally traced in (Tamamaki and
Nojyo, 1991), using an automated procedure developed in (Scor-
cioni and Ascoli, 2005). The neuron morphology was imported
by NEURON Import 3D tool and saved as template. The soma
size was changed to L = 15, diam = 15 μm, axonal diam = 0.5 μm,
dendritic diam = 1 μm. The neuron has 271 axonal and 195 den-
dritic sections, with total length of 51.5 and 13.5 mm, respectively.
Originally the axon stemmed out from basal dendrite, which we
changed to somatic attachment for simplicity.

Ionic conductances were inserted with parameters shown
in Table 1, based on the thalamocortical column model
described in Traub et al. (2005). Passive electrotonic prop-
erties were: membrane capacitance Cm = 0.9 μF/cm2, axonal
membrane conductance g pas = 0.001 S/cm2 (Rm = 1000 �cm2),
soma/dendritic membrane conductance g pas = 2 × 10−5 S/cm2

(Rm = 5 × 104 �cm2). Cytoplasmic resistivity for the axon was
Ra = 100 �cm, for soma Ra = 200 �cm, dendrites Ra = 200 �cm.
Reversal potentials Epas = −70,ENa = 50,EK = −95,ECa = 125 mV.
A steady hyperpolarizing current of −0.1 nA was applied to the
soma to prevent spontaneous spikes. Simulations were performed
on NEURON 7.22 (Carnevale and Hines, 2006). The model is
available from ModelDB database (accession number 144401).

1http://neuromorpho.org, ID: NMO_00927, name ca1a
2www.neuron.yale.edu
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Table 1 | Ionic channel densities in the model of an anatomically

reconstructed CA1 neuron.

Short

name

Max. density

ḡ, S/cm2

Location Comment

Na(F) 0.30 Axon Fast Na channel

0.20 Soma

0.03 Dendrites

K(DR) 0.45 Axon Delayed-rectifier K channel

0.17 Soma

0.075 Dendrites

K(A) 0.0006 Axon Transient inactivating K channel

0.02 Soma

0.008 Dendrite

K(M) 0.04 Axon M-type K channel

0.01 Soma

0.02 Dendrites

K(C) 0.016 Soma Voltage and Ca-dependent

K channel

0.016 Dendrites

K(AHP) 0.0002 Soma Slow Ca-dependent K channel

0.0002 Dendrites

Ca(L) 0.004 Soma Voltage-activated

high-threshold Ca channel

0.004 Dendrites

Plotting of the detailed neuron was made using TREES tool in
Matlab (Cuntz et al., 2010).

CELLULAR AUTOMATON MODEL
The CA model was used in a modified version from (Traub et al.,
1999). A unit (axon) can be in one of three basic states: resting
(excitable, E), firing (F), or refractory (R1, . . ., Rtr ). A unit in the
excitable state becomes firing if one or more of its neighbors are
firing. After one time step the firing unit becomes refractory for
period tr, after which it becomes excitable again. Thus each node
rests in (E) or undergoes a sequence of states (E, F, R1, . . ., Rtr ,
E) if activated by a neighbor. The formal rules of the CA are as
follows

1. excitable (E) → firing (F) if any neighbor is (F) and gap
junction between them is strong,

2. excitable (E) → firing (F) if any neighbor is (F), gap junction is
weak, but previous spike was more than tr + 2 times steps ago,

3. F → refractory (R1),
4. Ri → R(i + 1), i < tr,
5. Rtr → E .

The states of all nodes are updated simultaneously every time step.
Initially all units are in excitable state, except one random unit
which fires 2 successive spikes: at time 1 and at t = tr + 3.

In network simulations we chose tr = 1 to avoid long periods
and the searching of long loops. Therefore, units can fire again after
tr + 2 = 3 time steps (1 time step for firing, tr being refractory, 1
being excitable). Weak gap junctions produce an effective refrac-
tory time tr + 1 = 2. Therefore, a unit with a weak gap junction

can fire again only after 4 time steps (1 time step for firing, tr + 1
being refractory, 1 being excitable), making 4 the shortest loop
length which can sustain reentrant oscillations. This is why loops
of length 3 are not used by reentrant oscillations in our network
simulations (Figures 5A and 6A).

RANDOM NETWORKS
In this work we changed from Erdős-Rényi-type networks used
earlier (Traub et al., 1999; Lewis and Rinzel, 2000; Vladimirov
et al., 2011) to scale-free networks which are more often found in
natural systems (Strogatz, 2001). However, our main results are
likely to hold for any degree distribution, provided that network
has multiple loops of various lengths.

We simulated scale-free networks of 30 × 30 units with power-
law degree distribution and exponential cutoff: P(k) = Ck−τ e−k/λ,
τ = 2, λ = 10. Weak gap junctions were 10% of the total gap
junction population, positioned randomly at initialization, and
remained unchanged during the simulation. Networks were con-
structed with local connectivity: connections were randomly cho-
sen within radius rc = 5 from a node (distance 1 is the grid
interval). Our main results did not change qualitatively when con-
nectivity was instead global, because a neighborhood of radius 5 is
large enough to represent a random network. However, local con-
nectivity has the advantage of producing spatial effects (waves), as
studied in earlier works (Lewis and Rinzel, 2000; Vladimirov et al.,
2011). The results were similar in networks with Poisson degree
distribution (〈k〉 = 2), and in scale-free networks with different
power and cutoff τ = 2. . .2.4, λ = 10. . .20.

Period of oscillations was determined from auto-correlograms
of summed network activity.

LOOP DISTRIBUTION
The distribution of loop lengths in uncorrelated undirected
random network is given by

NL = 1

2L

( 〈k2〉 − 〈k〉
〈k〉

)L

(1)

which is valid for sufficiently short loops, where L is the loop
length, 〈k〉 and 〈k2〉 are the first and second moments of network’s
degree distribution: 〈k〉 = ∑

kP(k), 〈k2〉 = ∑
k2P(k) (Dorogovt-

sev et al., 2008). The expression in brackets is greater than 1,
therefore NL grows nearly exponentially with L.

Finding all loops in a random network is a computationally
expensive task (NP-complete), and there are numerous algorithms
aimed at minimizing the computational costs. In our simulations
we used Matlab code kindly provided by J. Jeffry Howbert, which is
essentially equivalent to an algorithm suggested in Johnson (1975),
but implemented for undirected graphs. The daunting task of find-
ing loops in our large networks was simplified by the constraint of
finding all loops not exceeding a threshold (Lmax = 16, 30).

BREAKING OF LOOPS
To break all loops of specific length in a network (for example,
from 3 to 10), we first searched for all loops in the appropriate
length range, with some reserve toward longer loops (3–20). In
each loop we picked a random link and eliminated its entry from
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FIGURE 1 | Simulation of spike propagation failure at axo-axonal gap

junction. (A). Two pyramidal cells with anatomically reconstructed axonal
arbors are coupled by a gap junction. Axons are gray, dendrites are blue. Soma
1 is stimulated by current injection [1 nA, 1 ms, shown on bottom in (C,D)]
which results in doublet of axonal spikes. (B). Schematic circuit of the cells

and virtual electrodes. Depending on gap junction conductance, second spike
may pass the gap junction and become a full spike (C) or fail and become a
spikelet (D), because firing threshold is not reached. (E) The second spike
passes in all-or-none fashion, depending on gap junction conductance. The
transition occurs sharply at a critical gap junction conductance of about 2.1 nS.

the network’s adjacency matrix. The operation was repeated for
all loops in the given length range (3–10), and the modified adja-
cency matrix was used to build lists of gap junctions and the units’
neighbors, which were used in each actual cellular automaton
simulation. Matlab code is available from NV upon request.

RESULTS
WEAK GAP JUNCTIONS
We start by modeling propagation of spike doublets between two
pyramidal neurons whose axons are connected by a gap junction.
We simulate two pyramidal neurons each based on an anatomically
reconstructed CA1 neuron from Neuromorpho database (neuron
ca1a, NMO_00927). The soma of neuron 1 was stimulated by
a depolarizing current pulse (1 nA, 1 ms) which elicited two full
spikes in axon 1. The two axons are electrically coupled by a gap
junction, each at distance of 370 μm from its soma. Higher gap
junction conductance (g ≥ 3 nS) lets both spikes propagate suc-
cessfully, while lower conductance (1–2 nS) blocks propagation of
a second spike (Figure 1). Thus, a difference in g from 2 to 3 nS
makes a qualitative change in the recipient axon spiking, allowing
the second successive spike to propagate or not. We will refer to a
gap junction which passes only one spike out of two as “weak,” in
contrast to “strong” ones that pass both spikes.

OSCILLATIONS IN ONE LOOP
When axons of pyramidal cells are connected by gap junctions in
a loop, a weak gap junction creates dynamic asymmetry in the

FIGURE 2 | Initiation of reentrant oscillations in a loop of electrically

coupled axons. Filled circles are pyramidal neurons which have axons
electrically coupled into a loop. Stimulus in one cell (zigzag arrow) initiates
doublets of spikes in both directions (A). Failure in one direction at a weak
gap junction (magenta) passes only one spike propagating one way against
two spikes propagating the other way. Two spikes meeting one spike at the
end of the loop (B) leave one spike that keeps traveling around the loop (C).
Arrowheads show individual spikes. Note that the time of spike travel
around the loop must be greater than refractory time of axon, for spike
reentry.

loop, which leads to reentrant spike propagation. Indeed, when
two spikes meet one approaching from the opposite direction, the
leading spikes annihilate each other and the trailing spike contin-
ues its propagation around the loop (Figure 2). When the spike
travel time around the loop is longer than refractory period of
an axon, the spike reenters the loop and continues this reentrant
activity in self-sustained mode.
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In a random network, each loop is embedded in the network
structure, with possibly multiple connected neighbors. Therefore,
reentrant activity leads to global network oscillations, where the
loop acts as a pacemaker. However, even in small random net-
works, many loops can be superimposed and interconnected, and
the presence of randomly occurring weak gap junctions poses a
challenging task to determine which of the many possible loops
will be the pacemaker.

OSCILLATIONS IN TWO CONNECTED LOOPS
We further examine what determines the oscillations in the case
of two loops of different size, with weak gap junctions in each,
connected by sharing several strong gap junctions (one of the
possible 2-loop systems is shown in Figure 3). A manual trac-
ing of spike coordinates in the loops suggests that once reen-
trant activity starts in the smaller loop, it continues, and makes
the smaller loop a pacemaker for the larger loop. We examined
10 different 2-loop configurations, by varying the number of
shared gap junctions, presence of weak gap junction in either
loop, and initial position of the spike doublet, and found them
all consistent with the concept of smallest loop as a pacemaker.
Examination of several 3-loop system also supported this rule
(drawings not shown). However, manual examination is slow,
while the number of possible combinations of loop lengths, the
way they are connected, positions of weak gap junctions and ini-
tial stimulus create a large multi-dimensional space which can
be only explored computationally, in the context of random
networks.

OSCILLATIONS IN RANDOM NETWORKS
In order to explore various loop configurations and initial con-
ditions, we simulated random networks where neurons were
represented by cellular automata with memory. In an earlier cel-
lular automaton model of axonal spiking, the unit responded
according to its present state and states of its connected neigh-
bors (Traub et al., 1999; Munro and Boergers, 2010). Here we
modified the model to account for second spike failure. A weak
gap junction now has memory of its recent spikes, and does
not pass a second spike if the time passed since the previ-
ous spike is not sufficiently long. This is not meant to imply
that real gap junctions have memory. It only reflects the non-
linearity in trans-junctional spike propagation in the case of two
spikes coming in rapid succession. Effectively, cellular automa-
ton units and gap junctions have their own refractory times:
normal gap junctions have the same refractory time as axonal
units (tr), while weak gap junctions have a longer refractory time
(tr + 1).

Our results do not depend much on any particular network
degree distribution, provided that there are multiple loops of
different length in a network. For our simulations we chose scale-
free networks which are often found in natural systems (Strogatz,
2001). We simulated a randomly connected network of 40 × 40
units with power-law degree distribution and exponential cutoff:
P(k) = Ck−τ e−k/λ, τ = 2, λ = 10(〈k〉 = 1.74, 〈k2〉 = 6.5). Weak
gap junctions were 10% of total gap junction population, were
assigned randomly at the initiation step, and remained unchanged
during simulation. The percentage of weak gap junctions can be

FIGURE 3 | Scheme of spike reentrant oscillation in two connected

loops. After an axon in loop L2 is stimulated (zigzag arrow) and fires two
successive spikes, the doublets propagate in both directions around the
loop. Weak gap junctions in each loop are shown by magenta segments;
other gap junctions are not shown. The spikes are shown as snapshots at
successive time steps ti. First scheme shows spike propagation before
collision in each loop (at t 4 and t 5, respectively). Second scheme shows the

two spikes remaining after each collision. A spike in the small loop reenters
with shorter period L1 and proceeds to the large loop at the two junction
points, creating two counter-propagating spikes in the larger loop, which
annihilate each other (third scheme). Period of spike entering (L1) is the
same in both loops, so that the smaller loop is the pacemaker and the larger
loop is the follower. The loops contain L1 and L2 neurons, respectively; time
units are non-dimensional.
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within 5–20% to ensure their sparse but representative distribution
in a network.

To initialize network activity, a single randomly chosen unit
was stimulated by two successive spikes. If activity did not vanish
to zero due to connectivity mishaps, the network demonstrated
self-sustained reentrant oscillations with clearly defined frequency
(Figure 4).

Simulations of a single representative network are shown in
Figure 5A. Network wiring and hence the loop distribution are
fixed, while oscillation periods depend on the choice of which
gap junctions are weak, and which cell fires a doublet initially.

FIGURE 4 | Activity in a random network with weak gap junctions. (A)

Snapshot of network state at the end of simulation (red for active, blue for
refractory, black for resting units). (B) Sum of active cells as a function of
time. After a short initial period, the network starts to oscillate with
frequency of 4 and oscillates in self-sustained mode without any external
stimulus. Initially all cells were resting except one which emitted two
successive spikes. Time units are non-dimensional. The network has
power-law degree distribution (gap junctions per node), with power τ = 2,
cutoff λ = 10.

The network was simulated 500 times with a random choice of
weak gap junctions (10%) and random initially spiking cell. Peri-
ods sharply peak above the lowest possible value of 4 (refractory
time of a weak gap junction, non-dimensional, see Methods). The
period of 4 is the shortest possible period of reentrant oscillation
around a loop. Note that there are numerous loops of length 3 but
they are unused by reentrant oscillations because they are too short
for reentry. Loops in a network were searched using a backtracking
algorithm (Johnson, 1975).

To check how altered loop distribution affects oscillation peri-
ods, we designed an algorithm that cuts out all loops in a defined
length range. When the network was devoid of loops with length
in the range 3–10, the new network demonstrated reentrant oscil-
lations with periods starting from 11, that is from the shortest
available loops (Figure 5B). Note the overall drop of loop number,
because cutting short loops affects all other loops, too.

To take into account network variability, we simulated 300
scale-free networks with random connectivity and initial con-
ditions, and plotted their total loop distribution against total
oscillation period distribution. Again, oscillation periods were
sharply peaked around effective refractory time 4 when all loops
were intact (Figure 6A). When loops with length in range 3–8
were eliminated, the periods in the resulting new set of networks
peaked around the minimal loop length of 9 (Figure 6B), confirm-
ing the principle of shortest loop as a pacemaker. The number of
9-periods was not much higher than 10- and 11-periods because
many networks did not contain 9-loops (or had very few of
them). Thus the preference of oscillations for a shortest loop is
less striking in the modified networks. However, in both cases
of the original networks and those with loops 3–8 cut out, the
change of loop distribution makes a predictable change in oscil-
lation periods, according to the suggested rule of shortest loop as
the pacemaker.

FIGURE 5 |The effect of loop distribution on oscillation periods in single

random network. (A) Loop length distribution (blue) and oscillation periods
(red) in a single network of size 40 × 40, simulated 500 times, with random
choice both of weak gap junctions and of initially spiking unit. Oscillations
sharply peak at lowest possible loop length. Note that oscillations of period 3

are not allowed because effective refractory time is 4. (B) Simulations of a
random network made up from network in (A) by cutting out loops with
length between 3 and 10. Oscillations show peak at period 11, that is from
one of the smallest available loops. Note the change in overall loop
distribution, because disruption of short loops affects other loops.
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FIGURE 6 | Oscillation periods versus loop distribution in random

networks. (A) Oscillation periods (red) and loop length distribution (blue) in
300 scale-free networks. Oscillations sharply peak at lowest possible loop
length (4). Note that oscillations of period 3 are not allowed because effective
refractory time is 4. Each network of size 30 × 30 was simulated once with
random choice of weak gap junctions and of initially spiking unit. (B) Same

networks with loops of length from 3 to 8 cut out. Oscillations in modified
networks show peak at period 9, corresponding to the smallest available
loops. Note the change in overall loop distribution, because disruption of short
loops affects other loops and the overall degree distribution. Loop counts are
scaled by 1/1000 in (A) and 1/10 in (B) for display purposes. Networks which
had no self-sustained activity were excluded from analysis.

FIGURE 7 | Loop of 5 anatomically detailed neurons axonally

coupled by gap junctions. Gap junctions are shown by blue lines. Axes
are spatial coordinates in micrometers. Circle on right shows the zoomed

position of two gap junctions on the axon. Axon is represented by
discrete line segments due to simplifications of anatomical
reconstruction.

The short loop which became the pacemaker injects its reen-
trant spike into other loops through common connections, in such
a way that spikes traverse the longer loops, with the result that indi-
vidual neurons fire at the same rate in all loops (see also Discussion
and Figure 8).

MAXIMUM FREQUENCY IN NETWORK OF ANATOMICALLY DETAILED
NEURONS
The results shown above predict that oscillations in axonal net-
works will likely converge to the maximum possible frequency
allowed by refractoriness of axons and the distribution of loops.
In the cellular automaton model we used a very short refractory
time tr = 1 for simplicity, with non-dimensional time units. In a
somewhat more realistic cellular automaton model, the time unit

is 0.25 ms and refractory time tr = 10–15 time units (2.5–3.75 ms;
Traub et al., 1999). Assuming that the axonal plexus has a loop
distribution as in a random network, loops of length 10–15 can be
very abundant. So the period for reentrant oscillations will likely
be determined by the refractory time of axons. In this section we
quantitatively estimate the effective refractory time of a detailed
axonal model such as shown in Figure 1.

We couple model axons of anatomically reconstructed neurons
by gap junctions into a loop of n cells,with 45 μm distance between
the two gap junctions on each axon (Figure 7, n = 5). Among a
total of n gap junctions in the loop, one was weak (1.5 nS) and
the rest were normal (3 nS). By stimulating one soma and adjust-
ing the number of cells in the loop, we find a loop containing a
minimal number of cells in which reentrant activity emerges.

Frontiers in Computational Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 17 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Vladimirov et al. Shortest loops as pacemakers

Depending on the properties of ionic channels in the axons,
the size of the smallest loop that could sustain reentrant oscilla-
tions varied. With axonal potassium K(M) conductance present,
the shortest loop required as many as 40 cells, giving a minimum
period of oscillations 13 ms (77 Hz). This happens because K(M)
significantly increases axonal refractory time due to the channel’s
slow kinetics. Without K(M) conductance (leaving Na(F), K(DR),
and K(A)) the effective refractory time was much shorter, allowing
minimum loop size of only 10 cells and minimum period 3.5 ms
(285 Hz). With minimal conductances (Na(F) and K(DR) only)
the shortest loop was 9 cells, period 3.2 ms (312 Hz). It is unclear
how abundant are K(M) and K(A) channels in axonal collaterals;
therefore our rough estimate for reentrant oscillations varies from
77 to 312 Hz, corresponding to frequencies of gamma, ripples and
fast ripples range (Table 2). These data suggest that reentrant oscil-
lations at fast ripple frequency might be most likely to occur when
K(M) is suppressed, as for example by high cholinergic “tone.”

In our simulations, a strong depolarizing current pulse (1 nA)
injected into the soma elicited axonal spikes at 2 ms interval
(500 Hz). This time is consistent with the axonal refractory time
obtained in experiments (2.5 ms, 400 Hz; Raastad and Shepherd,
2003; Popovic et al., 2011). In our model, 2 ms is the minimum
refractory time at which an axon can spike a second time under
a strong somatic stimulus. However, current entering an axon via
a weak gap junction is smaller and can not make the axon spike
again so rapidly; therefore, the axonal effective refractory time
is longer, about 3.5 ms. Effective axonal refractory time is diffi-
cult to define precisely. It depends on ionic channel composition,
number of gap junctions on the axon and the distances between
them, and local electrotonic properties of the axon, as well as the
strength of stimulus. Importantly, the reentrant oscillation period
of a loop is determined in part by the effective refractory time of
its slowest axon. Therefore, modulation of the properties of a few
specific axons may potentially modulate the oscillation frequency
of a network containing thousands of neurons.

DISCUSSION
In this paper we adopt the notation type I and type II oscillations to
distinguish between two possible mechanisms of high-frequency
synchronous activity of pyramidal neurons sparsely coupled by
axonal gap junctions. Type I implies rare spontaneous spiking of
axons and strong gap junctions, and type II requires a doublet of
spikes in one of the axons and the presence of some weak gap
junctions.

We use two computational models to study the problem of type
II oscillations in axonal arbors of hippocampal pyramidal cells. We

Table 2 | Ionic channel composition, minimal loop with sustained

reentry, period, and frequency of reentrant oscillation in loops of

axonally coupled pyramidal cells.

Channels Min. loop

size (axons)

Reentry

period (ms)

Frequency

(Hz)

Na(F), K(DR), K(A), K(M) 40 13 77

Na(F), K(DR), K(A) 10 3.5 285

Na(F), K(DR) 9 3.2 312

start with a model of anatomically reconstructed neuron from rat
CA1 and show that different gap junction conductance may or
may not pass the second spike in a spike doublet. A moderate
difference in gap junction conductance makes a large difference
when pyramidal cells are connected in random networks which
inherently contain loops. Failures of second spikes on weak gap
junctions create dynamic asymmetry in loops, remaining spikes
reverberate in loops, and some loops become pacemakers.

The frequency of spike reentrant oscillations is studied in scale-
free random networks by applying a reduced model of axonal
plexus. The model uses three-state cellular automata of Greenberg-
Hastings type to imitate axonal spiking. A new feature of the model
is the presence of “weak” gap junctions. The weak gap junctions
constitute a small fraction of total gap junction population, but
they are essential for reentrant oscillations because they do not
pass the second successive spike (at short interspike interval),
due to “memory.” Memory here is used in an algorithmic sense
to simulate the junction’s ability to block the second successive
spike by using memory about the time passed since a previous
spike.

The main result of this work is the tight connection between the
period of network oscillation and the distribution of short loops.
By using loop searching and loop-cutting algorithms in random
networks, we show that network oscillations choose the shortest
available loops, a principle we call“shortest loop is the pacemaker.”
This gives a strong predictive conclusion: by knowing the network
connectivity (distribution of loops) we can infer its likely oscilla-
tion frequency, and vise versa. The third factor to take into account
is, of course, the refractory time of an axon, since oscillation period
can not be shorter than that.

A necessary condition for a short loop to be a pacemaker, under
the conditions we have examined, is that it must contain one, and
only one, weak gap junction. If the loop contains no weak gap
junction, spike doublets travel through the loop symmetrically and
annihilate each other. If the loop contains more than one weak gap
junction, pairs of spikes become single spikes in both directions,
and also annihilate each other. Therefore, there is inherent varia-
tion in the choice of the pacemaker loop among available loops – it
must be short and contain only one weak gap junction.

In our simulations of anatomically reconstructed neurons con-
nected in a loop of n cells, each neuron has 2 gap junctions
separated by a distance of about 50 μm. Gap junctions were sepa-
rated along an axon rather than concentrated in a hub (Traub et al.,
1999; Munro and Boergers, 2010), since we suspect that separation
is more likely, assuming that gap junctions occur at random along
axonal collaterals.

Throughout the paper we have assumed that gap junctions are
non-rectifying, that is conductance is the same in both directions
of current flow. If gap junctions are rectifying, they might produce
reentrant oscillations more easily than non-rectifying, from single
initial spike and without the need for weak gap junctions. It is not
clear, however, whether a shortest loop will serve as a pacemaker
in a network of rectifying gap junctions.

Even if gap junctions have high conductance, gap junctions
close to the soma could have compromised ability to pass the
second spike, due to perisomatic synaptic inhibition and the
impedance load of the soma and dendrites (Traub et al., 2000;

Frontiers in Computational Neuroscience www.frontiersin.org April 2012 | Volume 6 | Article 17 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Vladimirov et al. Shortest loops as pacemakers

Munro and Boergers, 2010, this work, data not shown). Variability
in “effective” gap junction conductance might be inherent if some
gap junctions are close to the soma, or neighbored by other gap
junctions and shunted by them. In the present model, we changed
neuron geometry so that axon comes out from soma rather than
from basal dendrite as in original anatomical reconstruction. This
can compromise ability of some proximal gap junctions to pass
spikes, but does not alter our general conclusions about the axonal
network.

In large (100 × 100) networks with fixed weak gap junctions,
reentrant activity has a spatial form of target and/or spiral waves.
For example, Figure 8 shows the network activity with single weak
gap junction in a loop which becomes the pacemaker. The reen-
trant activity emerging from pacemaker loop has a local form of
spiral wave, and activity spreads to broader areas as target (arc)
waves. Note that, despite complex connectivity, the total network
activity oscillates precisely with the period equal to the length of
pacemaker loop.

Firing of single units has the same period as the total net-
work activity (but different phase), as shown in Figure 8C for a
randomly chosen unit (asterisks). Generally, units have different
phases, thus total network amplitude decreases with larger net-
work size due to unit phase averaging. However, in a network of
finite size (104 in our simulations), variations of axonal phase and
connectivity do not allow smoothing network activity completely.
Some axons may have more neighbors connected by gap junctions,
and in actual tissue more projections to local interneurons, both
effectively increasing role of the axon in LFP. In line with these pre-
dictions, in vivo LFPs have relatively small amplitude (ca 0.1 mV)

superimposed on large, slower signal, and units fire phase-locked
with LFP (Engel et al., 2009).

We do not find a clear distinction between target and spiral
waves in the reentrant network activity – the oscillation core may
have spiral, target, or mixed wave shape, depending on the geom-
etry of pacemaker loop and its connections to the rest of network.
Target and/or spiral waves can be also obtained in the cellular
automaton model when the probability of spike propagation via
gap junctions changes with time (N. Vladimirov, unpublished),
or when spike propagation time varies among gap junctions (A.
Cuevas, personal communication).

Spiral and ring waves were reported in experiments on rat
cortex visualized by voltage-sensitive dye imaging, induced by
application of carbachol and bicuculline (Huang et al.,2004,2010).
A use of foldable high-density electrodes in vivo (Viventi et al.,
2011) demonstrated the presence of plain and spiral waves in
cat visual cortex, when a seizure was induced by administration
of picrotoxin. Although primary frequencies of measured spiral
waves were slow (∼10 Hz), both methods demonstrate the exis-
tence of spiral waves in the induced cortical seizures. If applied to
epileptogenic cortex, these methods can give insights into spatio-
temporal structure of HFOs and possibly demonstrate reentrant
spiral waves during epileptic seizures. One should note, however,
that the above-mentioned experimental spiral waves were prob-
ably the result of chemical synaptic excitation rather than gap
junctions.

In essence, our network of axons connected by gap junc-
tions is strikingly similar to excitable cardiac cell tissue,
where adjacent myocytes are also connected by gap junctions

FIGURE 8 | Spiral and target-like waves in a random network. (A) The
100 × 100 network contains a single weak gap junction (magenta
segment, pointed to by small arrow), in a loop of 19 units connected by
gap junctions (white lines). Once reentrant activity starts, the loop
becomes a pacemaker, and produces a spiral wave (shown by thick curved
arrow), and a target-like (arc) wave (shape and direction are shown by thick
gray arc and arrow). See Movie S1 in Supplementary Material for
time-lapse activity. (B) Zoom-in of the pacemaker loop. The cell marked by

1 is currently firing, followed by a tail of five refractory cells (refractory
time t r = 5). See Movie S2 in Supplementary Material for time-lapse
activity. (C) Once reentrant activity has started at around t = 100, the total
number of firing units oscillates with a period of 19, which precisely
matches the length of the pacemaker loop. Stars are spikes of a randomly
chosen unit, showing that individual axons fire with the same period as
network activity. The network has a power-law degree distribution (gap
junctions per node), with power τ = 2, cutoff λ = 10.
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(Weingart and Maurer, 1988; Sheikh et al., 2009), and demonstrate
target and spiral reentrant waves. Regular target waves change to
spiral when cell-to-cell coupling is reduced (Bub et al., 2005),
because potentials fail at weak gap junctions, wave symmetry
breaks, which allows spiral reentrant waves to occur.

One signature of reentrant activity is a presence of spiral waves
or target waves in networks with local spatial connections. In our
simulations we assumed that the radius of connectivity does not
exceed rc = 5, in units of grid step between cells. However, this
may not be the case in CA1 because of great span of axonal
arbor which extends millimeters away from the soma. There-
fore, the maximum length of connection may be of the same
order as the network dimensions (millimeters), and spiral or tar-
get waves may be difficult to observe as an evidence of reentrant
activity.

How can the presence of reentrant oscillations be tested exper-
imentally? It might be possible to start ripples in CA1 mini-slice
by eliciting 2 axonal spikes (but not 1) in a pyramidal neuron’s
axon, at least in some pyramidal cells. Pharmacological blockade
of K(A) and K(M) channels might increase the oscillation fre-
quency of ripples due to shortening of axonal refractory time.
A hole cut in CA1 mini-slice stratum oriens might shape the
underlying axonal loops and alter the oscillation frequency in that
slice. This indirect evidence, together with a specific gap junc-
tion blocker, might reveal the role of reentrant oscillations in
hippocampus.

A more convincing experiment might demonstrate transition
between type I (noise-induced) and type II (reentrant) oscilla-
tions by pharmacologically reducing electrical coupling between
gap junctions. A gradual adding of gap junction blocker such as
carbenoxolone into the bath around a hippocampal slice could
transiently reduce the ripple frequency from 150 down to less
than 100 Hz, because it takes more time for spike to pass through
gap junction with lower conductance (Traub et al., submitted). A
further increase of gap junction blocker concentration could tran-
siently put the network into fast ripple frequency of about 300 Hz
(due to emergence of reentrant oscillation because of gap junction
failures).

If conditions for both type I and type II oscillations are
met (strong gap junctions, noise, and weak gap junctions), the
type II oscillations take over because of their higher frequency
(simulations not shown).

In our simulations, once the reentrant mode is established it
does not terminate and continues in seizure-like mode. In a real
network, there may be several possible mechanisms of reentry
termination. Temporal variations in gap junction conductance,
long-term depression of gap junctions, or inhibition of axonal
activity by some external mechanism are possible terminators of
otherwise uncontrolled and pathological reentrant activity.

MODELS OF RIPPLES
It has been suggested that type I oscillations are the core mecha-
nism of ripples in sharp wave-ripple complexes (Traub et al., 1999,
2010; Traub and Bibbig, 2000).

There are at least two alternative models for ripples. The
first model suggests that ripples emerge from synchronization of
inhibitory interneurons, which are excited by strong but transient

depolarization (Buzsaki et al., 1992; Ylinen et al., 1995). In par-
ticular, ripples have been attributed to synchronous GABAergic
inhibition of pyramidal cells by basket cells, the latter being excited
by CA3 pyramidal neurons during sharp waves.

Indeed, network of inhibitory interneurons can demonstrate
oscillations due to mutual IPSPs when cells reach sufficient depo-
larization (Whittington et al., 1995; Traub et al., 1996). However,
this type of oscillations is shown in gamma range (30–70 Hz) but
has not been demonstrated in ripples range.

Some experimental evidence argues against the interneuron-
based model as well. Ripples persist and even increase in amplitude
with GABAA receptors blocked (Draguhn et al., 1998; Jones and
Barth, 2002; Maier et al., 2003; Nimmrich et al., 2005), during
pharmacological blockade of all chemical transmission in vitro
(AMPA/kainate, NMDA, and GABAA, GABAB receptors blocked)
and even in Ca-free medium which blocks chemical synaptic trans-
mission (Draguhn et al., 1998). Furthermore, CA1 pyramidal neu-
rons during ripples receive phase-locked excitatory postsynaptic
currents (EPSC; Maier et al., 2011).

On the other hand, gap junction blockers (octanol, halothane,
carbenoxolone) reversibly suppress high-frequency activity in vitro
(Draguhn et al., 1998; Maier et al., 2003). A probable gap junction
between hippocampal mossy fiber axons was shown in Hamzei-
Sichani et al. (2007) by using freeze-fracture replica immuno-
gold labeling (FRIL). As further evidence, dye coupling occurs
between CA1 pyramidal cells through structures which lack spines
and have collaterals emerging at approximately right angles, so
that the coupling structures appear to be axons (Schmitz et al.,
2001).

The second alternative model suggests that transient activity
in ripple frequency can occur in recurrent networks of pyramidal
neurons with dendrites that supra-linearly enhance synchronous
excitatory synaptic inputs (Memmesheimer, 2010). This mecha-
nism is plausible in highly recurrent CA3, but it remains unclear
how this model can possibly explain ripples in CA1 which lacks
strong recurrent connections, or how ripples persist in non-
synaptic conditions, where they are suppressible by gap junction
blockers.

MODELS OF FAST RIPPLES
Simulations and experiments with axonal networks show that they
can oscillate by reentrant mechanism (Lewis and Rinzel, 2000;
Tseng et al., 2008; Munro and Boergers, 2010), which we call
type II and explore through this paper in detail. We suggest that
type II oscillations may be the driving mechanism of fast ripples
in CA1.

There are alternative models of fast ripples as well. Foffani et al.
(2007) have shown that fast ripple frequency appear as harmonic
of ripples in epileptic rat CA3 slices. In their experiments, the
authors demonstrated that fast ripples can emerge from disor-
ganized ripples because of jitter in interspike intervals (ISI) of
pyramidal cells. Jitter in ISIs is suggested to be the result of elevated
synaptic excitation of cells in epileptic hippocampus. However,
Engel et al. (2009) have argued that fast ripples are not harmonics
of ripples.

Ibarz et al. (2010) have shown by simulations and experi-
ments that fast ripples might be generated by bursting pyramidal
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neurons in either of two regimes: in-phase synchronous fir-
ing, when LFP coincides with bursting frequency of individual
cells, and out-of-phase firing, when phases of individual neu-
rons are temporally shifted by propagation delays and LFP shows
high-frequency harmonics of cellular intraburst frequency. To
evaluate this model, it would help to test whether fast rip-
ples, in an in vitro model, are dependent on AMPA/Kainate
receptors.

Both gap junctions and chemical synapses can contribute to
neural network synchronization, including sharp wave ripples in
normal brain and epileptic seizures in pathology. In this work we
have tried to bridge the scales of gap junction, axonal electrotonic
properties, neural network topology and frequency of network
oscillations. Reentry may be a critical one of several possible
mechanisms of pathological high-frequency oscillations observed
clinically and experimentally in vivo.
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