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The process of conditioning via reward learning is highly relevant to the study of food
choice and obesity. Learning is itself shaped by environmental exposure, with the potential
for such exposures to vary substantially across individuals and across place and time.
In this paper, we use computational techniques to extend a well-validated standard
model of reward learning, introducing both substantial heterogeneity and dynamic
reward exposures. We then apply the extended model to a food choice context. The
model produces a variety of individual behaviors and population-level patterns which
are not evident from the traditional formulation, but which offer potential insights for
understanding food reward learning and obesity. These include a “lock-in” effect, through
which early exposure can strongly shape later reward valuation. We discuss potential
implications of our results for the study and prevention of obesity, for the reward learning
field, and for future experimental and computational work.
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INTRODUCTION
Obesity has a complex etiology, with multiple known pathways
(Huang and Glass, 2008; Hammond, 2009; Dubé et al., 2010;
IOM, 2010, 2012). Considerable evidence suggests the food envi-
ronment can be an important driver of obesity (Lakdawalla and
Philipson, 2009), and that individuals may differ in their propen-
sity to over-consume in response to food cues in the environ-
ment (Guerrieri et al., 2008). Some researchers refer to “hedonic
hunger”—hunger driven by food cues and the anticipation of
food pleasure rather than purely homeostatic caloric needs (Lowe
and Butryn, 2007)—underlining the importance of brain reward
systems in guiding eating decisions.

We focus on the proposition that preference for high calo-
rie foods, and the inability to resist the appeal of food cues,
develops in part through a form of conditioning (Epstein et al.,
2007). Conditioning refers to the attribution of incentive prop-
erties to previously neutral cues paired with primary rewards,
such as food, via learning (Frank and Claus, 2006; Samson et al.,
2010). Individuals with an enhanced ability to learn from rewards
would be more prone to this form of conditioning, and also to
the related phenomenon of sensitization, which refers to a pro-
gressive increase in the neural and behavioral response to repeated
rewards (Robinson and Berridge, 1993). Animal research strongly
suggests that inherent differences in the dopamine system pro-
mote differential learning about reward-predicting cues, which in
turn promotes greater motivation to consume and seek the associ-
ated reward in the presence of such cues (Dalley et al., 2005, 2007;
Petrovich and Gallagher, 2007; Flagel et al., 2008, 2009; Berridge
et al., 2009; Yager and Robinson, 2010; Lovic et al., 2011).

There is considerable evidence that a similar process
contributes to human eating behavior and obesity. Obese individ-
uals tend to display a host of personality features and behaviors
supportive of a phenotype characterized by increased attraction
to high calorie foods, as confirmed by personality question-
naires, laboratory assessments of eating behavior, and functional
brain imaging. Some obese individuals: experience greater hedo-
nic responses to sweet or fatty foods (Blundell et al., 2005); have a
sensory preference for fat (Mela and Sacchetti, 1991); score higher
on questionnaire measures of sensitivity to reward (Davis et al.,
2007); work harder in laboratory settings for high calorie snacks
(Epstein et al., 2007); demonstrate greater brain activation to
food cues as assessed by functional magnetic resonance imaging
(Rothemund et al., 2007); are more prone to eating in response
to cues and relatively less sensitive to internal homeostatic sig-
nals (Herman and Polivy, 2008); exhibit greater activation in
the brain areas involved in reward and motivation (Dagher,
2012). Moreover, obese individuals often demonstrate compul-
sive food seeking behaviors that are reminiscent of drug addiction
(Grigson, 2002). The role of food as a reward cue for condi-
tioning, especially via flavor, has also been well studied (Schultz,
1998; Sclafani et al., 2011). In short, there is good evidence that
activation of the reward system (e.g., by food cues) is suffi-
cient to drive food consumption beyond homeostatic needs, and
thus to promote excess consumption (Petrovich and Gallagher,
2007; Berthoud and Morrison, 2008). Individual differences in
the development of the reward system, and the resulting attribu-
tion of incentive salience to food, are thus likely to be important
drivers of obesity-related behavior.
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The model we present in this paper is not intended to be
a comprehensive model of eating behavior, but focuses specif-
ically on elucidating the role of reward learning. By excluding
other contributing factors such as homeostasis, executive control,
and eating norms, we isolate the dynamic effect of reward learn-
ing in the context of diverse and changing environmental reward
exposure. Our model does not explicitly refer to dopamine, even
though its role in learning and sensitization to drugs and foods
is not in doubt (Sclafani et al., 2011). Rather we propose that
an inherited vulnerability (enhanced reward learning) in con-
junction with an environment rich in high calorie foods, can
lead to long-lasting neural adaptations that promote over-eating
throughout life. We explore the hypothesis that dynamic reward
learning can help explain both the importance of early life as a key
period in the development of eating behavior and the contradic-
tory evidence surrounding the effect of the food environment on
eating behavior and obesity (Morland et al., 2006; Larson et al.,
2009; Murakamia et al., 2010).

The learning model used here is a temporal difference learn-
ing algorithm (TDL) (Montague et al., 1996; Schultz et al., 1997;
Sutton and Barto, 1998). This model is of particular interest as
extensive human and animal evidence suggests that TDL signals
are carried by dopamine neurons in the brain (Schultz, 1998),
and experimental studies have validated this general mathemati-
cal model of learning at the individual level in carefully controlled
conditions (Montague et al., 1996; Schultz et al., 1997; O’Doherty
et al., 2003). In the context of food choice, an individual’s envi-
ronment can strongly shape the consumption choices available,
and thus the course of learning. Moreover, the environment to
which an individual is exposed may change over time. If TDL
is to provide a practical framework for modeling food reward
learning, then these considerations must be included. Our pri-
mary focus is not to evaluate the effectiveness of the algorithm at
achieving appropriate learning in a complex spatial context (as in
Tesauro, 1992; Ng et al., 2004; Whiteson et al., 2010), but rather
to explore its implications for food choice under heterogeneous
dynamic patterns of environmental exposure.

In this paper, we develop an extension of the TDL frame-
work to explicitly model movement across different exposure
environments through time. To capture these dynamics and local
heterogeneity in environmental exposure, we construct a sim-
ulation using agent-based computational modeling (ABM), a
framework well-suited to modeling dynamics, learning, and non-
random spatial structures (Page, 1999; Axelrod, 2006; Hammond
and Axelrod, 2006; Tesfatsion and Judd, 2006). The multi-
agent approach also allows for future extensions to the model,
such as the incorporation of empirical data on social interac-
tions, food geographies, and additional neurobiological pathways.
Reward learning as modeled here can thus be incorporated into
a more comprehensive “systems” modeling approach to obesity
(Auchincloss and Diez Roux, 2008; Mabry et al., 2008, 2010;
Huang et al., 2009; IOM, 2010, 2012; Levy et al., 2011; Hammond
and Dube, 2012).

Our results show how differential and dynamic reward expo-
sures can lead to non-trivial differences in the course of learning
among individuals. We also demonstrate how early exposure
can strongly influence reward learning, and may “lock-in” early

experience in a way that shapes later behavior. We begin with
the simplest possible model, replicating the expected analytical
results from the base TDL formulation, and then sequentially add
individual heterogeneity, spatial complexity, and dynamic reward
exposures to explore specific hypotheses about the impact of each
on reward learning outcomes.

MATERIALS AND METHODS
THE TEMPORAL DIFFERENCE LEARNING FRAMEWORK
In its standard form, the TDL model simulates reward learning
via signals of reward-prediction error (which may be signaled in
the brain by dopamine). The magnitude of error signaling is rep-
resented by the term delta (δ), which is the difference between
the actual experienced value of the reward at time t, V (t), and
the agent’s predicted value of the reward, V̂(t). Predicted value is
updated each round according to

V̂(t + 1) = V̂(t) + αδ(t), (1)

where α is the rate of learning.
In this paper, we adapt this framework to a model of food

reward learning. We define a variety of food types, with differ-
ent reward values associated with consuming them. Each food
type j has an intrinsic palatability (pj). To allow for the possibility
of individual heterogeneity in preferences and food reward, our
adaptation of the TDL framework permits the “true” V associated
with each food type to differ between agents. We allow V to vary
for each agent i, based on some multiple of base palatability—
beta (β). We refer to βij as agent i’s responsivity to food j. This
extension of the standard TDL model is appropriate for modeling
situations where reward valuation varies among individuals, as in
food choice. Thus:

Vij (t) = βijpj (2)

And our modified Equation 1 becomes:

V̂ij (t + 1) = V̂ij (t) + αi

[
βijpj − V̂ij (t)

]
(3)

We use this formulation of the temporal difference reward learn-
ing update rule for the individuals in our stochastic agent-based
simulation.

AN INITIAL AGENT-BASED TDL MODEL
We begin with a basic framework for agent-based TDL, initially
without including any individual heterogeneity or spatial com-
plexity. Our agents are embedded in a food-rich environment,
and move about local space consuming food and learning reward
values of food types using the TDL rule1. Agents eat at a constant
rate and homeostatic hunger signals are not modeled, reflecting
our focus on food choice based solely on anticipated reward. The

1The food environment in the model is abstract, representing exposure to
food choices whether in the physical environment, the home environment,
or elsewhere. Similarly, movement of the individuals is stylized, following a
standard convention in multi-agent simulation for modeling heterogeneous
and changing environmental exposures.
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“base case” with well-mixed food environment and no individual
heterogeneity replicates the expected individual- and population-
level learning curves from the standard mathematical formulation
of TDL. We then introduce heterogeneity in both individual
learning and in local environmental exposure through time, and
explore the richer dynamics this generates.

The base model contains two food types: “low” (L) and “high”
(H) palatability. Palatability could refer to any feature of a food
that causes it to be rewarding, such as energy density. Associated
reward values are pL = 0.6 and pH = 0.9. We define θ as the
ratio of high-to-low palatability (in this base model θ = 1.5).
The environment is abstract, and consists of a torus of 100 × 100
cells. Each cell contains two food objects, which are distributed
at random—some cells contain two H objects, some contain two
L objects, and some contain one of each type. Agents are homo-
geneous in all key parameters (α,β), and all agents begin with
V̂ij (0) = 0. Each period of the simulation has three steps:

(1) All agents move (in random order) to a randomly chosen
available cell adjacent to their current location in the abstract
food environment.

(2) All agents (in random order) consume a single food item
from the two available options in the cell they currently
occupy. If the cell contains HH or LL, no decision is
required—agents simply consume one object of the only
available food type. If the cell contains HL, agents use cur-
rent internal expected valuations V̂ij (t) and choose the food
type with the higher value. We introduce a small amount of
noise, in the form of a probability ε (0.05 unless otherwise
noted) that the agent picks the lower-valued food type (and
picks the higher-valued food type with probability 1−ε).

(3) All agents update V̂ij (t) using the individual TDL rule iden-
tified in Equation 3 above.

This process is repeated until the simulation reaches an equilib-
rium (no agent is still changing its reward valuations). In the base
case, this generally occurs within a few hundred iterations. The
simulation records the process of learning through time for all
individuals [e.g., V̂ij (t) for all i,j,t], and these are displayed on
an animated spatial map (Figure 1) and analyzed statistically to
produce population learning curves.

With no heterogeneity in either individual learning parameter
(αi = 0.4, βij = 1 for all i) and with a well-mixed spatial distri-
bution of food types, the internal reward valuations for all agents
converge rapidly to “intrinsic” (p) values for each type of food.
Figure 2 shows the population-level average learning curves for
both H and L food that result from the standard case simula-
tion. These correspond to the learning curves expected from the
standard TDL equations.

RESULTS
INDIVIDUAL HETEROGENEITY IN LEARNING
We now relax the assumption of individual homogeneity, allow-
ing key learning parameters to vary. This allows us to explore how
individual heterogeneity affects learning through time (at both
individual and population levels). Agents now vary in both learn-
ing rate (αi) and food-type responsivity (βij) for the H-food type

FIGURE 1 | Food environment and heat map. The spatial environment
is displayed as if viewed “from overhead.” Two versions are shown; the
panel on the left shows the food environment and distribution of agents,
while the panel on the right shows the internal (reward learning) states of
the agents. In the left panel view (A), the color of each square in the
environment represents the mixture of food objects at that location
(black = HH, green = LL, gray = HL). The colored dots represent individual
agents, showing their location. In the right panel view (B), the
environmental information is suppressed, and the dot colors represent the
internal reward valuations for each individual agent. The inside color
represents V̂H , and goes from black (H not learned) to bright red (H fully
learned). The outside color represents V̂L, and goes from white (L not
learned) to dark blue (L fully learned).

FIGURE 2 | Results from standard case. The curves in this chart describe
the average V̂H and V̂L values for the agent population during all runs of the
base case simulation.

(we do not model L-type responsivity). Each parameter is given
a low variant and high variant to allow simple comparison. This
results in four agent “types”: (1) fast learners highly responsive to
H-food (αi = 0.4, βiH = 2.0); (2) fast learners with low respon-
sivity to H-food (αi = 0.4, βiH = 0.5); (3) slow learners highly
responsive to H-food (αi = 0.1, βiH = 2.0); (4) slow learners with
low responsivity to H-food (αi = 0.1, βiH = 0.5).

The agent population is evenly divided between these four
types, and agents are distributed in random initial locations in
space (as shown in Figure 1A). The mixture of food objects
in each cell is also distributed at random as before, and the
simulation proceeds with the same three steps per round.

The dynamics that result from this type of heterogeneity are
intuitive. As illustrated in Figure 3, the reward valuation for all
agents converges to βijpj, and at a faster rate for agents with high-
α than for agents with low-α. Differences in α (between types
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FIGURE 3 | Results from heterogeneous learning parameters. The
curves in this chart describe the average V̂H and V̂L for each subpopulation
during every run of the simulation in this configuration. Differences in alpha
lead to convergence at different rates to the same V̂H (blue vs. green lines),
while differences in beta result in convergence to different levels of V̂H

(green vs. purple lines).

1 and 3, or 2 and 4) lead to convergence to the same final VH

but at different rates. Differences in β (between types 1 and 2, or
3 and 4) lead to convergence to different ending VH . The qual-
itative comparisons are robust to variation in the specific values
of α and β used. Although not unexpected, these results are sig-
nificant. Interpreted in the context of food choice, differences in
learning rates (or perceived reward valuation) could translate into
non-trivial calorie surpluses for high-α or high-β agents.

HETEROGENEITY IN SPATIAL EXPOSURE
Next, we incorporate spatial heterogeneity into the model (ini-
tially in a very restricted sense, so that we can conduct rigorous
tests of the model’s assumptions). The space is divided into four
distinct regions; agents can move freely within their own region
but cannot cross into adjacent regions. The first region contains
only high-palatable food items (upper-left in Figure 4A), the sec-
ond contains only low-palatable foods (lower-right in Figure 4A),
and the final two regions contain mixed high- and low-palatable
foods.

Agents in the high-palatable region learn the value of H as
before, and agents in the low-palatable region do not learn the
value of H at all. But agents in the mixed region, even though
they have the same learning parameters as those in the first region,
learn at a slower rate. This results from “lock-in” of early choices;
half of the subjects choose the low-palatable food initially, and
then will only attempt to learn the value of H with probability ε.
The effect is clearly evident even mid-way through a simulation
run, as illustrated in the upper-right and lower-left quadrants of
the heat map in Figure 4B. The result is a lower effective learning
rate (see Figure 5).

REWARD LEARNING WITH MOVEMENT AND SPATIAL DYNAMICS
Our core motivation in extending and applying the TDL frame-
work is to explore the implications of reward learning dynamics

FIGURE 4 | Spatial heterogeneity. Agents are randomly seeded into one
of four quadrants, and cannot move between them. The upper-left quadrant
is entirely high-palatable, the lower-right is entirely low-palatable, and the
remaining two quadrants are mixed. The simulation is shown here mid-way
through a run. Two versions of the overhead view (of all four quadrants) are
shown (A and B), with coloring as described in Figure 1.

FIGURE 5 | Fifteen run average results: heterogeneous agents and

distinct regions. Agents in different regions learn the value of food H at
different rates. In this case, agents in Region LL never learn the value of
food H, agents in Region HH learn it quickly (it is the only food available),
and agents in Region HL learn slower on average, due to lock-in. 15-run
standard errors never exceed 0.01, and are not shown.

with changing environmental exposures. To gain further insight
into these dynamics, we now add to our model the poten-
tial for individual movement across environmental contexts over
time. Rather than have agents learn in a static environment, we
introduce transitions across regions during the learning process.
This allows us to determine whether the “lock-in” of initial expo-
sure demonstrated above (Figure 5) persists when agents are not
restricted to a single uniform environment.

As illustrated in Figure 6, the movement experiment has two
phases: (1) All agents are initialized in one of three regions (HH,
LL, or HL). Initial learning occurs in this environment as before.
(See Before in Figure 6). We continue this phase until agents in the
HH region have completed learning. (2) Every agent is moved to
a mixed (HL) environment. (See After in Figure 6). Of particular
interest is the time taken by agents initially exposed to the low-
palatable environment to learn the value of the high-palatable
food following the move.

Frontiers in Computational Neuroscience www.frontiersin.org October 2012 | Volume 6 | Article 82 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Hammond et al. Dynamic food reward learning model

Outcomes in these experiments can be affected by the amount
of “noise” in food choice (default ε = 0.05) and the palatabil-
ity ratio (θ) between low and high value food (default θ = 1.5).
Nonetheless, for a broad range of parameterizations, there are
substantial differences in “effective” learning rate (and choice
behavior over long periods of time) conditioned by early expo-
sure environment (see Figure 7). For instance, agents learning the
value of high-palatability food take on average 6.8 times longer
to do so if they were originally conditioned in a low-palatability
environment than those originally seeded in the high-palatability
environment (at ε = 0.05, θ = 1.5). This ratio is 19.7 for agents
learning the value of low-palatability food. More generally, agents
on average learn their initial food value at a faster rate than the
second food they are exposed to (after moving), regardless of
which is low- or high-palatable. This consistent lock-in effect is
quite robust to noise (the learning ratio remains above 1 even
at ε = 0.50, as Figure 7 shows). Agents that initiate learning in

FIGURE 6 | Movement from pure initial exposure conditions. To
simulate movement, the food environments in the HH and LL quadrants
are switched to HL during the course of the run.

FIGURE 7 | Learning ratio as a function of noise, with 15-run standard

error bars. The chart describes the ratio between the learning rate for an
agent’s second food vs. the same agent’s first food (θ = 1.5, alpha = 0.4).
The data suggest that lock-in is quite robust to changes in noise, as the
learning ratio is greater than one for all values of epsilon. Agents who begin
learning in the initially high-palatable region experience greater lock-in
magnitude than those in the initially low-palatable region, though this effect
diminishes as noise increases.

the high-palatability region exhibit greater levels of lock-in than
those that initiate learning in the low-palatability region. This dif-
ference is magnified by higher values of θ, and diminishes as noise
increases.

ROBUSTNESS TO MIXED INITIAL EXPOSURE CONDITIONS
The “lock-in” effects described above were based on movement
from a homogeneous environment to a mixed environment. Here
we explore robustness of the result to initial agent environments
that are more heterogeneous. Does lock-in require a heavily-
skewed initial environment? This question is of high interest
for the study of food reward, because there is substantial het-
erogeneity in the early exposure environments faced by human
learners.

To test this possibility, we embed the agents in a gradient space,
with 100% high-palatable food on one edge of the lattice, 100%
low-palatable food on the other edge, and a smooth gradation
of levels in between. (This map has the useful property that an
agent on x-position xi has a xi% probability that its host cell
contains high-palatable food; See Figure 8). In this formulation,
agents choose from the set of food on their cell or the surround-
ing 8 neighbors (choosing the food with highest reward valuation
with probability 1−ε, and a random food in their neighborhood
with probability ε).

Figure 9 shows that agents who begin in a more low-palatable
region take longer on average to learn the value of the high-
palatable food, as expected. Because this new variant also provides
a continuous-space analog to the movement experiments, we are
able to demonstrate persistent lock-in (represented by ratio > 1
of time to learn VH vs. VL) even when the initial food environ-
ment contains a substantial proportion of both food types (see
Figure 10).

DISCUSSION
The model we present here introduces population spatial dynam-
ics and substantial individual and spatial heterogeneity into a
well-supported model of food reward learning. We used the com-
putational technique of agent-based modeling to first replicate

FIGURE 8 | Gradient space. Gray is low-palatable (p = 0.6), and black is
high-palatable (p = 0.9).
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FIGURE 9 | Learning rates in continuous space, with 15-run standard

error bars. Agents who begin learning in regions with higher proportions of
high-palatable food experience less lock-in and learn its value more quickly
(θ = 1.5). Results shown are population averages across 15 runs of the
stochastic simulation.

FIGURE 10 | Lock-in persistence in continuous space, with 15-run

standard error bars. The model yields learning ratios greater than one
even for agents seeded in initial food environments with substantial
mixtures of both food types (θ = 1.5). Results shown are averages across
15 runs of the stochastic simulation.

findings from the standard TDL formulation, and then apply
it to a stylized spatial context of changing environmental expo-
sures through time. This extended model uncovers a variety of
agent behaviors which are not evident from the traditional for-
mulation, but which offer insights of potentially high relevance to
food reward learning and obesity. These include a “lock-in” effect,
through which early exposure can strongly shape later reward
valuation.

Our results offer new insights into two important areas of the
existing obesity literature—the role of the food environment and
the early childhood development of eating behavior. Empirical
studies of the relationship between objective measures of the food
environment and eating behavior, overweight, and obesity have
found very mixed results. For example, two recent systematic
review papers (Casey et al., 2011; Caspi et al., 2012) identified

one set of studies showing strong and statistically significant rela-
tionships, other studies showing no relationships, and still others
showing weak or mixed correlations. Both review papers call for
further research to explain the conflicting evidence. Our central
result (the “lock-in” effect) provides one potential explanation by
demonstrating that early exposures may shape reward learning
and food preferences more strongly than current exposures. All
63 empirical studies covered in the review papers examine cor-
relations between current food environment and current eating
or weight; our model suggests the field may need to take into
account changing environmental exposures through time and
across lifecourse development instead2.

Our results also help explain the importance of early childhood
in the development of obesity. A large body of experimental and
theoretical work illustrates how adult health behavior can trace
its roots to neurological and physiological development during
childhood (Champagne and Meaney, 2001; Gillman, 2005), and
early childhood may be an especially important developmental
window for obesity (McMillan and Robinson, 2005; Nader et al.,
2012). The “lock-in” effect described in this paper represents
one candidate mechanism through which this process may occur.
Pending empirical testing of our model in future work, studying
food reward learning and choice in this way has the potential
to inform novel prevention and treatment approaches for the
ongoing obesity epidemic. Identification of key developmental
windows during which exposure to healthy (or unhealthy) food
has the strongest effect on long-term appetitive behavior would
provide an important focus for prevention efforts. Consideration
of heterogeneity and dynamic patterns in reward exposure may
also allow opportunities for more focused prevention.

Beyond the immediate implications of our results for the study
of food choice and obesity, the model of reward learning we
have presented here can serve as a foundation for future work
extending the computational approach to other neurobiologi-
cal determinants of eating behavior, and for experimental work
aimed at deepening our understanding of food reward learn-
ing. Capturing the complexity of eating behavior and obesity
is likely to require models that include multiple pathways and
mechanisms. We believe that reward learning under dynamic
environmental exposure, as modeled here, will be an important
component of this type of comprehensive modeling approach.
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