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The postsynaptic potentials of pyramidal neurons have a non-Gaussian amplitude
distribution with a heavy tail in both hippocampus and neocortex. Such distributions
of synaptic weights were recently shown to generate spontaneous internal noise
optimal for spike propagation in recurrent cortical circuits. However, whether this internal
noise generation by heavy-tailed weight distributions is possible for and beneficial to
other computational functions remains unknown. To clarify this point, we construct an
associative memory (AM) network model of spiking neurons that stores multiple memory
patterns in a connection matrix with a lognormal weight distribution. In AM networks,
non-retrieved memory patterns generate a cross-talk noise that severely disturbs memory
recall. We demonstrate that neurons encoding a retrieved memory pattern and those
encoding non-retrieved memory patterns have different subthreshold membrane-potential
distributions in our model. Consequently, the probability of responding to inputs at strong
synapses increases for the encoding neurons, whereas it decreases for the non-encoding
neurons. Our results imply that heavy-tailed distributions of connection weights can
generate noise useful for AM recall.
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INTRODUCTION
The organization of neuronal wiring determines the flow of
information in neural circuits and hence has significant impli-
cations for functions of the circuits. A number of recent studies
revealed the non-random features of neuronal wiring in cortical
circuits (Markram, 1997; Kalisman et al., 2005; Song et al., 2005;
Yoshimura et al., 2005; Koulakov et al., 2009; Lefort et al., 2009;
Yassin et al., 2010; Perin et al., 2011). These features include not
only the complex topology of neuronal wiring, but also the non-
Gaussian nature of the distributions of amplitudes of excitatory
postsynaptic potentials (EPSPs), which is typically represented by
the presence of long tails (also called “heavy tails”) in the distri-
butions. In fact, the amplitude distributions of EPSPs are well
described by lognormal distributions in both neocortex (Song
et al., 2005; Lefort et al., 2009) and hippocampus (Ikegaya et al.,
2013). In reality, the amplitude of EPSP between cortical neu-
rons may represent the total strength of multiple synaptic contacts
made by one of the neurons on the other. However, hereafter we
simply call the EPSP amplitude the “synaptic weight” from one
neuron to the other.

A lognormal weight distribution implies that a small number
of very strong connections are present in local cortical circuits
and carry a large amount of the total weight on a cortical neu-
ron, while the majority of synapses are weak (Holmgren et al.,
2003; Binzegger et al., 2004). Such EPSP-amplitude distributions
of AMPA receptor-mediated synapses significantly influence the

dynamical properties of stable network states (Koulakov et al.,
2009; Roxin et al., 2011). In particular, we have recently shown
that spontaneous cortical activity emerges from the coopera-
tion between strong-sparse and weak-dense (SSWD) synapses in
a heavy-tailed EPSP-amplitude distribution of AMPA recurrent
synapses (Teramae et al., 2012). Such a recurrent network can
generate internal noise optimal for stochastic resonance effects
on spike-based communications between neurons. Moreover,
lognormally-connected recurrent networks combined with highly
non-random properties of cortical synaptic connections (Prill
et al., 2005; Song et al., 2005; Perin et al., 2011) generate working
memory-like bistable network states (Klinshov et al., unpub-
lished data). These results seem to indicate that heavy-tailed
weight distributions play active roles in stochastic cortical infor-
mation processing including the pattern-recall operation in the
hippocampus. However, these roles remain largely unknown.

Hippocampal CA3 has sparse recurrent excitatory connec-
tions and is thought to perform a pattern completion oper-
ation in memory recall (Nakazawa et al., 2002). Properties
of pattern completion, such as storage capacity and memory
retrieval dynamics, have been extensively studied in the statis-
tical mechanics of Hopfield associative memory (AM) network
and its variants of formal neurons with binary or analog out-
puts (Hopfield, 1982, 1984; Amit et al., 1985; Derrida et al., 1987;
Tsodyks and Feigel’man, 1988; Shiino and Fukai, 1992; Coolen
and Sherrington, 1993; Okada, 1995). AM models of spiking
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neurons have also been studied although they generally exhibit
a much poorer ability for memory storage than models of binary
or analog neurons (Gerstner and Hemmen, 1992; Lansner and
Fransén, 1992; Treves, 1993; Amit and Brunel, 1997; Maass and
Natschläger, 1997; Sommer and Wennekers, 2001; Curti et al.,
2004; Latham and Nirenberg, 2004; Aviel et al., 2005; Roudi and
Latham, 2007). In most of the previous models, the weights of
synaptic connections typically obey a Gaussian distribution, par-
ticularly when the number of embedded patterns is extensively
large. However, since the amplitudes of EPSPs between pyrami-
dal cells were shown to obey a heavy-tailed distribution in CA3
(Ikegaya et al., 2013), here we construct AM network models of
spiking neurons having lognormal weight distributions of recur-
rent connections and investigate possible implications of such
non-Gaussian distributions in the memory retrieval dynamics.
In particular, we explore the possibility that such a network can
generate internal noise useful for the retrieval of an embedded
memory pattern.

MATERIALS AND METHODS
We developed a recurrent network model of integrate-and-fire
neurons that stores information on a multiple number of memory
patterns in the weights of excitatory synaptic connections obeying
a lognormal distribution. Extremely strong synapses are rare in
such a weight distribution and the majority of synapses are weak.
Therefore, we may term neural networks with long-tailed synaptic
weight distributions “SSWD networks.”

NETWORK DYNAMICS
The model consists of NE excitatory neurons and NI inhibitory
neurons. The excitatory neurons are connected with each other by
a lognormally weight-distributed Hebbian-type synaptic matrix

that is generated from random memory patterns, and each
inhibitory neuron is connected randomly with the excitatory neu-
rons and the other inhibitory neurons (Figure 1A). The neural
dynamics in this recurrent network is described by conductance-
based leaky integrate-and-fire neurons as:

dvi

dt
= − 1

τm
(vi − VL) − gE

i (vi − VE) − gI
i (vi − VI) (1)

where vi is the membrane potential of neuron i, τm is the
membrane time constant, and VE, VI, and VL are the rever-
sal potentials of AMPA-receptor-mediated excitatory synaptic
current, inhibitory synaptic current, and leak current, respec-
tively. The conductances of excitatory and inhibitory synapses are
measured in units of [time−1] and obey.

dgX
i

dt
= − gX

i

τs
+

NX∑
j

cXY
ij GXY

ij

∑
sj

δ
(

t − sX
j − dXY

ij

)
, X, Y = E, I

(2)
where τ

E,I
s is the decay constant of excitatory or inhibitory synap-

tic current, sE,I
j is the spike times of excitatory or inhibitory

neuron j, dXY
ij is delay from neuron j to i, and the element of

the adjacent matrix cXY
ij is 1 if neurons j and i are connected

and otherwise 0. Indices X and Y indicate whether pre- or post-
neurons are excitatory or inhibitory. The maximum conductance
GEE of excitatory-to-excitatory synapses was determined such
that the amplitudes of their EPSPs obey a lognormal distribu-
tion ln N(μ, σ2), with parameters μ and σ2 being the mean and
variance of the normal distribution. Other types of conductance
(E-to-I, I-to-E, I-to-I) were fixed at constant values.

FIGURE 1 | The construction of an associative memory network with

strong-sparse and weak-dense synapses. (A) Schematic illustration of
strong-sparse weak-dense connected network. (B) The cumulative
distribution function (cdf) was calculated from the probability distribution of
the elements of the Hebbian connection matrix Tij (left). Then, the EPSP

amplitude Vij of this synaptic connection was determined by a one-to-one
mapping between the cdf of Tij and that of the target lognormal distribution
for Vij (right). (C) Reciprocal and triangle connections are schematically
shown before (left) and after rewiring (right). In both cases, one of the strong
connections are chosen randomly and eliminated.
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Excitatory synapses fail to transmit presynaptic spikes to post-
synaptic neurons with a certain probability. We defined the failure
probability as Va/(Va + Vin) in terms of the threshold potential
Va for a synapse with an EPSP amplitude of Vin. Each neuron out-
puts a spike when its membrane potential reaches threshold Vth,
then the membrane potential is reset to VL after the refractory
period τref .

We used the following values of parameters in the present
numerical simulations. The number of excitatory neurons NE =
10,000 and that of inhibitory neurons NI = 2000. The connec-
tion probabilities, i.e., the probabilities of finding a non-vanishing
element in the adjacent matrices, are cE = 0.1 and cI = 0.5 for
excitatory and inhibitory synapses, respectively. The decay time
constants are τE

m = 20.0 [ms] and τI
m = 10.0 [ms] for excitatory

and inhibitory membrane decay, and τs = 2.0 [ms] for synap-
tic decay. We chose average delay of synaptic inputs as τE

d = 2.0
[ms] for excitatory synaptic connections, and τI

d = 1.0 [ms] for
inhibitory connections. The refractory period is τref = 1.0 [ms].
For membrane potential parameters, spike threshold is Vth =
−50.0 [mV], reversal potential of leak current is VL = −70.0
[mV], and reversal potential of postsynaptic currents are VE =
−0.0 [mV] and VI = −80.0 [mV] for excitatory and inhibitory,
respectively. Threshold for synaptic transmission failure is Va =
0.1 [mV]. The weights of synaptic inputs are GEI = 0.017, GIE =
0.0018, GII = 0.0025 for E-to-I, I-to-E, I-to-I connections. For
E-to-E connections, parameters of lognormal distribution are
σ = 1.0, and μ = σ2 + log 0.2, and upper limit of EPSP is Vmax =
20.0 [mV]. Computer codes are written in C++ and dynamical
equations are solved by using Euler methods with a time step of
h = 0.01 [ms].

SYNAPTIC CONNECTIONS
We embedded mutually-independent random memory patterns
into E-to-E connections as follows. First, we created random
binary patterns of 0 and 1

{
ξ
μ

i

}1,2,...,p
i = 1,2,...,NE

according to:

Prob
[
ξ
μ

i = 1
] = a, Prob

[
ξ
μ

i = 0
] = 1 − a (3)

where p is the total number of embedded patterns and a is the
sparseness of these patterns. In this paper, we introduced a con-
straint as

∑
i ξ

μ
i = aNE to suppress the non-homogeneity across

different memory patterns.
The conventional weight matrix of AM network model is

determined by the local Hebbian rule as
∑

μ ξ
μ

i ξ
μ

j . However,
here we want to create EPSP amplitudes that obey a lognormal
distribution, while the conventional weight matrix obeys a bino-
mial distribution. In order to accomplish this, we introduced a
continuous weight matrix Tij as shown below:

Tij =
p∑

μ= 1

ξ
μ
i ξ

μ
j + ζij (4)

where ζij ∈ [0, 1) is a random variable to make the distribution
of Tij continuous. The second term in Equation 4 is crucial for
the genesis of spontaneous activity when the network stores only
a small number of patterns and hence the first term vanishes

between most neuron pairs. Then, we determined EPSP Vij

between excitatory neurons i and j so that the cumulative fre-
quency of Vij may coincide with that of Tij (Figure 1B). Defining
the set of memory patterns supported by neuron i as μi ={
μ
∣∣ξμ

i = 1
}

, we can express Tij as Tij = ∑
μ∈ μi

ξ
μ

i + ζij where

μi contains pi = ∑
μ ξ

μ

i memory patterns. Thus, the cumulative
function of Tij is written as:

Prob
[
Tij ≤ x

] =
x̃−1∑
q = 0

h
(
pi, q

)+ (x − x̃) h
(
pi, x̃

)

in terms of h
(
pi, q

) =pi Cqaq (1 − a)pi−q, where x̃ is the max-
imum integer below x. On the other hand, the cumulative
distribution of Vij is written as:

Prob
[
Vij ≤ y

] = 1

2Zv

(
1 + erf

[
1√
2σ

(
log y − μ

)])
,

Zv = 1
2

(
1 + erf

[
1

2σ
(log Vmax − μ)

])
.

where Vmax is the upper bound for Vij. Therefore, the map x → y
is given as follows:

y = exp
[
μ + √

2σ erf−1 (2ZvProb
[
x ≤ Tij

]− 1
)]

, (5)

for the pair of neurons i and j.
If some excitatory neurons send too strong excitatory out-

puts to other neurons, these neurons can be a potential hazard to
the stability of network dynamics. To prevent the appearance of
such hubs, we normalized each synaptic weight over presynaptic
neurons as:

Vij = y/Zj, Zj = exp
((

pj − pa
) /

pa
)
, (6)

where the normalization factor Zj is greater or smaller than unity
if the number of memory patterns encoded by neuron j is larger
or smaller than the expectation value, respectively.

As in many other AM network models, the connection matrix
constructed above is symmetric. In networks of binary or mono-
tonic analog neurons, symmetric synaptic connections induce a
“down-hill” motion in the time evolution of network states, mak-
ing the retrieval of memory patterns possible (Hopfield, 1982,
1984). The connection matrix shown in Equation 6 generates a
small number of strong (typically, EPSP >3 mV) reciprocal con-
nections and triangle motifs. Though the over-representations of
such motifs have been known in cortical circuits (Song et al.,
2005; Perin et al., 2011), here such motifs form strong exci-
tatory loops due to the symmetry of the connection matrix.
Therefore, a small number of neurons belonging to the motifs
are activated very strongly and tend to burst at very high fre-
quencies. To avoid this unrealistic situation, we weakened one
of the edges in all strong loops (Figure 1C). To be precise, we
searched all “strong” reciprocal excitatory connections that gen-
erate EPSPs larger than a threshold value Vu in both directions.
Then, we selected one of them randomly and assigned to it
a new EPSP that is smaller than Vl. In addition, we rewired
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“strong” triangle connections in a similar way such that they
may not form a circular triangle because neurons in the closed
loop structure tend to give high-frequency repetitive bursts in
numerical simulations. In this rewiring, the lower limit of strong
EPSP Vl is 3.0 [mV] and the upper limit of weak EPSP Vu

is 1.0 [mV].

NUMERICAL SIMULATIONS
We conducted numerical simulations of the model for various
values of parameters. To initiate spontaneous activity, we applied
external Poisson spike trains at 10 Hz to all neurons for the initial
100 ms of each simulation trial and evoked EPSPs with the ampli-
tude of about 10 mV. Once spontaneous activity is triggered, the
network continues to show autonomous firing without any exter-
nal input. This spontaneous firing state may be regarded as the
resting state of the network. Depending on the values of parame-
ters, the stability of spontaneous activity is not robust enough and
the network may exhibit a further spontaneous transition from
the resting state due to the intrinsic noise generated by reverber-
ating synaptic input. As explained in the Results, the lifetime of
spontaneous activity depends significantly on the memory load.
If the network remained in the resting state for more than 500 ms
after the initiation of spontaneous activity, we stimulated neurons
encoding a memory pattern with external input of the duration
10 ms and the frequency 100 Hz. We may regard this input as a
cue signal for memory retrieval.

PATTERN OVERLAPS
We define a macroscopic order parameter to measure overlaps
between the network state and memory patterns as:

Kμ = 1

aNErμ

∑
i

(
ξ
μ

i − a
)
(ri − rE) (7)

where rE = (1/NE)
∑

i ri and rμ = (1/aNE)
∑

i ξ
μ

i ri, and ri is
the firing rate of the i-th excitatory neuron. In numerical simula-
tions, the firing rate was calculated from spike data in the interval
of 800 < t < 1100 [ms]. Spike data during 610 < t < 800 [ms]
was not used because the system is in a transient state. The pat-
tern overlap with the retrieved memory pattern may be called “the
retrieval rate.”

The retrieval rate is written as K = 1 − rE/rμ (this expression
is exact due to the restriction on the total number of non-
vanishing components in each pattern), therefore, K ∼= 1 when
the system is in the retrieval state and K ∼= 0 in the resting state.
The retrieval rate K = 0 when (a) all neurons are completely
silent, (b) when a non-target memory pattern is retrieved or
(c) when the average firing rate of the retrieval state becomes
extremely high. The case (a) sometimes occurs when memory
patterns are not sparse enough (typically, a ≥ 0.15) and the num-
ber of stored patterns is large. The case (b) occurs regardless of
the sparseness parameter a when a small number of patterns are
stored. Note that the target pattern is not stable in this case. In case
(c), we regarded memory retrieval as unsuccessful since PR neu-
rons fired at unrealistically high firing rates (typically, >70Hz).
Therefore, we set K = 0 without calculating the right-hand side of
Equation (7) although there could be a different treatment for this

case. Case (c) typically occurs when memory patterns are sparse
(a ≤ 0.10) and the number of stored patterns is relatively small,
that is, in the lower left off-diagonal region of the parameter space
shown in Figures 1B and 7B.

MEAN-FIELD APPROXIMATION
We analyze the retrieval of a representative memory pattern and
regard the other patterns as a Gaussian white noise reservoir.
Then, in this approximation the model consists of three neu-
ronal populations, i.e., excitatory pattern-retrieval (PR) neurons,
excitatory background (BG) neurons and inhibitory neurons
(Figure 2A). In the equations below, indices p and b stand for
PR and BG, respectively. Below, we explain the outline of the
mean-field approximation and show the details of the analysis
in Appendix. This approximation is valid when the total number
of inputs to each neuron is sufficiently large and the total input
is approximated to be the sum of a drift term and a fluctuation
term. In addition, in order for a statistical approach to be valid,
each memory pattern should contain a sufficiently large number
of member neurons.

FIGURE 2 | Mean-field analysis of the recurrent neural network. (A) The
approximate treatment employed in the present analysis is schematically
illustrated. (B) The relation between rE and rI in the balanced state. The
blue line is the linear regression of simulation results. Each data point (filled
circle) shows the average firing rates of excitatory and inhibitory neurons in
both spontaneous state and retrieval state at various values of the
parameters a and p.
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We first calculate the average synaptic input from PR neurons
to PR neurons <Gpp> as:

〈
Gpp

〉 = 1

cE
∑

i

∑
j ξ1

i ξ
1
j

∑
i

∑
j

ξ1
i ξ

1
j Fp

[
Vij

Va + Vij

]
GEE

ij , (8)

where Fp is a binary probability variable that is defined as
Prob

[
Fp (X) = 1

] = X, Prob
[
Fp (X) = 0

] = 1 − X. The aver-
age synaptic inputs <Gbp>, <Gpb> and <Gbb> from BG to
PR, PR to BG, and BG to BG, respectively, are also obtained in

similar manners. The average squared synaptic weights
〈
G2

qq

〉
are

calculated in the same manner. Since <Gpp> is larger than the
average synaptic input averaged over all neurons <GEE>, strong
recurrent connections among PR neurons contribute significantly
to sustaining network activity for the recalled memory pattern.
<Gbp> is typically smaller than <GEE> since each excitatory
neuron receives almost the same average input. Other connec-
tions <Gpb> and <Gbb> are roughly the same as <GEE> in the
region of parameter values under consideration.

If the synaptic weight matrix was a linear superposition of
memory patterns, Gij ∝ ∑

μ ξ
μ
i ξ

μ
j , we could separate the con-

tribution of retrieved pattern and that of non-retrieved patterns
to the mean field equation and analytically evaluate the storage
capacity. In our model, however, this separation is quite diffi-
cult due to a non-linear transformation from Tij = ∑

μ ξ
μ

i ξ
μ

j
to the lognormal synaptic weight matrix Gij. Nonetheless, we
can qualitatively understand how the average weight depends
on the number of stored memory patterns. Noting that the
synaptic conductance GEE

ij is approximately proportional to
the EPSP amplitude which obeys a lognormal distribution,
we can approximately express the synaptic weight matrix as
GEE

ij ≈ (γ/Z) exp(β
∑

μ ξ
μ

i ξ
μ

j ) for infinitely large p, where β =
σ/

√
pa2

(
1 − a2

)
and Z = exp

(
βpa2 − μ

)
. Thus, we obtain:

〈
Gpp

〉 ≈ 1

a2

〈
ξ1

i ξ
1
j GEE

ij

〉
= 1

a2

〈
ξ1

i ξ
1
j
γ

Z

∏
μ

[
1 +

(
eβ − 1

)
ξ
μ

i ξ
μ

j

]〉

= 1

a2

〈
eβξ1

i ξ
1
j
γ

Z

∏
μ 
= 1

[
1 +

(
eβ − 1

)
ξ
μ
i ξ

μ
j

]〉
≈ eβ

〈
GEE

ij

〉
,

or < Gpp > / < GEE
ij >∝ exp(1/

√
p), which implies that the rel-

ative magnitude of reverberating synaptic input among PR neu-
rons decreases with an increase in the number of stored patterns.
Although the above approximation is not accurate for finite values
of p, the asymptotic behavior of <Gpp> explains how the storage
capacity is determined in the present model.

Then, denoting the average firing rate of each neural pop-
ulation as rp, rb, and ri, we obtain the following approximate
relationship in the balanced state:

rI = rIo + korE, (9)

where rE = arp+ (1–a)rb is the average firing rate of all excitatory
neurons. Numerical simulations confirmed the validity of this

relationship (Figure 2B). Then, the time evolution of excitatory
neurons is described by LIF neurons as follows:

dv
q
i

dt
= − 1

τE
m

(
v

q
i − VL

)− g
Eq
i

(
v

q
i − VE

)− gIE
i

(
v

q
i − VI

)
dg

Eq
i

dt
= − g

Eq
i

τS
+

NE∑
j

cEE
ij G

Eq
ij

∑
sj

δ(t − sj − dij)

dgIE
i

dt
= − gIE

i

τS
+

NI∑
j

cIE
ij GIE

ij

∑
sj

δ(t − sj − dij)

where q = p or b.
As in the previous model (Teramae et al., 2012), we treated

excitatory synaptic inputs to each neuron as the sum of Gaussian
noise generated by weak-dense synaptic inputs and m sparse-
strong synaptic inputs:

g
Eq
i = 〈

gEq〉+ η
Eq
i ,

dη
Eq
i

dt
= −η

Eq
i

τs
+ sEqζi(t),

where ζi is a normalized Gaussian random variable with mean
zero. Then the average and variance of the synaptic conductance

g
Eq
i can be written as:

〈
gEp〉 = tscENE

(
a
〈
Gpp

〉
rp + (1 − a)

〈
Gbp

〉
rb
)
,〈

gEb
〉
= tscENE

(
a
〈
Gpb

〉
rp + (1 − a) 〈Gbb〉 rb

)
∼= tscENE 〈GEE〉 rE, (10)(

sEp)2 = cENE

(
a
〈
G2

pp

〉
rp + (1 − a)

〈
G2

bp

〉
rb

)
,

(
sEb
)2 = cENE

(
a
〈
G2

pb

〉
rp + (1 − a)

〈
G2

bb

〉
rb

)
∼= cENE

〈
G2

EE

〉
rE. (11)

In Equations (10) and (11), we assumed that average inputs to BG
neurons from PR and BG neurons are approximately the same for
the two presynaptic neuron categories. Similarly, the fluctuating
inhibitory synaptic input gIE

i is approximated as:

gIE
i = 〈

gIE〉+ ηIE
i ,

dηIE
i

dt
∼= −ηIE

i

τs
+ sIEζi (t) ,

where
〈
gIE

i

〉 = tscINI GIErI ,
(
sEI
)2 = cI NI G2

IErI and ηIE is Gaussian

white noise. Therefore, the membrane potential v
q
i obeys

dv
q
i

dt
∼= −v

q
i − V

q
o

τ
q
e

− η
Eq
i (V

q
o − VE) − ηIE

i (V
q
o − VI),

τ
q
e = [

1
/

tE
m + 〈

gIE〉+ 〈
gEq〉]−1

,

V
q
o = τ

q
e
[
VL
/

tE
m + 〈

gEq〉VE + 〈
gIE〉VI

]
.

Frontiers in Computational Neuroscience www.frontiersin.org February 2013 | Volume 6 | Article 102 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Hiratani et al. Associative memory with long-tailed synapses

In the right-hand side of the first equation, we replaced the
membrane potential with its average value. For this approxima-
tion to be valid, the variance of the membrane potential of exci-
tatory neurons should be smaller than

∣∣Vq
o − VE

∣∣ and
∣∣Vq

o − VI
∣∣.

Otherwise, the fluctuation term may depend on the membrane
potential and the analytic calculation of firnig rate will be dif-
ficult. The above equations represent Kramer’s equation with a
linear force. Taking the contributions from strong-sparse synapses
r̂2

q into account, we obtain equations for the time evolution of
rp and rb as follows (Risken, 1996; Brunel, 2000; Teramae et al.,
2012):

drq

dt
= − 1

τ
q
e

(
rq − r̂q

(
rp,rb

))
, (12)

r̂q = r̂1
q + r̂2

q, (13)

r̂1
q = 1

2π
√

τ
q
eτs

exp

[
− 1

2σ2
q

(
Vth − V

q
o
)2

]
, (14)

r̂2
q = NsrE

2

(
erf

[
1√
2σq

(
Vth − V

q
o
)]

−erf

[
1√
2σq

(
Vth − V

q
o − Vs

)])
(15)

where q = p or b, and the variances are given as:

σ2
q =

[
1
τ

q
e

+ 1
τs

]−1
τ

q
eτs
2

[
σ2

Eq + σ2
Iq

]
,

σ2
Eq = (

sEq)2
(V

q
o − VE)2,

σ2
Iq = (

sIq)2
(V

q
o − VI)

2.

By solving Equations (12)–(15), we derived the various properties
of the present model reported in the main text. The approxima-
tion by Kramer’s equations is valid when the average membrane
potential is sufficiently low and the probability distribution of the
membrane potential over the threshold is negligibly small. The
approximation is also not so accurate when the average firing
rate of excitatory neurons is high since the membrane poten-
tial distribution is biased toward the threshold and spike trains
are less irregular (in the cases of p = 120 and 125 in Figure 5E).
We employed a linear approximation (Equation 9) for inhibitory
neurons since their membrane potentials have a non-negligible
probability density over the threshold and Kramer’s equation is
not accurate.

RESULTS
We conducted numerical simulations of the present model and
explored its memory retrieval dynamics numerically and ana-
lytically. In numerical simulations, one of the stored patterns
μ was excited by external input. We found that a heavy-tailed
weight distribution of Hebbian synapses creates memory-specific
subthreshold membrane potential fluctuations to regulate the
stochastic dynamics of memory retrieval. In the rest of the paper,
we call excitatory neurons encoding the retrieved pattern as PR

(pattern retrieval) neurons, and those not encoding the pattern
as BG neurons. For instance, when pattern 1 is retrieved (μ = 1),
neuron i is a PR neuron if ξ1

i = 1 or a BG neuron if ξ1
i = 0.

Figure 3A shows an example of successful memory retrieval by
the network model. Without external input, the model is able to
sustain spontaneous activity in which both PR neurons and BG
neurons fire at low firing rates. If PR neurons (encoding mem-
ory pattern 1) are innervated by a brief cue signal (Materials and
Methods), the model changes its dynamic behavior from sponta-
neous activity to a retrieval state, in which the average firing rates
of the corresponding PR neurons are much higher than those of
BG neurons. In fact, the firing rates of BG neurons are lower than
the average firing rate of all excitatory neurons. As explained later,
the network model can retrieve a memory pattern successfully if
the number of stored patterns is within a certain range between
upper and lower critical values. When this number is close to
the upper bound (i.e., the storage capacity), excitatory neurons
show sparse irregular firing in the retrieval state (Figures 3B,C).
Inhibitory neurons also exhibit high coefficients of variations
(CVs), although they fire near-synchronously at relatively high
firing rates (Figure 3D).

When the number of stored patterns is smaller than a lower
critical value, the model does not have a stable spontaneous activ-
ity. Due to the intrinsic noise generated by recurrent synaptic
input, the network state eventually evolves from the resting state
into one of the embedded patterns (Figure 3E). Therefore, the
resting state is only quasi-stable. Furthermore, the memory pat-
terns evoked in the final network state depend neither on the
initial state nor cue signal. This is presumably because the state
transition almost always targets such memory patterns that are
separated by lower potential barriers from the resting state than
other patterns. Therefore, the other memory patterns are difficult
to recall and the model is unable to perform AM. If p is close
to, but larger than the lower critical value, the network model
remains in the initial resting state for more than hundreds of mil-
liseconds, much longer than the membrane time constant. This
long lifetime of the resting state indicates that the state transition
is caused by stochastic fluctuations in network activity. Even if
the spontaneous activity state no longer exists, the network could
show slow dynamics due to the flatness of the potential func-
tion around the ghost of spontaneous activity state. In this case,
the lifetime of the (ghost) spontaneous state would not be dis-
tributed exponentially. In practice, it is difficult to find the exact
critical value by numerical simulations or by the present mean-
field approximation, which does not explicitly take into account
the influences of non-retrieved memory patterns.

Regarding the trial average <K> of the parameter K, which
was evaluated over 15 trials on each value of parameters, as
the success rate of retrieval, we display the areas of the two-
dimensional parameter space spanned by p and a in which <K>

is greater than 50% (Figure 3F). Given the value of a, the net-
work model can retrieve a memory pattern successfully only if
the number of stored patterns is between upper and lower criti-
cal values, where the upper bound represents the critical storage
capacity (Hopfield, 1982; Amit et al., 1985). Interestingly, the
retrieval states become unstable also in the regime of low memory
load. This property is characteristic to the models that replicate
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FIGURE 3 | Simulation of memory retrieval in the associative memory

model. Here, a = 0.12 and p = 140. (A) Raster plot and mean firing rates are
shown. In the raster plot, red dots represent spikes of inhibitory neurons and
black ones are spikes of excitatory neurons. PR neurons were displayed at
the bottom. Blue vertical bars shows a period in which PR neurons were
stimulated selectively by external inputs. The firing rates were calculated
with a time bin of 10 ms. Gray lines are the firing rates of neurons encoding
(p–1) non-retrieved memory patterns. (B,C) The distributions of firing rates
and CVs for PR neurons and inhibitory neurons. (D) The power spectrum of

inhibitory neural activity. We used the firing rates that were calculated with
time bins of 1 ms. The results shown in (B), (C), and (D) were calculated from
the simulated spike data in the interval 650 ms <t<1600 ms shown in (A).
The average firing rates of BG neurons are too low (0.9 Hz) to calculate the
distributions of firing rates and CVs. (E) Simulation results are shown at
a = 0.12 and p = 110. Note that the value of p is smaller than the one used in
(A), and one of memory patterns was activated without a cue signal around
300 ms. (F) The average success rate <K> was numerically obtained for
various values of p and a.

spontaneous activity (Curti et al., 2004; Latham and Nirenberg,
2004; Roudi and Latham, 2007), and is not seen in other AM
networks that do not have such a global state. An intriguing
property of our model is that it generates spontaneous activity
internally by reverberating synaptic input without external noise.
We will demonstrate the non-trivial effect of internal noise later
in detail.

ROLE OF THE SUBTHRESHOLD MEMBRANE POTENTIALS IN MEMORY
RECALL
Long-tailed distributions of EPSPs were previously shown
to achieve stochastic resonance between postsynaptic firing

and presynaptic spikes at sparse strong recurrent synapses in
asynchronous irregular states of cortical networks (Teramae et al.,
2012). In this stochastic resonance, the average membrane poten-
tials of individual neurons are maintained at a subthreshold level
optimal for spike transmission by very strong synapses. Below, we
demonstrate how the present network controls the subthreshold
membrane potential dynamics of individual neurons for efficient
memory recall.

In the parameter regime of the bistable network dynamics, the
average membrane potentials of PR and BG neurons split into two
distinct levels in the retrieval state: the average membrane poten-
tials are more depolarized in PR neurons than in BG neurons
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FIGURE 4 | Role of the subthreshold membrane potential distributions

in memory retrieval. (A) Time evolution of the average membrane
potential is shown for a = 0.12 and p = 140. Blue vertical bar shows the
duration of stimulus presentation as in Figure 3A. (B) Relationship
between the average membrane potential and the number of stored
patterns at a = 0.12. Gray squares show the average membrane potential
of all excitatory neurons in spontaneous activity state, whereas blue and
green squares are the averages of PR neurons and BG neurons in
retrieval states. Error bars show the standard deviations of the trial

variability. (C) Distributions of the membrane potential were calculated for
spontaneous and retrieval states. In calculating the distributions for BG
neurons, NE a neurons were randomly chosen for the normalization. Peaks
at v = −70 mV, which arose from the refractory period, were removed
from the distributions. (D) Relationships between the spiking probability
and average membrane potential. We calculated the spiking probability of
a postsynaptic neuron from 1 to 5 ms after the firing of the presynaptic
neurons sending strong inputs (EPSP >6 mV) to the post-synaptic
neuron.

(Figure 4A). The differences in the average membrane potentials
between the two categories of neurons become smaller as the
memory load becomes heavier (Figure 4B). In the spontaneous
firing state, distinctions between PR neurons and BG neurons are
merely formal and they have identical Gaussian-like membrane
potential distributions with the same means and variances. In
the retrieval state, the membrane potentials of PR and BG neu-
rons also obey Gaussian-like distributions with approximately the
same variances. However, their means are clearly different for the
two classes of neurons (Figure 4C). This splitting of the EPSP-
amplitude distributions has significant implications in memory
retrieval. The amplitude of EPSPs is typically larger than 6 mV
at very strong synapses. This means that 10% of neurons can
fire in the spontaneous firing state when a presynaptic spike
arrives at a very strong synapse. By contrast, in the retrieval
state the membrane potential distributions are shifted toward
a more depolarized level in PR neurons (vi > −56 mV), hence
their probability of firing in response to such a presynaptic input
increases by more than 30%. On the contrary, BG neurons rarely
have membrane potentials higher than −56 mV, so they show
only a very small firing probability for input at a strong synapse
(Figure 4D).

COMPARISON WITH THE MEAN-FIELD APPROXIMATION

To clarify the dynamical properties of the present model, we
conducted an analytical study using the mean-field approxima-
tion (Materials and Methods) and examined the validity of the
analytical results by numerical simulations. In the mean-field
approximation, we deal with the retrieval of a representative
memory pattern by regarding other patterns as a noise reservoir.
In this approximation, the model consisted of the three neuronal
populations, i.e., excitatory PR neurons, excitatory BG neurons,
and inhibitory neurons (Figure 2A). Below, the indices p and b
refer to any quantity related to PR or BG neurons, respectively.

To investigate the dynamical phases of the model, we derived
the nullclines of the average firing rates of PR and BG neurons
by setting as ṙp = ṙb = 0 in Equations (12)–(15). In doing so,
we assumed that inhibitory neurons are enslaved by excitatory
neurons. In deriving the nullclines, we used parameters rIo and
ko to fit the balanced firing rates obtained in numerical simula-
tions (Figure 2B) and derived the averages and variances

〈
Gqq′

〉
and

〈
G2

qq′
〉

(q, q′ = p, b, E) from numerically generated Hebbian

connection matrices Gij. We evaluated the contributions of the
long tail of synaptic connections to the mean-field equations by
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taking into account the contributions of Ns strong-sparse connec-
tions and those of weak-dense synapses separately. This number
remains to be a free parameter that should be fixed at a reason-
able value. We found that the choice of Ns = 3 and the EPSP
amplitude of Vs = 6.5 mV for these synapses yield an excellent
agreement between the analytical and numerical results.

When the number of stored patterns is in an adequate range,
the nullclines of rp and rb yield three intersection points cor-
responding to the fixed points of the network dynamics in the
two-dimensional space spanned by the parameters. According to
a linear stability analysis, the central fixed point is unstable and
the two fixed points on both sides are stable. Therefore, a stable
fixed point in the regime of low or high rp corresponds to spon-
taneous activity and the retrieval state, respectively (Figure 5A).
As the number of stored patterns is increased, the retrieval state
disappears at a critical value through a saddle-node bifurcation
(Figure 5B). As a result, the system has only one stable state
corresponding to spontaneous activity.

We can also determine the storage capacity by numerical sim-
ulations. As more patterns are stored the value of <K> gradually
decreases until it finally vanishes (Figure 5C). The value of <K>

is close to 0.5 in the vicinity of the critical point. Therefore, we
may define the storage capacity as the number of patterns for
which <K> is 0.5. The values of the storage capacity thus eval-
uated numerically and analytically are shown in Figure 5D as a
function of the sparseness parameter. In Figure 5E, we also calcu-
lated the average firing rates of spontaneous activity rE and those
of PR and BG neurons in the retrieval state for a = 0.12. In all
cases, the numerical and analytical treatments show a reasonably
good agreement.

NETWORK DYNAMICS AT LOW MEMORY LOAD
As mentioned previously, this model also has a lower bound for
the memory load in addition to an upper bound or the storage
capacity. This instability reflects the fact that the model gener-
ates internal noise for memory recall by weak-dense synapses.

FIGURE 5 | The mean-field analysis of the equilibrium states. (A,B) The
nullclines of rp (red) and rb (blue) are shown for the values of p that are
well below or greater than the critical storage capacity. Filled and empty
circles show stable and unstable fixed points, respectively. (C) Relationship
between <K> and the number of stored patterns is plotted. Error bars
represent SD. We calculated the average value of of Kμ over different
patterns μ in a given network and then averaged the value over different
realizations of the network (i.e., the connection matrix). Therefore,

〈
K
〉 = ∑kmax

k
∑μmax

μ K (k)
μ

/
(kmaxμmax ) and the standard deviation

σ =
√

1/kmax
∑kmax

k

(
1/μmax

∑μmax
μ K (k)

μ − 〈
K
〉)2

, where index k runs over

the different realizations and kmax = μmax = 10. (D) The storage capacity
was evaluated numerically and analytically as a function of the sparseness
parameter. (E) The average firing rates of all excitatory neurons were
calculated in various states at a = 0.12. “SA” labels spontaneous
activity.
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Below, we investigate this instability by means of the mean-field
approximation.

Because fluctuations in rb are much smaller than those in rp,
we may replace rb with its fixed point r∗

b in the mean-field analysis.
Then, the dynamics of the model is approximately described with
a single parameter rp as:

drp

dt
= − 1

τ
p
f

(
rp − r̂p

(
rp, r∗

b

)) = −dU
(
rp
)

drp
(16)

We calculated this potential U
(
rp
)

numerically. When the num-
ber of embedded patterns is in the range that enables memory
recall, the potential U

(
rp
)

has two local minima corresponding
to spontaneous activity and the retrieval state at rp = smin and
rmin, respectively (Figure 6A). As the number of stored patterns is
decreased, the latter local minimum becomes deeper (Figure 6A,
inset) and simultaneously the potential barrier �E separating
the two local minima becomes lower (Figure 6B). Note that we
measure �E always from the bottom of the potential, U(smin),
in the present argument. The result implies that spontaneous
activity cannot remain stable when the number of stored patterns
becomes smaller. In this case, fluctuations in spontaneous activ-
ity make it easier for the network state to jump over the potential
barrier into the retrieval state. On the contrary, when the num-
ber of stored patterns exceeds a critical value, the local minimum
corresponding to the retrieval state disappears and the network
ceases to function as AM (Figure 6C). Figure 6D displays the
relationship between �E calculated by the mean-field approxi-
mation and the mean lifetime of spontaneous activity obtained

by numerical simulations. The mean lifetime depends exponen-
tially on �E, suggesting that the transition to the retrieval state is
due to stochastic fluctuations around the spontaneous firing state.

While this model accomplishes a relatively high storage capac-
ity with spiking neurons, it does not show a stable and robust
retrieval of an arbitrary memorized activity when the number
of stored memory patterns is small. While long-tailed EPSP dis-
tributions are known in neocortical and hippocampal circuits
(Song et al., 2005; Lefort et al., 2009; Ikegaya et al., 2013), the
instability of the model seems to be unrealistic in biological
neural networks. Therefore, we explored a way to modify the
model for circumventing this difficulty. We point out that the
unrealistic property arises from the theoretical hypothesis that
the weights of all excitatory synapses are determined solely by
stored memory patterns. Therefore, we created a partly random-
ized connection matrix and studied the retrieval dynamics of
a neural network with such synaptic connections by numerical
simulations.

We define partly randomized EPSP amplitudes Vcr
ij of E-to-E

synapses as follows:

Vcr
ij =

{
vij ∼ logN(μ,σ) if ηij < cr

Vij otherwise
(17)

where Vij is the EPSP amplitude constructed previously from the
long-tailed EPSP distribution, cr is the fraction of the randomized
synapses in all E-to-E synapses (0 < cr < 1), and ηij is a random
variable that takes a value between 0 and 1 (Figure 7A). Here, cr

FIGURE 6 | The landscape of the potential fucntion U(rp ). (A) The
potential function calculated at a = 0.12 and p = 135 has two local minima
at rp = smin and rmin corresponding to the spontaneous activity and
retrieval state in Figure 5A, respectively. Inset displays a similar potential
function for a smaller number of memory patterns (a = 0.12 and p = 120).
(B) Relationships between the number of stored patterns and potential
barrier �E that separates the spontaneous acivity state and the retrieval

state for different values of sparseness. Here, p = 135. (C) The potential
function calculated at a = 0.12 and p = 150 has only a single minimum
corresponding to the stable fixed point in Figure 5B. (D) Relationship
between the analytically calculated potential barrier and the mean life time
obtained in simulations. Here, a = 0.1. The mean life time is the time the
network took for escaping from initial resting states. Error bars
show SD.
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FIGURE 7 | Associative memory networks with Hebbian and random

synaptic components. (A) The distribution of the random components in
synaptic weights for cr = 0.4. The portion of synaptic connections used for
storing memory patterns are colored as in Figure 1B, while the gray area
shows the portion of synaptic connections not employed for the memory
storage. (B) Phase diagram of the success rate <K> for various values of
cr and the number of embbed memory patterns p. (C) Raster plot and the
time evolution of the averaged firing rates. Parameter values were a = 0.10,
cr = 0.2, and p = 100. Both panels were drawn in the same way as in
Figure 3A.

cannot be too large to maintain reasonably large memory com-
ponents in the connection matrix. The conductance constants
were set as GEI = 0.016, GIE = 0.0018, and GII = 0.002, and the
other parameters took the same values as in the previous simu-
lations. If we increase the noise fraction cr for a small number
of memory patterns, the retrieval state is also stabilized with a
small memory load (Figure 7B). Spiking activity of the modified
model during memory retrieval is similar to that of the previ-
ous model (Figure 7C). Thus, the inclusion of noisy components
in synaptic connections secures the stability of retrieval dynam-
ics with Hebbian synapses obeying long-tailed EPSP amplitude
distributions.

DISCUSSION
We have presented an AM network model of spiking neurons
and explored its dynamical properties during memory retrieval.
According to results of recent electrophysiological studies (Song
et al., 2005; Lefort et al., 2009; Ikegaya et al., 2013), we con-
structed Hebbian synaptic connetions that obey a long-tailed or a
lognormal distribution of synaptic weights. Our model possesses
a spontaneous firing state with low frequency neuronal firing
(∼1 Hz) and multiple persistent states with high frequency neu-
ronal firing (∼30 Hz), in which one of the embedded memory
patterns is recalled.

IMPLICATIONS OF LONG-TAILED WEIGHT DISTRIBUTIONS IN
STOCHASTIC NETWORK DYNAMICS
Several papers have already studied the implications of long-tailed
distributions of EPSP amplitudes in the dynamics of local corti-
cal networks. Such EPSP-amplitude distributions account for a
long-tailed distribution of firing rates in spontaneous firing of
in vivo cortical neurons (Koulakov et al., 2009). The distribution
contains many weak synapses and a small number of extremely
strong synapses, and we recently showed that this coexistence
of dense-weak and sparse-strong synapses enables recurrent cor-
tical networks to generate an autonomous activity with highly
irregular sparse firing of single neurons (Teramae et al., 2012).
This persistent activity replicated various statistical properties of
spontaneous cortical activity observed in experiment. We demon-
strated that long-tailed weight distributions generate intrinsic
noise optimal for spike communications by individual neurons.
In short, the stochastic resonance effects generated by massively
many weak synapses facilitate the faithful transmission of spike
information received at strong synapses. Ikegaya et al. (2013)
recorded long-tailed weight distributions also in the hippocam-
pus and constructed a recurrent network model based on their
experimental findings. This model involved NMDA receptors at
recurrent synapses, which were crucial for stabilizing sponta-
neous activity in the model. The present model, however, does not
involve NMDA receptors as the slow synaptic current is unneces-
sary for the genesis of spontaneous activity (Teramae et al., 2012).
Finally, we note that long-tailed distributions of synaptic weights
are well consistent with STDP (Gilson and Fukai, 2011).

COMPARISON WITH PREVIOUS SPIKING MODELS OF ASSOCIATIVE
MEMORY
Several models have been proposed to study the dynamics of
memory retrieval in AM networks of integrate-and-fire type
neurons (Sommer and Wennekers, 2001; Latham and Nirenberg,
2004; Curti et al., 2004; Aviel et al., 2005; Roudi and Latham,
2007). These models typically store sparsely coded memory pat-
terns, for which AM networks in general exhibit a good per-
formance. In comparison with AM networks of binary neurons,
however, the networks of spiking neurons can generally store a
relatively small number of memory patterns (Curti et al., 2004;
Latham and Nirenberg, 2004; Roudi and Latham, 2007). Though,
to our knowledge, no rigorous proof has been known, this low
performance presumably reflects the leaky property of synaptic
integration by spiking neurons. This is an interesting difference
between the two classes of neural network models. It is also
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often difficult to maintain the firing rates of PR and BG firing
neurons within a physiologically reasonable range, while keeping
irregular spiking as typically observed in in vivo cortical neurons.

It is worthwhile to compare the storage capacity between dif-
ferent AM models of spiking neurons. A regorous comparision
seems to be difficult since the retrieval performance of such
models often shows a strongly non-linear dependence on param-
eter values. However, the storage capacity in general increases
with the sparseness of memory patterns and decreases with the
sparseness of synaptic connectivity. Therefore, the parameter
α = (

pa |ln a|/cENE
)

may be used for measuring the storage
capacity (or the information capacity) of AM models with sim-
ilar sparseness and network size. The value of this parameter is
0.036 (NE = 10,000, cE = 0.1, a = 0.12, p = 140) in our model,
0.0058 (NE = 8000, cE = 0.25, a = 0.1, p = 50) in Latham and
Nirenberg (2004), and 0.0056 (NE = 8000, cE = 0.2, a = 0.05,
p = 60) in Curti et al. (2004). Therefore, out model has a larger
storage capacity than the other models of spiking neurons in
similar ranges of parameter values.

This model shows spontaneous firing of neurons, or BG activ-
ity, without any external input. As shown in our previous model
of spontaneous cortical activity (Teramae et al., 2012), the coex-
istence of sparse-strong and dense-weak synaptic connections
on each neuron enables individual neurons to faithfully trans-
mit presynaptic spikes at sparse-strong synapses by means of
stochastic resonance. In other words, the model utilized dense-
weak recurrent synapses to generate internal noise optimal for
this resonance effect. Input to dense-weak synapses maintains
a depolarized subthreshold membrane potential and input to
sparse-strong synapses evoke spikes with a certain probability.
Thus, the broad range of synaptic strength enables the individual
neurons to maintain spontaneous firing at low firing rates.

Our study has further shown that internal noise can selec-
tively sustain the persistent firing of neuronal subgroups when
synaptic connections are determined by the Hebbian rule. Due
to relatively strong recurrent connections between PR neurons,
they receive intense noise via weak-dense synapses when they are
activated. This noise strongly depolarizes their membrane poten-
tials and consequently these neurons fire with high probabilities
in response to a spike input at sparse-strong synapses. By con-
trast, BG neurons have lower subthreshold membrane potentials

and lower probabilities of spike responses to strong inputs. This
probabilistic spiking achieved by the cooperation of SSWD synap-
tic inputs may provide a novel mechanism of probabilistic neural
computations.

It was previously pointed out that spontaneous firing states
turn to be unstable in AM network models of spiking neurons
when the number of stored memory patterns is small (Curti
et al., 2004). It is also known that when synaptic connections are
described as the sum of Hebbian components and random com-
ponents, the Hebbian components should be sufficiently small to
maintain stable spontaneous firing states (Latham and Nirenberg,
2004; Roudi and Latham, 2007). The present model also exhibits
the instability of spontaneous firing states when the memory load
is too low. According to the previous results, we demonstrated
that the addition of random components to lognormally dis-
tributed Hebbian components in the connection matrix removes
the instability from the model.

The genesis of highly irregular asynchronous states is not
trivially easy in modeling persistent activity of recurrent neu-
ral networks. Such activity is typically seen in working mem-
ory, and various solutions to this problem have been proposed,
which include the uses of slow reverberating synaptic current
(Wang, 1999), balanced excitatory and inhibitory synaptic input
(Renart et al., 2007; Roudi and Latham, 2007; Mongillo et al.,
2012), short-term synaptic depression (Barbieri and Brunel, 2007;
Mongillo et al., 2012), and modular network structure (Lundqvist
et al., 2010). In this study, we have shown that long-tailed distri-
butions of EPSP amplitudes generate a highly irregular persistent
activity in the memory retrieval, as was the case in spontaneous
activity (Teramae et al., 2012).

In summary, we have developed an AM model of spiking neu-
rons by taking long-tailed distributions of synaptic weights into
account. Our network model exhibited excellent performance in
the memory retrieval, suggesting an active role of internal noise
in memory processing by the brain.
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APPENDIX
DERIVATION OF FLUCTUATIONS IN SYNAPTIC INPUTS sEp, sEb

We define <X> as the averaging over both neural population and time bins. Amplitude fluctuations in excitatory synaptic inputs sEp

on PR neurons are represented as:

(
sEp)2 =

〈⎛
⎝ NE∑

j

cijG
pp
ij

∑
sj

δ(t − sj − dij) −cENE
(
a < Gpp > rp + (1 − a) < Gbp > rb

))2
〉

∼=
〈⎛
⎝ p∑

j

⎡
⎣cijG

pp
ij

∑
sj

δ(t − sj − dij) − a < Gpp > rp

⎤
⎦
⎞
⎠

2〉
+
〈⎛
⎝ b∑

j

⎡
⎣cijG

bp
ij

∑
sj

δ(t − sj − dij) − a < Gbp > rb

⎤
⎦
⎞
⎠

2〉
.

Thus, they can be separated into two components corresponding to input from PR neurons and that from BG neurons. For the former
input,

〈⎛
⎝ p∑

j

⎡
⎣cijG

pp
ij

∑
sj

δ(t − sj − dij) − a < Gpp > rp

⎤
⎦
⎞
⎠

2〉
∼=
〈 p∑

j

⎡
⎢⎣(cij − cE)2(G

pp
ij )2

⎛
⎝∑

sj

δ(t − sj − dij)

⎞
⎠

2
⎤
⎥⎦
〉

+
〈 p∑

j

⎡
⎢⎣c2

E

(
G

pp
ij − < Gpp >

)2

⎛
⎝∑

sj

δ(t − sj − dij)

⎞
⎠

2
⎤
⎥⎦
〉

+
〈 p∑

j

⎡
⎢⎣c2

E < Gpp >2

⎛
⎝∑

sj

δ(t − sj − dij) − rp

⎞
⎠

2
⎤
⎥⎦
〉

(A1)

∼= NEa
[

cE(1 − cE) < G2
pp > rp + c2

E

(
< G2

pp > − < Gpp >2
)

rp + c2
E < Gpp >2 rp

]
(A2)

∼= cENEa < G2
pp > rp. (A3)

In the calculation of Equation (A3), we assume that the input is in the regime of low firing rates. Therefore,
〈∑

sj
δ
(
t − sj − dij

)〉 �
0 or 1, and 〈⎛

⎝∑
sj

δ(t − sj − dij)

⎞
⎠

2〉
∼=
〈∑

sj

δ(t − sj − dij)

〉
. (A4)

Furthermore, we may assume that synaptic input is represented by Poisson spike trains. Under this assumption, the fluctuation of
firing rates are written as, 〈⎛

⎝∑
sj

δ(t − sj − dij) − rp

⎞
⎠

2〉
∼= rp (A5)

Input from BG neurons can be similarly calculated and the variance is evaluated as:

(
sEq)2 ∼= cENE

(
a
〈
G2

pp

〉
rp + (1 − a)

〈
G2

bp

〉
rb

)
, (A6)

and
(
sEb
)2

is evaluated in a similar manner.

In Gaussian approximation of synaptic inputs, the membrane potential v
q
i is written as follows:

dv
q
i

dt
∼= − 1

τ
q
e

(
v

q
i − V

q
o
)− η

Eq
i

(
V

q
o − VE

)− ηIE
i

(
V

q
o − VI

)
,

τ
q
e = [

1/τE
m + 〈

gIE〉+ 〈
gEq〉]−1

,

V
q
o = τ

q
e
[
VL/τ

E
m + 〈

gEq〉VE + 〈
gIE〉VI

]
.

In the calculations below, we drop index i from equations as they are essentially the same for all excitatory neurons.
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Let v
q
i = yq,−η

Eq
i

(
V

q
o − VE

) = xE
q ,−η

Iq
i

(
V

q
o − VI

) = xI
q, then the above equations are rewritten as:

dyq

dt
= − yq

τ
q
e

+ xE
q + xI

q,
dxE

q

dt
= −xE

q

τs
+ σE

q ζE
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dxI
q

dt
= −xI

q

τs
+ σI

qζ
I
q(t)

where
(
σE

q

)2 = (
sEq
)2 (

V
q
o − VE

)2
,
(
σI

q

)2 = (
sIq
)2 (

V
q
o − VI

)2
. Defining zq = − yq

τ
q
e

+ xE
q + xI

q, we obtain

dyq

dt
= zq,

dzq

dt
= −

(
1

τ
q
e

+ 1

τs

)
z − y

τ
q
eτs

+
√

(σE
q )2 + (σI

q)
2ζq(t).

Using Kramer’s equation, we can derive the stationary probabilistic distribution W(y, z) for the above two variables as:

W(y, z) =
√

τ
q
eτs

2πσ2
q

exp

(
−τ

q
eτs

2σ2
q

z2 − y2

2σ2
q

)
, σ2

q =
[

1

τ
q
e

+ 1

τs

]−1
τ

q
eτs

2

[
σ2

Eq + σ2
Iq

]
.

Then, we can calculate the output firing-rate of each neuron from the probabilistic current as:

r1
q =

∫ ∞

0
zW(Vth − Vo, z)dz = 1

2π
√

τeτs
exp

[
−
(
Vth − V

q
o
)2

2σ2
q

]
. (A7)

An additional cause of the rate increases in postsynaptic neurons is the pool of extremely strong EPSPs, which contribute to the firing
rate of each neuron by:

r2
q = NsrE

2

(
erf

[
1√
2σq

(
Vth − V

q
o
)]− erf

[
1√
2σq

(
Vth − V

q
o − Vs

)])
, (A8)

where Ns is the number of extremely strong synapses and Vs is the average EPSP size of these strong inputs. Thus, the overall firing
rate is given as rq = r1

q + r2
q .
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