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We describe a model for cortical development that resolves long-standing difficulties of
earlier models. It is proposed that, during embryonic development, synchronous firing of
neurons and their competition for limited metabolic resources leads to selection of an
array of neurons with ultra-small-world characteristics. Consequently, in the visual cortex,
macrocolumns linked by superficial patchy connections emerge in anatomically realistic
patterns, with an ante-natal arrangement which projects signals from the surrounding
cortex onto each macrocolumn in a form analogous to the projection of a Euclidean
plane onto a Möbius strip. This configuration reproduces typical cortical response maps,
and simulations of signal flow explain cortical responses to moving lines as functions of
stimulus velocity, length, and orientation. With the introduction of direct visual inputs,
under the operation of Hebbian learning, development of mature selective response
“tuning” to stimuli of given orientation, spatial frequency, and temporal frequency would
then take place, overwriting the earlier ante-natal configuration. The model is provisionally
extended to hierarchical interactions of the visual cortex with higher centers, and a general
principle for cortical processing of spatio-temporal images is sketched.
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INTRODUCTION
During its embryological development the mammalian brain dif-
ferentiates from a group of stem cells into an organized form
ready to begin a life-long adaptive interaction with signals from
the sensory environment. At the beginning of extra-uterine life,
despite exposure to a limited milieu, it is somehow already orga-
nized to begin this engagement, as tho a matrix of connections
has formed in which signal flows are pre-adapted to learn spe-
cific recurring patterns of the experiential world. A large body
of work, following the pioneering work of Hubel and Wiesel
(1959), has addressed just this issue, taking as the main target for
research the primary visual cortex (V1). The majority of this work
has sought to understand the emerging connections in terms
of stimulus “features”—that is, elementary properties of sen-
sory stimuli—rather than as a process independent of sensation
until the post-natal stage. Our approach depends on alternative
assumptions. Here we summarize and extend our earlier work
(Wright et al., 2006; Wright and Bourke, 2008, 2013; Wright,
2009, 2010) relating the basic dynamics of neuron firing and com-
petition among developing neurons for the resources needed for
their growth, to the emergent connections at birth.

Our model draws on two recent experimental observations.
Firstly, neurons in neonatal cerebral cortical slices show increased
apoptosis when their capacity to enter into synchronous fir-
ing is disrupted by pharmacological means (Heck et al., 2008).
Secondly, embryonic neurons developing in vitro develop syn-
chronous firing, and as their growth proceeds, show self-
organization into “small world” networks (Downes et al., 2012).

We propose that the synchronous firing and protection from
apoptosis are directly causally related, because during cortical
embryogenesis there is competition among developing neu-
rons and synapses, which, although mediated by trophic fac-
tors (Harris et al., 1997; van Ooyen and Willshaw, 1999; van
Ooyen, 2001) is ultimately a competition for available metabolic
energy and/or some other scarce resource needed to promote
metabolism (Montague, 1996; Thomaidou et al., 1997). We sup-
pose that pre-synaptic pulse synchrony increases uptake of crit-
ical metabolic resources by some action not presently specified,
and we argue that the assembly of cells that maximizes syn-
chronous firing, and thus energy uptake, is also that which has
the minimum metabolic cost per neuron in the length of axonal
connections—the combination optimum for their survival.

Synchronous oscillation of pulses and local field potentials
is a ubiquitous aspect of cortical activity (Eckhorn et al., 1988,
1990; Gray et al., 1989; Bressler et al., 1993; Singer, 1999)
and has been proposed as a mechanism solving the “bind-
ing problem” of perceptual grouping and cognitive processing
(Eckhorn et al., 1990; Singer, 1999; Crick and Koch, 2003).
“Synchrony” refers to the broadband cross-correlation of neu-
ron firing and field potentials at zero time-lag. The mech-
anism of origin of synchrony itself is controversial. In this
paper we rely on an explanation that appears best applica-
ble to the synchrony seen in neuron cultures, brain slices, or
the early embryonic brain, and depends on a universal prop-
erty of networks with summing junctions, including dendrites
(Robinson et al., 1998; Wright et al., 2000; Chapman et al.,
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2002). This type of synchrony appears in simulations that
also accurately reproduce spectra, cross-correlations, and excita-
tory/inhibitory timings characteristic of activated cortex (Wright,
2009, 2010).

GEOMETRY OF RESPONSE ORGANIZATION IN THE DEVELOPED BRAIN
Since the discovery that individual cells in the primary visual
cortex (V1) respond with an orientation preference (OP) to
visual lines of differing orientation (Hubel and Wiesel, 1959),
analysis of the response organization and its relationship to cor-
tical function has remained both conceptually influential and
controversial (von der Malsburg, 1973; Willshaw and von der
Malsburg, 1976; Swindale, 1996). The surface organization of
OP in V1 has recently been compared with appropriate ran-
dom surrogates, and shown to exhibit significant hexagonal
rotational periodicity, in which each roughly delineated macro-
columnar unit exhibits all values of OP arrayed around a pin-
wheel (Paik and Ringach, 2011; Muir et al., 2011). Varying
chirality and orientation of the pinwheels achieves continuity
of OP at the columnar margins, thus producing zones of irreg-
ular but continuously varying OP, known as linear zones and
saddles.

Some species exhibit little or no sign of this hexagonal and
continuous ordering, and because of the marked interspecies
variation, serious doubt has been expressed that the pattern
is of functional significance at all, since species showing little
such organization have no apparent deficit in vision (Horton
and Adams, 2005). Interspecies variation seems, in part, to be
related to both variation in size of V1 between species, and a
relative constancy of the size of macrocolumns, independently
of species. Measurements of the average distance of separation
of OP singularities (the singularity taken as demarcating the
center of a macrocolumn) show this distance to be relatively
constant over a 40-fold variation of body size, and related size
of V1 (Kaschube et al., 2010; Keil et al., 2012). Models using
symmetry arguments indicate that macrocolumns must undergo
divisions during cortical development to maintain uniform sur-
face density of singularities (Wolf and Geisel, 1998; Oster and
Bressloff, 2006). Kaschube and colleagues conclude that self-
organization has canalized the evolution of the underlying OP
maps into a single common design—subject to the proviso
that, from further symmetry arguments, this can only be the
case where long-range interactions between developing macro-
columns, suppressing some possible connections, can take place.
Thus, in animals with very small V1, this organization breaks
down, creating a “pepper and salt” OP map pattern (Meng et al.,
2012).

THE SUPERFICIAL PATCH SYSTEM
A related puzzle of V1 organization is posed by the superficial
patch system. This system, composed of relatively long-range,
largely excitatory (Hirsch and Gilbert, 1991; McGuire et al.,
1991) patchy connections (Gilbert and Wiesel, 1979; Rockland
and Lund, 1983) is ubiquitous in cortex (Muir and Douglas,
2011) and has a functional relationship to OP. Patchy connec-
tions develop before sensory afferents reach the cortex (Price,
1986; Callaway and Katz, 1990; Durack and Katz, 1996; Ruthazer

and Stryker, 1996) but do not arise or terminate in the vicin-
ity of OP singularities. Instead, near singularities, connections
are apparently diffuse and local (Sharma et al., 1995; Yousef
et al., 2001; Mariño et al., 2005; Buzás et al., 2006; Muir and
Douglas, 2011). Patchy connections link areas of common OP
(“like-to-like”) over distances several times the diameter of a
macrocolumn (Gilbert and Wiesel, 1989; Buzás et al., 2006; Muir
et al., 2011), are periodic on roughly the same interval as OP, and
are largely patch-reciprocal (Rockland and Lund, 1983; Angelucci
et al., 2002). It has been shown that development of patchy con-
nections must depend on the supply of organizing information
from the neural field, and is not explicable from considerations
of local neural growth per se (Muir and Douglas, 2011). Just
as for maps of response properties, there is variation of patchy
connection orderliness between species. Muir et al. (2011) have
pointed out that those species with less orderliness have smaller
visual cortices and/or less defined organization of “like-to-
like” connections—an argument congruent with the findings on
brain size, orderliness of response maps, and surface density of
OP singularities cited above (viz. Kaschube et al., 2010; Keil et al.,
2012, etc.).

PROBLEMS OF STANDARD MODELS OF FEATURE RESPONSES
Explanation of organization of OP has been undertaken in
a group of now-classical theories, which we will refer to as
“standard models,” following the comparative description of
Swindale (Swindale, 1996). Descriptive dimension reduction
methods (Kohonen, 1982; Durbin and Willshaw, 1987; Durbin
and Mitchison, 1990) show that the response maps of OP, eye
preference (OC), direction preference (DP), and spatial frequency
preference (SF) are consequences of requiring continuity and
completeness of representation of each response property, in a
two-dimensional representation in which every type of response
property occurs within any small area on the surface of V1
(Swindale, 1996; Carriera-Perpiñán et al., 2005). The same order-
ing is also explained as a consequence of competitive Hebbian
learning among small neighborhood assemblies of excitatory
neurons, driven by spatially filtered cortical noise. Separate spatial
filters each distinguish a type of response, and total synaptic gain
is conserved during the training (Grossberg and Olson, 1994).

Classical standard models depend on seeding with oriented
lines, in one way or another (von der Malsburg, 1973; Swindale,
1982, 1992; Durbin and Mitchison, 1990; Obermayer et al., 1990,
1992; Tanaka, 1990; Miyashita and Tanaka, 1992; Grossberg and
Olson, 1994) and recently, initial belief that primary response to
static oriented lines in the visual field forms the basis of OP maps
has been undermined in two ways:

Firstly, in large species particularly, maps of OP appear in
the cortex prior to visual experience (Wiesel and Hubel, 1974;
Blakemore and Van Sluyters, 1975; Sherk and Stryker, 1976). This
problem has been addressed by arguments for the normal occur-
rence of line-like structure in ante-natal retinal input (Albert
et al., 2008; Ringach, 2007; Paik and Ringach, 2011). In contrast
to all the above models, Kang et al. (2003) have proposed a model
which breaks with the traditional dependence on the primacy of
lines, and depends instead on time-invariant correlations in cor-
tical “Mexican Hat” inhibitory surrounds. This model accounts
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successfully for the apparent isotropy of local intracortical con-
nections and the observed uniformity of sharpness of definition
of OP independent of proximity to singularities, and provides a
mechanism which might plausibly operate before eye-opening.
It requires instead, that LGM inputs to cortex become tuned
according to orientation. A further model avoiding the problem
of ascription of OP as a primary, stimulus dependent property,
explains the conjoint development of OP and ocular dominance
columns as a consequence of Hebbian connection formation
driven by correlation of visual inputs as a declining function of
retinotopic distance of separation at short distances, and reversed
correlation of activity in ON and OFF V1 simple cells at greater
distances (Erwin and Miller, 1998). All these models however,
result in the emergence of OP as a property of line orienta-
tion alone, rather than as one attribute of some more complex
mechanism of feature response.

Secondly, and more recently, Basole and colleagues, who tested
OP using stimulus lines moving at different speeds, and oriented
at differing angles to the line of movement of the stimulus, found
OP to be a function of these variables to such a degree that
for lines oriented non-orthogonally to the direction of move-
ment, OP could vary progressively with increments of speed to
an asymptotic limit of 90◦ (Basole et al., 2003, 2006). Longer lines
showed less variation of OP with increasing speed. This finding
challenged all models which depended on OP being a fixed “fea-
ture” of cortical response, whether or not direct visual stimuli was
required to prime the process of self-organization. Basole and col-
leagues at first concluded that the primal stimulus characteristics
are not isolated features such as orientation, direction and speed,
but a single characteristic—the “spatio-temporal energy”—that
is, the combined spatial and temporal Fourier components of the
moving visual stimulus’ projection to V1. Subsequent workers
explained these results by retaining OP as a primary characteris-
tic, and adding separate consideration of the temporal and spatial
frequencies associated with the moving stimuli (Baker and Issa,
2005; Mante and Carandini, 2005; Basole et al., 2006). This anal-
ysis was consistent with earlier single unit results, in which tuning
of V1 neurons to spatial and temporal frequencies was demon-
strated (DeAngelis et al., 1993). Issa and colleagues (Baker and
Issa, 2005; Issa et al., 2008) reported that a total of six param-
eters are required to explain response maps—OP, SF preference,
and temporal frequency preference, and the tuning bandwidths of
all three. This account is referred to as the spatio-temporal filter
model. How these response characteristics arise during cortical
development and how neurons become tuned to just those fea-
tures is the subject of continuing research (Rosenberg et al., 2010),
and of this paper.

In common with the model of Erwin and Miller (1998) and
that of Kang et al. (2003) the model reviewed here depends upon
time-average correlations—that is, the common occurrence of
synchronous oscillation in the cortex—although it does not share
their other assumptions or conclusions. It seeks to avoid the
ascription of “features” as primary characteristics, and to explain
both the findings of Basole et al. (2003) and the empirical reduc-
tion to alternative feature attributes used in the spatio-temporal
model, as well as explaining the emergence of the anatomical
features described above.

DESCRIPTION OF MODEL
NEURAL FIELD EQUATIONS
As alternatives to neural network models, lumped neural models
and neural field equations have been expressed in many forms
(e.g., Wilson and Cowan, 1973; Freeman, 1975; Haken, 1996;
Amari, 1977; Nunez, 1981; van Rotterdam et al., 1982; Jirsa and
Haken, 1996; Robinson et al., 2001; Wright et al., 2003; beim
Graben, 2008; Bressloff, 2012). These offer means of approximat-
ing the properties of ensembles of cells on a larger scale then
neural networks per se. Here we have used a generic form of
neural field equations to represent an idealized, isotropic, neural
field, representing the developing cortex as if it were not subject
to apoptosis—a potentiality from which connections are selected
during development. The scale of the field is that of a corti-
cal area such as V1, representing intracortical connections rather
than cortico-cortical. Thus, the density of connection between
neurons declines with increasing separation of their cell bod-
ies (Braitenberg and Schüz, 1991). The high non-linearity of
synapto-dendritic summations are linearized at the field level, and
axonal conduction speed is considered single-valued. Subject to
these strictures, the following equations include features relevant
to the present context:

ϕ
qr′
p (t) = f

qr′
p × Qp

(
r′, t −

∣∣q − r′∣∣
ν

)
(1)

ψ
qr′
p (t) = M

qr′
p ∗ ϕ

qr′
p (t) (2)

�p(q, t) =
∫
r′

ψ
qr′
p (t)dr′ (3)

Vp(q, t) =
∑

p = e ∧ p = i

Gp ∗ �p(q, t) (4)

Qp(q, t) = f�(Vp(q, t)) + Ep(q, t) (5)

Subscript p = e, i refers to excitatory or inhibitory neurons;
superscript qr′ refers to synaptic connection from r′ to q where
q, r′ are cortical positions occupied by single neurons.

ϕ
qr′
p (t) is the flux of pulses reaching pre-synapses at the neuron

at q, from the neuron at r′.
ψ

qr′
p (t)is the synaptic current generated by ϕ

qr′
p (t).

�p(q, t) is the aggregate synaptic current of type p generated
at q.

Vp(q, t) is the soma membrane potential (relative to the
resting potential) generated at q.

Qp(q, t) is the pulse emission rate at q.

f
qr′

p is the probability density of occurrence of pre-synapses
generated by axons of the neuron at r′ terminating at q.

ν is axonal conduction speed.

Mqr′
p is the steady-state term in a convolution transforming

pre-synaptic flux to synaptic current.
Gp is the steady-state term in a convolution transforming pre-

synaptic flux into dendritic potentials.
f�(Vq(q, t)) is a sigmoid function describing the local conver-

sion of dendritic potentials into the rate of generation of action
potentials.
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Ep(q, t) is a driving signal noise, arising from intrinsic random
cell action potentials.

Restriction of the field to the scale of a cortical area car-
ries several implications important for the model, all because
the probability of connections between any two neurons declines
with distance of separation. Firstly, descriptively we can con-
sider “reciprocal couplings” as an idealization/representation of
field coupling symmetry, and in many instances reciprocal cou-
plings will in fact exist. Secondly because of more generally
dense connections among near neighbors, smoothing at dendritic
summation requires that Qp(q, t) is spatially and temporally
“brown”—i.e., has high correlation at short distances and times
of separation. Thirdly, the average “degree” of separation—i.e.,
the average number of neighboring cells traversed by synaptic
connections linking one cell to another—will also increase in
proportion to physical distance of separation.

Experimental observations (Freeman, 1975, 1991;
Hassenstaub et al., 2005) show intrinsic cortical oscillation
arises from alternating excitatory cell and inhibitory cell fir-
ing at lags ¼ of the period of oscillation. Simulations of the
oscillations (Wright, 2009, 2010) show that traveling waves are
thus generated, the intersection of which produces broadband
synchrony. In conditions of uniform cortical excitation without
strong perturbation from external inputs the exchange of pulses
between all cells reaches an equilibrium—that is, a steady-state of
symmetrical exchange of signals between excitatory cells at any
two positions on the cortex, so that over sufficient intervals, T,

1

T

∫
T

(
ϕp1(q) − ϕ̄p1

)
dt = 1

T

∫
T

(
ϕp2(r′) − ϕ̄p2

)
dt (6)

where ϕ̄p is the time-average presynaptic flux, uniform through-
out the cortical field. The equilibrium reached implies differences
in timing between the firing of excitatory and inhibitory cells.
The interaction of excitatory and inhibitory cells (p1 ∨ p2 = e,
and p1 ∨ p2 = i,) leads to closely correlated firing of both cells
if they are very closely situated, as a consequence the similar local
values of E(q, t) equation (5), while ¼-cycle-out-of-phase oscil-
lation develops between more separated excitatory and inhibitory
cells. Inhibitory/inhibitory or excitatory/excitatory interactions
(p1 ∧ p2 = e, or p1 ∧ p2 = i,) between reciprocally connected
neurons lead to zero-lag synchrony, and since conduction delays
are short compared to the period of oscillation, the equality of
equation (6) is generally approached even when T is smaller than
the period of oscillation (Chapman et al., 2002). As there are
equal time-lags in both directions of conduction excitatory pulse
trains throughout the cortex have maximum correlation at zero
lag—i.e., where Qe is the time-average firing rate—also uniform
throughout the cortical field -

(Qe − Qe)(r′, t) ≈ (Qe − Qe)(q, t) (7)

Figures 1 and 2 show these properties generated in a simula-
tion of cortical dynamics with physiologically realistic parameters
(Wright, 2009, 2010). In conditions of strong cortical excita-
tion local oscillation is autonomous and corresponds to cortical
gamma rhythm, while in conditions of lower cortical excitation,

damped gamma oscillation, and a predominance of background
1/f 2 is seen.

MAGNITUDE OF PRE-SYNAPTIC PULSE SYNCHRONY
Zero-lag synchronous oscillation thus entails presynaptic pulse
synchrony, with a magnitude of presynaptic flux variation which
can be defined respectively for individual synapses, individual
cells, and in aggregate, as

Jqr′ =
⎡
⎣ 1

T

∫
T

(ϕ
qr′
e − ϕ̄e)

2dt

⎤
⎦

1/2

(8)

Jq =
⎡
⎣ 1

T

∫
T

∫
r′

(ϕ
qr′
e − ϕ̄e)

2dtdr′
⎤
⎦

1/2

(9)

J =
⎡
⎣ 1

T

∫
T

∫
r′

∫
q

(ϕ
qr′
e − ϕ̄e)

2dtdr′dq

⎤
⎦

1/2

(10)

Jqr′
is RMS presynaptic flux variation between q and r′, Jq is the

sum of Jqr′
at a single excitatory neuron, and J is the aggregate of

Jq over the cortex.

SELECTION OF SCALE-FREE SMALL-WORLD CONFIGURATIONS OF
NEURONS
For any given level of cortical excitation, J is greatest for that
ensemble of C connected neurons, in which excitatory pulses
arrive at dendrites, from all sources at differing distances of
separation, as closely in-phase as possible, so as to maximize
their summation. Axonal delays, small compared to the period
of gamma oscillation, contribute a phase difference between cell
firing at r′ and the arrival of presynaptic pulses at q, of

��qr′ = 2π

∣∣q − r′∣∣
Pν

(11)

where P is the period of oscillation. Therefore that ensemble
selected by its capacity to maximize presynaptic synchrony must
approach minimal total axonal length, L = ∫

r′
∫

q

∣∣q − r′∣∣ dqdr′,
and minimization of this length minimizes the metabolic require-
ments of the axons.

It has been shown generally (Cohen and Havlin, 2003) for all
systems of connected elements, the path length in a topological
sense is at a minimum where degree distribution follows a power
law. As was pointed out in conjunction with equations (1–5), in
our idealized neural field, average degree of separation, in the
topological sense, increases linearly as metric distance of separa-
tion of the cell bodies, so that if L, their total length of axonal
connections, is minimal, then the path length in the topologi-
cal sense is also minimal, and the degree distribution is that of a
scale-free, or ultra-small world. Therefore, the connection density
between cells vs. their metric distance of separation should also be
approximated by a power-law distribution. Further, according to
Cohen and Havlin

L ∼ log log C (12)
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FIGURE 1 | Simulated electrocortical activity in the excited cortex,

from Wright (2010). (A) Power spectrum of a local field potential
time-series, shown in (B). (C) and (D) Cell firing correlations, vs. time-lag.

Dashed line—cells remote from each other. Solid lines—cells adjacent to
each other. (C) Between excitatory cells. (D) Between excitatory and
inhibitory cells.

so the metabolic efficiency of the connection system is further
enhanced if the surviving cells are linked into a continuum, as
opposed to separate pools of neurons.

In accord with equation (1), the number of neighboring exci-
tatory cells connected to a given excitatory neuron, as a function

of distance of separation, is proportional to 2π × f
qr′
e (

∣∣q − r′∣∣)—
so the ensemble of neurons selected by greatest synchrony must
have a connection density function of the form:

f qr′
e ∼ (

2π
∣∣q − r′∣∣)−A

A > 0 (13)

Intracortical axonal trees have approximately exponential den-
sity/range relations (Scholl, 1956; Braitenberg and Schüz, 1991)
and a power function is fitted exactly by an infinite sum of
exponential functions—i.e.:

(
2π
∣∣q − r′∣∣)−A = 1

�(A)

∞∫
0

uA−1exp
[−u2π

∣∣q − r′∣∣] du (14)

so an ultra-small-world connectivity can be achieved by sets of
populations of cells with differing axonal characteristic lengths.
During embryogenesis primal cells divide sequentially by layer
(Rakic, 1988; Shi et al., 2012) with differences in growth pattern

and characteristic axonal length programmed in sequential cell
divisions. For simplicity, we consider only two populations of
excitatory cells, with cell bodies partially separated by layer, but
with intermingled axonal and dendritic trees, and axonal tree
connection probabilities described by:

f
qr′
α = Nα

N
2πλαexp

[−λα2π
∣∣q − R

∣∣] (15)

f qr′
β

= Nβ

N
2πλβexp

[−λβ2π
∣∣q − r

∣∣] (16)

f
qr′
e = f

qR
α + f

qr
β

f
qR
α refers to the axonal trees with longest axonal extensions,

and f
qr
β refers to the axonal trees with short axonal exten-

sion, thus λα < λβ. N = Nα + Nβ is the number of synapses
received/generated by each cell. Distances from r′ to q are
substituted as r, R to indicate equal distances,

∣∣q − r
∣∣ and∣∣q − R

∣∣, measured along the axonal trees of the respective
populations.

The further defining characteristic of small-world
connectivity—the occurrence of connection nodes—emerges as
a consequence of the formation of the superficial patch system,
as follows.
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FIGURE 2 | Simulated background electrocortical activity, in conditions of low cortical excitation. Graphical format is the same as in Figure 1.

THE ORIGIN OF THE SUPERFICIAL PATCH SYSTEM
The two populations of cells described by equations (15) and (16),
and the synapses they give rise to can be referred to as α-cells
and synapses, and β-cells and synapses. We first make a provi-
sional assumption (later justified on a species-specific basis) that
Nβ >>> Nα, so that α-cells with long-range axons are embedded
among much more numerous β-cells, all with sparse connectivity.
Equation (10) can be written by separately summing contribu-
tions from α-cells at positions {qα} and β-cells at positions {qβ},
to give:

J =
∫
qα

∫
R

JqRdqαdR +
∫
qβ

∫
r

Jqrdqβdr (17)

so J is at a maximum if
∫

qα

∫
R JqRdqαdR and

∫
qβ

∫
r Jqrdqβdr are

individually at maxima. Applying equations (15) and (16) via
equation (1) to find values of Jqr′

in equation (8) as functions
of
∣∣q − r, R

∣∣, shows that:

Jqr = JqR if
∣∣q − r, R

∣∣ = x

Jqr > JqR if
∣∣q − r, R

∣∣ < x (18)

Jqr < JqR if
∣∣q − r, R

∣∣ > x

where x = − ln
(

Nαλα

Nβλβ

)/
2π(λβ − λα)

Consequently
∫

qβ

∫
r Jqrdqβdr is at a maximum if β-cells are

clustered so they make reciprocal connections at minimum dis-
tance and maximum density (β-clusters). β-cells at the center
of β-clusters, for which Jqr attains the maximum possible value,
must give and receive all their connections as β-connections to a
radial distance of x.

Since β-cells are clustered, α-cells necessarily are also clustered
(α-clusters), and since maximization of reciprocal β-connections
excludes formation of short-range reciprocal α- connections,
α-cells must form reciprocal synaptic connections at distances
greater than x, to maximize

∫
qα

∫
R JqRdqαdR. Similarly, reciprocal

connections between α- and β-cells must occur at cluster margins,
over distances approximate to x. Since we made the provisional
assumption that Nβ >>> Nα, then fitting the sum of equa-
tions (15) and (16) to a power function requires λα <<< λβ.
Consequently α-cells may form multiple patches of synaptic
connections, skipping from α-cluster to α-cluster.

Since β-clusters have radius x and α-clusters are separated
by distance x, α-clusters are necessarily placed at the vertices of
hexagons tiling the cortical surface, with each hexagon embrac-
ing a β-cluster. Analogy to the superficial patch system in some
species is apparent.

As noted earlier, hexagonal symmetry of OP and the super-
ficial patch system is an idealization that is roughly approached
in some species, while in others it is effectively absent (Horton

Frontiers in Computational Neuroscience www.frontiersin.org February 2013 | Volume 7 | Article 4 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Wright and Bourke Synchrony and synaptic organization

and Adams, 2005). Since approximation of a power law distri-
bution by two populations of neurons requires Nα <<< Nβ if
λα <<< λβ, this case is more closely approached for larger cor-
tical sizes, and the patchy connection system will have higher
orderliness and hexagonal rotational symmetry. If λα < λβ by
only a small amount, as in animals with small cortical size, then
Nβ is not necessarily greater than Nα, and an ordered hexagonal
structure need not be apparent. Such reduction of the apparent
orderliness does not imply the absence of “small world” con-
nectivity, nor imply impairment of function. The comparative
invariance of distance between OP singularities across species
reported by Kaschube et al. (2010) and Keil et al. (2012) implies

that x = − ln
(

Nαλα

Nβλβ

)/
2π(λβ − λα) [equation (18)] is also rela-

tively constant over species in the middle to large range of V1 size.
Since the ratios Nβ/Nα, and λα/λβ must vary inversely in value in
different species, according to cortical size, as required if the sum
of the two synaptic distributions maintains a power law distribu-
tion, then comparative invariance of OP singularity density is to
be expected.

LOCAL SYNAPTIC COMPETITION FOR METABOLIC SUPPLY
Turning from optimization of energy demand of axons, to that
of dendrites, we can modify equation (2) to a form representing
complex distinct processes of synaptic adaptation, impulse decay,
and pre-synaptic synergy, including the limiting rate of metabolic
energy supplied to excitatory synapses—viz:

ψ
qr′
e (t) = �qr′

Mqr′
e ∗ ϕ

qr′
e (t) (19)

M
qr′
e = D × S (20)

�qr′
is the available fraction of the metabolic supply rate

needed to attain maximum current flow. Since we have assumed
increasing synaptic current in synchronously activated synapses
increases the available metabolic supply, the value of �qr′

must

follow that of ψ
qr′
e .

D = 1

B
exp[−Bt] B > 0 (21)

represents impulse decay following delivery of an afferent action
potential, with time-integral of 1 (after Rennie et al., 2000).

S = 1/(1 + exp[−g(Jq(t))] (22)

is a sigmoid function with range 0–1, representing synaptic adap-
tation to the afferent pulse rate, and including the effect of
pre-synaptic co-operation (Tsukada and Fukushima, 2010) upon
individual synaptic current flow as g(Jq)—a suitable ascending
function in Jq, such that if Jq = 0, there is no current flow at the
synapse.

As well as inter-cellular competition between assemblies of
neurons, we assume competition takes place between adjacent
individual synapses arising from the same neuron. Therefore
those neurons that survive apoptosis must have found an effi-
cient deployment of resource to the synapses best positioned to
maximize the magnitude of synchrony. Any two adjacent synapses

arising from the same pre-synaptic neuron may terminate on the
same, or different, post-synaptic neurons. If they terminate on the
same neuron their conditions are essentially identical in terms of
equations (19–22). If they terminate on different neurons, then
the relevant values of Jq need not identical—and their compe-

tition for resources would lead, via the feedback between ψ
qr′
e

and �qr′
, to low synaptic current at one synapse, and high cur-

rent at the other. Just what the physiological corollary of these
opposite high and low-activity states is, and the critical metabolic
component for which the synapses compete, we do not specify. A
likely, but by no means unique contributing factor is the supply
of extracellular calcium (Montague, 1996). Whatever the critical
component(s), the important consequence is that, at synchronous
equilibrium, closely situated neurons have either high, or low,
pulse correlations with each other.

ORGANIZATION OF PRE-VISION RESPONSE PROPERTIES
We can now term those synapses that are transmitting impulses
more strongly near equilibrium “saturated” synapses, and those
which are more quiescent, but potentially able to be activated,
“sensitive” synapses, and can consider what spatial patterns of
saturated connections would best meet the requirement to max-
imize synchrony. Here a further property of the neural field
commented on in relation to equations (1–5)—higher spatial
cross-correlation of pulses and field potentials at shorter range —
has a decisive impact on the equilibrium pattern of synaptic satu-
rations. These emergent patterns, diagrammed in Figure 3, arise
for the following reasons:

(a) Maximum synchrony generation with highest cross-
correlation among near-neighbors in each β-cluster requires
saturated couplings link near-neighbor cells—but sensitive
connections must also form between closely adjacent β-cells.
Both requirements are met when saturated connections
within each β-cluster form a re-entrant network analogous
to a Möbius strip. A similar argument regarding connections
formed within macrocolumns has been advanced earlier
(Wright et al., 2006; Wright and Bourke, 2008).

(b) The α-cluster system and each of the β-clusters must enter
into maximum joint resonance. This requires the formation
of a homeomorphic projection between scales. The projec-
tion must be homeomorphic, since spatial cross-correlation
is constrained to decline with distance at both scales, and
so if resonance is at a maximum, the projection map must
be one preserving topological identity between scales. This
is possible because a disk can be mapped to a Möbius strip.
Thus saturated α-cell to β-cell synapses must systematically
map limited angular ranges of the surrounding α-system
onto limited angular ranges on the margins of each β-cluster,
and receive reciprocal saturated β-cell to α-cell synapses.
Such a mapping requires specification of an orientation and
chirality for each β-cluster, and requires a reciprocal dis-
tribution of saturated and sensitive synapses from opposite
sides of the α-system to neurons in a limited angular range
within each β-cluster.

(c) Maximum synchrony generation with high cross-correlation
among near-neighbors in the α-system requires α-cells be

Frontiers in Computational Neuroscience www.frontiersin.org February 2013 | Volume 7 | Article 4 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Wright and Bourke Synchrony and synaptic organization

FIGURE 3 | Simulated and real maps of orientation preference in V1,

from Wright et al. (2006). Top: Simulation. Colors of the spectrum, from
red to violet, represent average OP of V1 neurons for slow-moving visual
lines of orientation 0 − π. Adjacent macrocolumns, of diameter ∼300 μm
are set within a hexagonal frame (the patch system) with OP forming color
wheels about OP singularities. Orientations and chiralities of the color
wheels are arranged to approach a minimum total of angular disparity from
mirror reflection of OP between each macrocolumn and its neighbors.
Bottom: Real OP. Visualized in the tree shrew by Bosking et al. (1997).
Superficial patchy connections are demarcated in black by a selective stain.
Scale of macrocolumns is approximate to that of the simulation.

linked by saturated synapses. This requirement is concordant
with deployment of the excess sensitive α-connections to
neurons in β-clusters at positions outside the homeomorphic
projection.

(d) Saturated and sensitive β − β connections between adjacent
β-clusters must also be arranged to maximize resonance.
Therefore β-clusters must project to each of their six
neighbors as closely as possible to mirror symmetry, with
both saturated and sensitive synapses linking homologous
points—that is to say, points with similar OP as classically
measured with low object speeds—within each cluster.

Perfect mirror symmetry is not possible between all adjacent
clusters within a hexagonal array, so mirror-symmetry can
be only approximate and irregular and the necessarily broken
symmetry permits the particular pattern generated to be one
of a large set of possible combinations.

Further analogy between the hypothetical α- and β-systems
and real anatomical structures can now be drawn. As well as
the α-system’s congruence with the superficial patch system, the
β-systems, each with a dense system of local connections that
are centrally spared from patchy connections, are analogous to
macrocolumns each centred about an OP singularity. The distri-
bution of OP for lines of orientation 0 − π to angles 0 − 2π in
pinwheels about a singularity finds analogy in the wrapping of
a Euclidean plane onto a Möbius strip. It has also been earlier
shown that arrangements of adjacent pinwheels in broken mirror
symmetry match classical OP maps (Wright et al., 2006).

The structure of real patchy connections and classical OP
response maps, contrasted with the results of simulating the
arrangement of adjacent macrocolumnar structures in accord
with the description above, are shown in Figure 3, while Figure 4
shows diagrammatically the proposed arrangement of saturated
and sensitive synapses, and foreshadows the effect of structured
visual stimuli, once the post-natal phase of development begins—
to be described in the next section.

Figure 5 shows a further impact upon response map
organization—the emergence of OD columns.

Just as OP organization in some species is apparent before eye
opening, so too is the organization into OD columns (Blakemore
and Van Sluyters, 1975; Erwin and Miller, 1998). Explanation
of this can be included in the present model by an argument
similar to that of Erwin and Miller, who suppose the correla-
tion of cell firing at short distances of separation of V1 cells
to be greater than the correlation of visual inputs over a sim-
ilar distance. This forces a columnar OD organization because
of instability—in the present model’s terms, the resulting dis-
ruption of the synchronous field at equilibrium produced by
binocular inputs to the same cells—resolved by formation of
columns in Turing patterns. A corollary of this effect is impact
on the hexagonal arrangement, with broken mirror symme-
try of OP organization, predicted in (d) above. The required
alternation of OD columns would imposes a frustration on the
approach to hexagonal tiling of the cortical surface—forcing
approach closer to a square tiling. The occurrence of mirror sym-
metry within a square tiling accounts for the way that lines of
OP cross orthogonally between OP columns. (Obermayer and
Blasdel, 1993). Following eyeopening inputs from the two eyes
transmit images which are necessarily cross-correlated at a small
spatial lag, because of angular disparity in their line of focus.
Spatial lag correlation in their inputs at V1 level could then
help maintain the columnar organization (Wright and Bourke,
2008).

WAVE TRANSMISSION OF VISUAL INFORMATION, FOLLOWING
EYE-OPENING
We compactly express the emergent map by which the patchy
connections over a part of V1 link to positions within each
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FIGURE 4 | Equilibrium distribution of synaptic activity, and the

impact of visual inputs disrupting equilibrium from Wright and

Bourke (2013). Top: equilibrium disposition of saturated and sensitive
synapses. Black circles represent cell bodies and dendrites. Synapses
are indicated as saturated (solid) or sensitive (dashed) terminations of
axons. Reciprocal connections between α-patches (patchy connections)
form the hexagonal array. (Other connections, although shown as
unidirectional, are also reciprocal.) A representative pair of connections
from α-cells to the β-patch is displayed in the upper-and lower-aspects
of the figure. At the center of the figure, saturated and sensitive
synapses show the network’s analogy to a Möbius-strip within a
β-patch (macrocolumn). To the right, representative links from the
central macrocolumn to cells at homologous positions in neighboring
macrocolumns. Bottom: exposed to strong transient signals conveyed
over the superficial patch system, summing with direct visual inputs
conveyed to the cRF, the equilibrium configuration breaks down. The
green bar represents the field of excitation of cells by the contextual
signals, within which cells also directly excited in the cRF, fire at high
rates.

FIGURE 5 | Top: Simulation of OD columns in accord with Wright and
Bourke (2008). Bottom: Real OD columns, visualized by Obermayer and
Blasdel (1993). Color coding of OP and scale as for Figure 3. Black lines
demarcate alternation of OD between columns. Fine black lines in the
lower figure trace the way OP is aligned so it matches orthogonally across
OD column boundary.

macrocolumn, as an homeomorphic projection from a disk on a
Euclidean plane, P, to a Möbius strip, p[2]- the square brackets [2]
indicating the map’s resemblance, if viewed from a third dimen-
sion, to a 2:1 map formed by squaring a complex vector. Defined
in polar co-ordinates,

P
(∣∣R − Cj

∣∣, ϑ
) → p[2] (∣∣r − Cj

∣∣ ,±ϑ + ϕ
)

(23)

where Cj is the origin of both P and p[2] for the j − th local
map, and corresponds to the position of the OP singularity in
that macrocolumn. ϑ is the polar angle of R, chirality of the local
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map is indicated by ±ϑ, and ϕ is the orientation of the local map
relative to the global map. ϑ + ϕ is defined on the range 0 − 2π in
both local and global maps, but is represented with apparent angle
doubling in the local map. This describes a topology for “contex-
tual” connections (Li et al., 2000; Angelucci and Bullier, 2003) to
each macrocolumn.

Visual input after eye opening will cause departures from the
equilibrium condition. Let O(P, t) be a visual image projected to
V1 by the direct visual pathway. Laterally traveling waves of pulses
and local field potentials relayed by the patchy connections can
transmit that image to each local map with a point to point delay,
|R−r|

υ
, where ν now represents wave speed, so that

O(P, t) → O

(
p[2], t + |R − r|

ν

)
(24)

Suppose O(P, t) is a segment of the image of a visual line, trav-
eling with uniform velocity, Vx, along an x−axis directed toward
a macrocolumn with its singularity at Cj. O has a component of
its extension on the x−axis, Ox, and an orthogonal component of
extension, on the y−axis, Oy . Kx is the dominant spatial frequency
of Ox, and Ky is the dominant spatial frequency of Oy . Then the
local map projection of O has a transformed spatial frequency in
the x−axis but not in the y−axis—i.e.:

kx ∝ ν

ν ± Vx
Kx (25)

ky ∝ Ky (26)

where kx, ky are the spatial frequencies in the local map projec-
tion of O, and the sign ± in equation (25) depends on whether
O is approaching or departing from Cj. That is, O’s orientation
in the global map is transformed to its projection to correspond-
ing areas in the local map, by Doppler shift, with a difference in
orientation, δϑ;

δϑ = ∣∣tan−1[Ky/Kx] − tan−1[ky/kx]
∣∣ (27)

INTERACTION OF CONTEXTUAL SIGNALS AND THE CLASSIC
RECEPTIVE FIELD
Laterally transmitted contextual signals generally do not trig-
ger cell firing, until the classic receptive field (cRF) is directly

stimulated (Li et al., 2000; Angelucci and Bullier, 2003) via
the visual pathway. Those cells that then fire within a macro-
column are those that reflect the supra-threshold summations
of sub-threshold signals conveyed over the contextual, patchy,
connections, and the direct pathway. We next assume that the
summation of contextual and direct cRF inputs acts as an impulse
causing a transient breakdown of equilibrium, during which
synapses that were in the sensitive state in equilibrium briefly
generate substantial synaptic currents [See Figure 4 (Bottom)
and Figure 6]. Action potentials are triggered in surrounding
cells, and subsequently there is a restoration toward the equi-
librium state on withdrawal of the stimulus. During the break-
down the mapping of activity from the global to the local map
becomes:

O(P, t) → O

(
p2, t + |R − r|

ν

)
(28)

The change from equation (24) made by removal of the square
brackets from p[2] represents the breakdown’s form, as itself
a map from global to local scale, resembling a 2:1 complex-
multiplication map, as initially described by Alexander et al.
(2004). The 2:1 map implies that single cells would show similar
responses to a stimulus moving in either direction, but because
firing is initiated over contextual connections in a 1:1 mapping,
multi-cellular recordings would show that the spatial and tempo-
ral order of firing of neurons was unique for a given stimulus form
and velocity.

POST-NATAL EFFECTS OF LEARNING, THE SPATIO-TEMPORAL FILTER
MODEL, DIMENSION REDUCTION, AND “LIKE TO LIKE” CONNECTIONS
Equations (2,3,4, 19–22) contain state-variables required by
mathematical expressions of physiological versions of the Hebb
rule, and the spatio-temporal learning rule (Elliott and Shadbolt,
2002; O’Connor et al., 2005a,b; Enoki et al., 2009; Tsukada and
Fukushima, 2010; Elliott, 2011). Following eye opening, stimuli
with regularly repeated spatial and temporal structure reach V1,
so we assume that exposure to a repeated stimulus leads to per-
manent synaptic consolidation of connections, overlaying those
formed in the ante-natal, equilibrium condition. As remarked in
the Introduction, Baker and Issa (2005) have shown that all V1
response features can be described in terms of six variables—
optimal values of OP, spatial frequency preference, and temporal

FIGURE 6 | The effect of increasing stimulus speed on apparent OP, for a

bar of length 6 units, oriented at 45◦ to its direction of motion, and

traveling left to right. Examples shown are freeze-frames, from separate

simulation movies, at similar positions in the visual stimulus’ transit across
the macrocolumn. From left to right, in each example, the bar speed/wave
speed is 0.1, 0.5, 1.0, 1.5, respectively.

Frontiers in Computational Neuroscience www.frontiersin.org February 2013 | Volume 7 | Article 4 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Wright and Bourke Synchrony and synaptic organization

frequency preference, each associated with a Gaussian bandwidth
of tuning of the cortical response to these features. These define
three hypothetical filter proceeses. However, stimulus variables
in the present model have equivalents to those used in the
spatio-temporal filter model. These are:

Spatio-temporal model Present model

Object orientation Orientation relative to the
y-axis defined for equations
(25, 26)

Object velocity Vx

Object drift angle tan−1[Ky/Kx]
Object spatial frequency Kx/

∣∣cos(tan−1[Ky/Kx])
∣∣

Object temporal frequency VxKx

Repeated stimulation with a particular stimulus will there-
fore lead, under Hebbian learning, to maximization of the
response to that stimulus, thus creating an apparent “tun-
ing” of particular neurons to that particular combination of
stimulus features. Thus, the spatio-temporal model can be
regarded as a consequence of the present model. Optimization
by learning of the parameters for each of the three filters
must be competitive between adjacent cells, providing the nec-
essary condition for fitting response maps with continuity
and completeness, by dimension-reduction methods (Kohonen,
1982; Durbin and Willshaw, 1987; Durbin and Mitchison,
1990).

Finally, the consolidation of saturated long-range patchy con-
nections by Hebbian learning would result in mature “like to like”
connections.

SIMULATIONS—A CRITICAL TEST
A critical test of our model, then, is whether we can reproduce
in simulation the results of Basole et al. (2003), without a pri-
ori feature-specific responses to orientation, spatial frequency,
or temporal frequency. Our simulations assume the steady-state
presence of the Mobius synaptic configuration and its pertur-
bation by visual signals, intended to reflect the state of the
visual cortex shortly after birth, when first exposed to visual
stimuli.

Equation (28) was applied in simulations of an hexagonal array
of seven adjacent macrocolumns. Results reported here are for the
central macrocolumn of the array of 7. Examples are shown in
Figure 6, which shows the orthogonal transformation of apparent
OP from the lowest to the highest bar speed for a moving line
stimulus oriented at 45◦ to its line of passage.

Diameter for each macrocolumn is 300 microns, and wave
speed for transcortical polysynaptic propagation 0.1 m/s
(Bringuier et al., 1999). Units of length subsequently referred
to, are multiples of the radius of a macrocolumn—150 microns.
Simulation time-step was 0.1 ms.

A moving line in the visual field, relayed by the direct visual
pathway to the cRF of each macrocolumn is represented as a red
bar. In a single simulation the red bar traveled across the entire
hexagonal array from left to right, with constant speed, direc-
tion and orientation. The orientation of the red bar to the line

of passage is measured as bar angle from 0◦, where the bar is ori-
ented orthogonally to the direction of travel, to ±90◦, where the
bar is oriented in the direction of travel.

The lag-transmitted image of the red bar, relayed as subthresh-
old activation to each macrocolumn via the superficial patch
system, is shown in green, with illumination about the zone of
subthreshold activation, to indicate that input to the cRF from
the direct visual pathway and contextual signals caused triggering
of action potentials. The average angle from the macrocolumn
singularity to the centers of action potential generation (i.e., all
points on the green line with illumination) was calculated at
each time-step, and shown as a black arrow, thus indicating the
part of the macrocolumn with a response preference (apparent
OP) for the particular bar movement. (A change in the sector
of the macrocolumn that is maximally stimulated is equivalent
to an equal change in the angle of approach of the bar needed
to maintain stimulation of the same sector). The black arrow
angle was averaged over a window beginning after the red bar
had passed the center of the macrocolumn by a distance equal
to 10% of macrocolumn radius, and extending from the 10th
percentile to the 20th percentile of that radius, thus obtaining
an estimate of the apparent OP during the cRF activation time.
The standard error (SE) of the black arrow angles was calcu-
lated from 11 equally spaced time steps through the averaging
window.

Combinations of bar-length, orientation of the bar to the
direction of movement, and bar speed, were then systematically
varied in separate simulations, results of which are supplied as
supplementary animated movies. Their effects on OP, measured
at the central local map of the hexagonal group, were obtained as
OP difference, �φ—a measure of the change in OP as a function
of these variables—calculated as

�φ =
⎧⎨
⎩

φ1 − φ0 − π

φ1 − φ0

φ1 − φ0 + π

when
when
when

π/2 < φ1 − φ0

−π/2 ≤ φ1 − φ0 ≤ π/2
φ1 − φ0 < −π/2

(29)

The reference OP, φ0 ∈ [0, π), was the OP found at the lowest bar
speed applied (bar speed/wave speed = 0.1) and the apparent OP,
φ1 ∈ [0,π), was the OP found at higher speeds.

Systematic results are shown in Figure 7, which graphs OP
difference vs. bar speed/wave speed, for bar angles 0 to ±90◦, cal-
culated for a bar length of 6 units. Variation of bar length showed
progressive lessening of the effect of velocity on OP for greater bar
lengths.

For the case of bar-angle zero degrees (a line oriented orthog-
onally to its direction of passage, as in classical measurements
of OP) no OP difference is seen until, as bar speed approaches
wave speed, a 90◦ change in apparent OP takes place at a single
increment in speed. This corresponds to transition to a “motion
streak,” as object movement blurs resolution in the direction of
motion. Increasing OP difference with bar speed at other bar
angles is a more gradual development of the same effect—that
is, mixing of responses to object speed and to object orientation.
The illuminated field of supra-threshold excitation generated
is not that expected to accompany a Gaussian-shaped tuning
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FIGURE 7 | Change in apparent OP, and standard error of the estimate,

as a function of bar speed to wave speed, for lines at different

orientations to their directions of motion. Bar length 6 units.

curve, but is roughly bimodal at medium speeds—e.g., bar-
speed/wave-speed = 0.5. The form of the field of excitation is
a combination of the classical preferred OP and the orthogo-
nal orientation, expected as a consequence of Doppler shifts in
the laterally-transmitted cortical signals generated by the moving
visual input.

Variation of the window over which the apparent OP was esti-
mated did not affect the qualitative results so long as averaging
was conducted over a window beginning after the center point of
the macrocolumn was crossed by the red bar. Variation of the esti-
mate of wave speed was also without effect, so long as results were
expressed in terms of bar speed/wave speed.

For comparative purposes similar simulations were performed
in which contextual (green bar) responses were constrained to
occur only with a limited angular response within a macrocol-
umn. That is, a restricted response to the line, according only
to its orientation was imposed, in analogy to conventional mod-
els of OP, but with conduction delays of “like to like” fibers
included. Then, systematic variation of OP with bar velocity did
not occur.

These results match the findings of Basole et al. (2003) with
respect to variation of OP peak responses as a function of line
velocity and length. They do not reproduce the form of the
experimentally observed Gaussian tuning curves, but as argued
in the prior section, subsequent post-natal Hebbian learning pro-
gressively over-writing the Mobius configuration, and strength-
ening the peak response to the optimal visual signal, would
concurrently strengthen responses to signals which are close to
the optimum, resulting in Gaussian tuning curves in the more
mature animals studied by Basole et al. (2003) and Issa et al.
(2008).

INTER-AREAL INTERACTIONS OF V1 AND HIGHER VISUAL AREAS
The principle underlying the development of connections
between macrocolumns and the superficial patch system may be
generalized to the emergence of inter-areal connections. To recap,
taking V1 as an example we have argued above that, because
co-variance of activity declines with metric distance at both the
scale of the patchy connections and within a macrocolumn, a
homeotypic mapping between scales can emerge. This requires
that relative distances on the maps at each scale must be in
the ratio of correlation lengths of synchronous oscillation at the
two scales, and adjacent maps must themselves have a correlated
structure over a distance approximate to the correlation length of
the patch system. It then follows that superposition of adjacent
local maps, with appropriate rotation and correction to a com-
mon chirality, would result in a further map with co-variance of
activity declining with metric distance, over the correlation length
of the patch system.

Inter-areal connections, made by cortico-cortical axonal pro-
jections, could permit maps of this type to arise during ante-natal
development, with the composite map at the higher cortical-area
level itself folded into the Möbius configuration. The selection of
saturated connections, projecting between areas with normaliza-
tion of rotations and chiralities, would be possible by selection
from the larger set of possible connections made by branches of
cortico-cortical axons, diverging from their cells of origin to their
cells of termination, overlapping as they terminate, and generally
reciprocal between areas (Braitenberg and Schüz, 1991; Boucsein
et al., 2011). Thus, antenatally, sets of macrocolumns at both
the lower, V1, level and higher levels, could resonate with, and
form preferential connections with, superimposed and overlap-
ping groups at the other level, in accord with the developmental
selection requirement to maximize joint synchrony. With the
occurrence of eye-opening, Hebbian learning would then begin to
overwrite the equilibrium resonance configuration between areas,
in analogy to the process at intra-areal level—with the added
property of associating concurrent patterns of activity in the V1
macrocolumns.

Illustrating this effect, Figure 8 shows, at the bottom, a system
of seven macrocolumns at V1 level, driven via the direct visual
pathway by a pair of intersecting lines in the visual field.

The top part of the figure shows a projection of activity in
conjointly activated macocolumns in V1, to a higher visual area,
in which responses in the seven macrocolumns in V1 have been
superimposed, with disparities in their orientation and chiral-
ity eliminated. Summations of points stimulated by both lines,
shown by highlighted white points, occur frequently in the for-
ward projection—much more so than at the level of V1 itself.
These indicate response to angles of intersection of the lines at
the lower level, and, commonly at the higher level, summating
responses to time-lagged correlations between disparate posi-
tions of the moving visual stimulus. This effect is consistent
with the preferential responses to angular and complex stimuli,
characteristic of higher cortical levels (Merigan and Maunsell,
1993).

Conversely, since connections between higher and lower levels
are generally reciprocal, a possible mechanism permitting con-
trol of attention (Rao and Ballard, 1997; Kveraga et al., 2007;
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FIGURE 8 | Projection of a complex object (a double bar) from V1

(bottom) to a large macrocolumn in, e.g., V2 (top). Brightened dots
show the intersections of lines, producing more frequent enhanced
responses to stimulus angles in V2 than V1.

Swindale, 2008; Naci et al., 2012) is suggested, since the back-
ward flow would continuously modify the forward flow of sensory
information.

CONCLUSION
The model of cortical development we have outlined above is
efficient from both energetic and information-processing per-
spectives, and has considerable anatomical and physiological
explanatory power. It leads to an explanation of the spatial
organization of signal flow in the cortex that differs from any
other model. The proposed antenatal self-organization of cor-
tical synapses leads to the creation of a tabula rasa on which
homeomorphic maps, in a form disguised by the Möbius-strip-
like folding of connections, occur in lateral connections at
the millimetric scale, embedding the statistics of spatial orga-
nization of the sensory world to first approximation, before
any detailed sensory inputs are received. The assumptions and

findings of the model overlap with, and although not nec-
essarily contradictory to, are not identical to, those of other
models (Erwin and Miller, 1998; Wolf and Geisel, 1998; Kang
et al., 2003; Oster and Bressloff, 2006). Distinguishing fea-
tures include the explanation of the relationship of superficial
patch connections to macrocolumn centers, and their hexago-
nal rotational symmetry, and crucially, the findings of Basole
et al. (2003), which cannot be explained by any model depen-
dent on “like-to-like” connections between feature-specific neu-
rons. Nor can any model with otherwise similar assumptions
about the self-organizing effect of synchrony be formulated with-
out introducing a Möbius configuration to the connections,
since an equivalent model utilizing only Euclidian conformations
would represent a given OP twice, rather than once, around a
singularity.

In review, the assumptions and conclusions reached, were as
follows. By assuming that cells surviving apoptosis are selected by
competition for metabolic substrates, and that synchronous oscil-
lation mediates the uptake of metabolic substrates, we showed
the outcome was a neural system with ultra-small world axonal
configuration. Further assuming the small world connections
were necessarily constructed from neuron populations charac-
terized by respective axonal length, we showed that long range
patchy connections and regular macro-column-like areas with
central sparing of patchy connections emerge, with some degree
of hexagonal rotational symmetry, with species variation in order-
liness according to cortical size, and were able to show that
this result was consistent with anatomical observations of lim-
ited interspecies variation of singularity density. A crucial fur-
ther assumption made, was that metabolic competition between
synapses from the same neuron leads to particular configura-
tion of synaptic current flows at equilibrium, in which active
connection networks within each macrocolumn are arranged in
a Möbius-strip-like conformation. Then, with the introduction
of visual inputs, signals conveyed by contextual fibers transfer a
visual image from the global map to each local map, determin-
ing the pattern of neuron firing induced by activation of the cRF,
and synaptic consolidation on Hebbian principles begins—thus
storing information based on visual experience—explaining how
response maps for OP, SF, and TF become organized in accord
with the spatio-temporal filter model (Baker and Issa, 2005;
Issa et al., 2008), and how “like to like” anatomical connections
emerge, as well as providing conditions for dimension-reduction
description of response features. The model is also compati-
ble with explanation of ocular columns and direction preference
fractures, as proposed in our earlier work (Wright et al., 2006).

The resulting synaptic storage of learned information in local
topological maps of Möbius configuration offers a further com-
pression of format, adding to the efficiency of the “small world”
arrangement, by minimizing the distance which need be spanned
by connections between positions on the local map representing
positions widely separated on the global map. The development
of cross-links also offers large potential information storage, since
the regular spatial organization of links in the Möbius configu-
ration implies the synaptic connections have low joint entropy
in their ante-natal state. With visual experience, and the stor-
age of image information in cross-links, joint entropy could, in
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principle, increase to a limit where all synaptic states are inde-
pendent, and equally distributed about some mean connection
strength, as implied by Montague’s (1996) resource consumption
principle. In effect, before eye-opening, the cortex has “learnt”
the underlying statistical structure of visual space—that of cross-
correlation declining with metric distance—and subsequently
stores information about departures from this “first component”
of structure in the visual world.

The antenatal development of response maps (Wiesel and
Hubel, 1974; Blakemore and Van Sluyters, 1975; Sherk and
Stryker, 1976) presents no paradox in this model, since emergence
of organized response properties within the Möbius configuration
does not depend upon structured visual stimuli. EEG activity pro-
gressively matures toward alternating alert and sleeping states in
the later antenatal period (Marks et al., 1995; Mirmiran, 1995)
providing the widespread co-ordination of pre-synaptic activity
required for initial synaptic self-organization. Conversely, over-
writing by learning in the immediate and later post-natal periods
explains why representation in adult response maps of stimuli to
which the subject as has not been exposed would not be present—
as also seen experimentally (e.g., Blakemore and Van Sluyters,
1975).

No direct evidence yet exists of Möbius-like patterns of con-
nections in cortex, yet this is scarcely surprising if transient
dynamic couplings, present only in the equilibrium state, are
overwritten by post-natal learning-related changes. However,
relaxation toward the equilibrium condition is still to be expected
in the mature state, so it is important whether or not some
anatomical substrate exists in which the dynamic state of synapses
may be capable of transient assembly into Möbius patterns.
Markram and colleagues (Perin et al., 2011) found that pyrami-
dal neuron networks cluster into multiple groups of a few dozen
neurons each, with the neurons composing each group typically
more than 100 μm apart, allowing for multiple groups to be inter-
laced in the same space. Connections within groups were largely
reciprocal, and those between groups relatively sparse. Transient
interlinkages between such interwoven linked groups could form
Möbius-like networks. The temporal plasticity of synaptic con-
nections near singularities (Dragoi et al., 2001) is also consistent
with this interpretation. As well as plasticity of responses near
OP singularities, Dragoi and colleagues found lack of plasticity in
linear zones—the areas of strong patchy connection termination.
This is to be expected if the patch system is composed of well con-
solidated connections suitable for consistent transmission with
delay from fixed points in V1, while of the other hand, more
complex, continually modified, information processing goes on
in the areas around singularities. Consequently, an anatomical
test of the model may be possible, in regard to the terminations
of patchy connections in the periphery of the patch-free areas
about singularities. As indicated in Figure 3, two populations
of synaptic connections should be demonstrable in principle,
by double injection/staining methods, near the singularity/patch
edge. If some Hebbian consolidation occurs both antenatally and
postnatally, then, in principle it should be possible to observe
Möbius-like connections within macrocolumns antenatally, and
the overwriting of these connections during post-natal learning.

If later testing supports this model, current conceptions
of cortical information processing will require modification.
Synchronous oscillation has been regarded as a mechanism for
feature-binding—requiring that groups of cells in synchrony
stand out in some way against a non-synchronized background.
Instead, this model emphasizes synchrony as the organizer of a
matrix of connections within which each macrocolumn gathers
information from its surround, and organizes these connec-
tions systematically according to spatial position and time-lag, as
functions of distance from each singularity. The topology of sig-
nal organization is markedly different to that of the association
of “feature” neurons embedded in neural connections that are
deployed on a Euclidean plane, as it implies that sensory images
are not broken up into “features” which are subsequently asso-
ciated in an abstract feature space, but retain, in modified form,
an organization representing sensory space and time. Upon this
more complicated matrix of connections, moment-by-moment
states of autonomous local firing could interact with each other
via traveling waves, generating internal images adding to those
arising from sensation—all selectively strengthening preferred
pathways by Hebbian learning, under the supervision of moti-
vational systems. This gives a modified basis to Sherrington’s
“enchanted loom” (Sherrington, 1906, 1940), and a stage for the
kind of neuro-dynamic events progressively observed and envis-
aged by Freeman for many years (Freeman, 1975; Freeman and
Quiroga, 2013).

Hierarchical interaction of V1 with higher visual areas, by
superposition of spatio-temporal images transmitted over con-
vergent and divergent pathways might proceed to higher levels
of abstraction, at higher cortical levels, and feedback interactions
of ascending and descending signals in such a system might per-
mit very complex image manipulation. Analogous processes may
apply to other modalities throughout the cortex in general, since
all sensory input systems are analogous to the visual system, in as
much as they encode the sensory world by imposing a topolog-
ical order to inputs as they arrive at the sensory cortices. Again,
the ubiquitous distribution of patchy connections throughout the
cortex, and the basic modular similarity of the paleo- and neo-
cortex throughout, supports the notion that a single schema of
information flow may be characteristic of all. The principle of
organization might even extend to the motor cortex, with the
efferent pyramidal motor neurons simply reversing the role of
neurons in the direct visual pathway.
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