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We investigate the dynamical properties of an associative memory network consisting
of stochastic neurons and dynamic synapses that show short-term depression and
facilitation. In the stochastic neuron model used in this study, the efficacy of the synaptic
transmission changes according to the short-term depression or facilitation mechanism.
We derive a macroscopic mean field model that captures the overall dynamical properties
of the stochastic model. We analyze the stability and bifurcation structure of the mean
field model, and show the dependence of the memory retrieval performance on the noise
intensity and parameters that determine the properties of the dynamic synapses, i.e.,
time constants for depressing and facilitating processes. The associative memory network
exhibits a variety of dynamical states, including the memory and pseudo-memory states,
as well as oscillatory states among memory patterns. This study provides comprehensive
insight into the dynamical properties of the associative memory network with dynamic
synapses.
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1. INTRODUCTION
Dynamic synapses change their transmission efficacy depending
on the activity of the presynaptic neuron, and the postsynaptic
response can be decreased (short-term depression) or increased
(short-term facilitation) (Markram and Tsodyks, 1996; Tsodyks
and Markram, 1997; Markram et al., 1998; Thomson, 2000; Wang
et al., 2006). Synaptic transmission is carried out by the flow and
diffusion of chemical components. Activation of a presynaptic
neuron and generation of an action potential causes influx of cal-
cium ions into the presynaptic membrane. A chemical reaction
with the calcium ions triggers the release of the neurotransmitters
and induces the post synaptic current. If many action potentials
are generated in a short period of time, the calcium concentration
and the fraction of releasable neurotransmitters change, and the
transmission efficacy increases or decreases transiently. Change in
the transmission efficacy is modeled by variables that represent
the releasable neurotransmitters and the utilization parameter
that defines the fraction of the neurotransmitter release by each
action potential, reflecting the calcium concentration.

Stochastic neuron models with dynamic synapses and the cor-
responding mean field models have been proposed in previous
studies, and their dynamical properties and possible roles of the
dynamic synapses have been intensively investigated (Igarashi
et al., 2010; Otsubo et al., 2010; Katori et al., 2012). Synaptic
depression is known to enable neuronal gain control (Abbott
et al., 1997), and to contribute to the destabilization of the net-
work activity and generation of an oscillatory state (Pantic et al.,
2002; Melamed et al., 2008; Otsubo et al., 2010). Synaptic facil-
itation is believed to enhance the working memory function in

the prefrontal cortex (Mongillo et al., 2008). Furthermore, in a
network with both depression and facilitation synapses, changes
in the efficacy of dynamic synapses are suggested to reorganize
the effective network structure, thereby contributing to flexible
information processing in the prefrontal cortex (Katori et al.,
2011).

An associative memory network retrieves a memory pattern
according to their network dynamics in which the memory pat-
terns are stored in their synaptic connections. Associative mem-
ory networks have also been well investigated (Anderson and
Bower, 1972; Nakano, 1972; Amari, 1977; Hopfield, 1982; Adachi
and Aihara, 1997). Dynamics of memory retrieval can be char-
acterized as the convergence of the state of the network to a
fixed-point attractor that corresponds to a stored memory pat-
tern (Hopfield, 1982). In this type of conventional model of an
associative memory network, the state of the network usually
remains in the attractor. In contrast to this, in an associative mem-
ory network with the depression synapses, the memory retrieved
state can be destabilized and the state of the network can move
to another attractor that corresponds to another memory pat-
tern. Such transitive dynamics among several memory patterns
has been also investigated (Tsuda et al., 1987; Adachi and Aihara,
1997; Kanamaru et al., 2013). Although stochastic neural net-
works with depression and facilitation synapses have been studied
(Torres et al., 2007; Mejias and Torres, 2009), a comprehensive
understanding of the dynamics of associative memory networks
with dynamic synapses has not yet been achieved.

In the present study, we focus on the associative mem-
ory network with stochastic neurons and dynamic synapses.
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In particular, we target stability analysis on the associative mem-
ory network with correlated memory patterns. The properties of
the dynamic synapses are characterized by parameters that specify
the time constants of recovery from an active state to a rest-
ing state of synapses. In the models of short-term plasticity the
difference between depression and facilitation can be specified
using theses parameters. We investigate how the dynamics of the
associative memory network depends on these parameters.

In the following sections, first, we explain the model of
a stochastic neural network with dynamic synapses. Next we
derive the corresponding macroscopic mean field models that
approximate the dynamical properties of the stochastic model.
Furthermore, we analyze structural details of the dynamical sys-
tem in the macroscopic mean field model, and we show how
the network behavior and the memory-retrieval performance are
influenced by noise intensity and the properties of the dynamic
synapses. Finally, we discuss the results of the analyses from a
viewpoint of neuroscience as well as possible future studies.

2. MATERIALS AND METHODS
2.1. ASSOCIATIVE MEMORY NETWORK WITH STOCHASTIC NEURONS

AND DYNAMIC SYNAPSES
In this study, we use an associative memory network comprising
N binary neurons. The state of the neuron is determined stochas-
tically depending on inputs to the neuron. The state of the ith
binary neuron at time t is denoted by the variable si(t), which
represents a resting state [si(t) = 0] or an active state [si(t) = 1]
of the neuron. The state of the neuron changes according to the
following probabilistic dynamics (Amit et al., 1985; Mejias and
Torres, 2009):

Prob[si(t + 1) = 1] = gβ(hi(t)), (1)

gβ(hi(t)) = 1

2
(1 + tanh[βhi(t)]) , (2)

where gβ(h) is a neural response function with the noise intensity
1/β = T. The noise intensity T determines the smoothness of the
response function; for T → +0 the model becomes deterministic.
Note that we use {0, 1} to represent the neural activity in si(t),
whereas we use {−1, 1} to represent the memory patterns as we
describe later. The equation

hi(t) =
N∑

j �= i

Jij[2sj(t)xj(t)uj(t)/Use − 1] (3)

represents the total input to the ith neuron. The quantity Jij rep-
resents the absolute strength of the synaptic connection from the
jth to ith neuron. Use represents the fraction of released neuro-
transmitters in absence of depression and facilitation, and is the
steady state value of the variable ui(t).

The properties of dynamic synapses activated by the jth neu-
ron are modeled using the variables xj and uj, which represent
the fraction of releasable neurotransmitters and the utilization
parameter, respectively (Tsodyks et al., 1998). The releasable neu-
rotransmitters xj decreases with activation of the synapse, which
is triggered by the presynaptic neural activation. If there is no

presynaptic activation, xj recovers its steady state xj = 1 with time
constant τR. The utilization parameter uj increases with the acti-
vation of the synapse and recovers its steady state uj = Use with
time constant τF . This dynamics can be described by the following
equations (Tsodyks and Markram, 1997; Tsodyks et al., 1998):

xj(t + 1) = xj(t) + 1 − xj(t)

τR
− sj(t)xj(t)uj(t), (4)

uj(t + 1) = uj(t) + Use − uj(t)

τF
+ Use(1 − uj(t))sj(t). (5)

The efficacy of synaptic transmission is determined by the
product of xj(t) and uj(t); the efficacy decreases (short-term
depression) or increases (short-term facilitation) according to the
parameters τR, τF , and Use.

Associative memory networks work well if the memory pat-
terns are mutually orthogonal, but otherwise it does not necessar-
ily work well. Moreover, in the associative memory network with
depression synapses, the appearance of the oscillatory states is
influenced by the similarity among the memory patterns (Otsubo
et al., 2010). To evaluate the influence of the similarity among
memory patterns in the network with both depression and facil-
itation synapses, we construct the associative memory network
with correlated memory patterns by considering a parent mem-
ory pattern ξ and p child patterns ξμ (Amari, 1977; Toya et al.,
2000) as follows:

ξ = (ξ1, . . . , ξN), (6)

ξμ = (ξ
μ
1 , . . . , ξ

μ
N),μ = 1, . . . , p. (7)

Note that here we use the {−1, 1} to represents the memory pat-
terns. A schematic of the relationship between these patterns for
p = 3 is shown in Figure 1. Elements of the memory patterns are
randomly generated according to the probability

Prob[ξi = ±1] = 1

2
, (8)

Prob[ξμ

i = ±1] = 1 ± bξi

2
, (9)

where b is the correlation level among memory patterns and takes
values in the interval [0, 1]. For b = 0, child patterns are mutu-
ally orthogonal for N → ∞; for b = 1, the child patterns are
the same as the parent pattern. Here we use the child patterns
as the memory patterns. The direction cosine between memory
patterns can described as cos θ0 = 1

N

∑N
i = 1 ξiξ

μ

i = b and cos θ =
1
N

∑N
i = 1 ξ

μ

i ξν
i = b2, where μ �= ν (Otsubo et al., 2010).

According to the Hebbian rule, we use the following absolute
strength of synaptic connection Jij:

Jij = 1

N

p∑
μ

ξ
μ

i ξ
μ

j , (10)

where the self-recurrent connection does not exist (i.e., Jii = 0).
The absolute strength represents the synaptic response on the
connected neurons when the synapses do not undergo any
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FIGURE 1 | Schematic of correlated memory patterns for p = 3. The
direction cosine between the parent pattern ξ and a memory pattern ξμ is
cos θ0 = b. The direction cosine between two memory patterns is cos
θ = b2.

depression and facilitation. The connections with positive or neg-
ative values of the absolute strength correspond to excitatory or
inhibitory synaptic connections, respectively.

2.2. MEAN FIELD THEORY
To analyze the macroscopic properties of the associative memory
network with stochastic neurons, we consider dynamical mean
field theory with the sublattice method (Coolen, 2001; Otsubo
et al., 2010), which allows us to analyze the mean field model
with the non-homogeneous network structure of the associative
memory network.

First, we derive the microscopic mean field model by taking
the noise average of each variable in the stochastic neural network
model. We get the following equations from Equations (1) to (3):

〈si(t + 1)〉 = gβ(〈hi(t)〉), (11)

〈hi(t)〉 =
N∑

j �= i

Jij[2〈sj(t)xj(t)uj(j)〉/Use − 1]. (12)

Because of the non-convexity of the response function gβ and the
excitatory feedback connection, the network can stabilize the self-
sustained active states (Barbieri and Brunel, 2007). Similarly to
Equation (11), we obtain the following equations corresponding
to Equations (4) and (5):

〈xj(t+1)〉= 〈xj(t)〉+ 1 − 〈xj(t)〉
τR

− 〈sj(t)xj(t)uj(t)〉, (13)

〈uj(t+1)〉= 〈uj(t)〉+ Use − 〈uj(t)〉
τF

+ Use〈(1 − uj(t))sj(t)〉. (14)

Here, we assume that the correlations among variables sj(t), xj(t),
and uj(t) are negligible on the basis of the following considera-
tions. The correlations among the variables sj(t), xj(t), and uj(t)

can be separated into three pairs. The state of sj(t) is determined
by the state of other neurons in the previous time step, and the
state of xj(t) and uj(t) are determined by the state of each vari-
able in the previous time step. Thus, the correlation between sj(t)
and xj(t) is of the order 1/N, and this correlation disappears as
N → ∞ (Igarashi et al., 2010). Similarly, the correlation between
sj(t) and uj(t) also disappears as N → ∞. Accordingly, we assume
the following independent relations between variables:

〈sj(t)xj(t)uj(t)〉 = 〈sj(t)〉〈xj(t)〉〈uj(t)〉, (15)

〈sj(t)uj(t)〉 = 〈sj(t)〉〈uj(t)〉. (16)

Note that the independency between xj(t) and uj(t) is reported
to hold if there is no facilitation (Tsodyks et al., 1998). Thus, we
evaluate the validity of this assumption by comparison between
the simulation and the mean field model derived by this assump-
tion. As we show in “Results” section, the mean field model shows
good approximations. By using these relations (15) and (16), the
microscopic mean field model is derived as

mi(t+1)= gβ

⎡
⎣ N∑

j �= i

Jij
(
2mj(t)Xj(t)Uj(t)/Use − 1

)⎤⎦ , (17)

Xi(t+1)= Xi(t) + 1 − Xi(t)

τR
− mi(t)Xi(t)Ui(t), (18)

Ui(t+1)= Ui(t) + Use − Ui(t)

τF
+ Use(1 − Ui(t))mi(t), (19)

where mi(t) ≡ 〈si(t)〉, Xi(t) ≡ 〈xi(t)〉, and Ui(t) ≡ 〈ui(t)〉.
We now derive the mean field model that describes the

macroscopic dynamical properties of the associative memory net-
work. Here we use the sublattice method (Coolen, 2001) with
p-dimensional pattern vectors η = (η1, . . . ,ηp)T ∈ {−1, 1}p. A
set of neurons {1, . . . , N} is divided into 2p groups on the
basis of these pattern vectors. Suppose that ξ̄i = (ξ1

i , . . . , ξ
p
i )

T ∈
{−1, 1}p, a sublattice is defined as a set of neurons belonging to
a given pattern vector. The sublattice belonging to the pattern
vector η is defined as

Iη = {i|ξ̄i = η}, (20)

{1, . . . , N} =
⋃
η

Iη, (21)

where Iη is called a sublattice.
The absolute strength of synaptic connection (Equation 10)

can be rewritten with the expression of the sublattice as follows:

Jij = 1

N

p∑
μ= 1

ημη′μ = 1

N
η · η′, (22)

for i ∈ Iη, and j ∈ Iη′ .

We assumed that neurons within the same sublattice Iη follow the
same dynamics and that the variables in the microscopic mean
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field model (Equations 17–19) can be described as

mi(t) = mη(t), Xi(t) = Xη, and Ui(t) = Uη for i ∈ Iη. (23)

With these assumptions, we obtain the following macroscopic
mean field model of the associative memory network:

mη(t + 1) = Fmη({mη(t)}, {Xη(t)}, {Uη(t)}), (24)

Xη(t + 1) = FXη({mη(t)}, {Xη(t)}, {Uη(t)}), (25)

Uη(t + 1) = FUη({mη(t)}, {Xη(t)}, {Uη(t)}), (26)

where

Fmη({mη(t)}, {Xη(t)}, {Uη(t)})

= gβ

⎛
⎝∑

η′
pη′η · η′ (2mη′(t)Xη′(t)Uη′(t)/Use − 1

)⎞⎠, (27)

FXη({mη(t)}, {Xη(t)}, {Uη(t)})

= Xη(t) + 1 − Xη(t)

τR
− mη(t)Xη(t)Uη(t), (28)

FUη({mη(t)}, {Xη(t)}, {Uη(t)})

= Uη(t) + Use − Uη(t)

τF
+ Use(1 − Uη(t))mη(t), (29)

where pη = |Iη|/N denotes the relative sublattice size.
We represent the steady state for the macroscopic mean

field model by m̄η, X̄η, and Ūη. The steady state for the
Equations (24–26) with (t → ∞) is given by the following self-
consistent equations:

m̄η = gβ

⎛
⎜⎜⎜⎝

∑
η′

pη′η · η′

⎛
⎜⎜⎜⎝ 2m̄η′(1 + τFm̄η′)

1 + (τF + τR)Usem̄η′
+ UseτFτRm̄2

η′

− 1

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠, (30)

X̄η = 1

1 + τRŪηm̄η

, (31)

Ūη = Use(1 + τFm̄η)

1 + τFUsem̄η

. (32)

To investigate the stability of the system given by Equations
(24–26) around the steady state given by Equations (30–32), we
consider the locally linearized equations with small perturbations
δmη(t), δXη(t), and δUη(t) around the steady state as follows:

mη(t) = m̄η + δmη(t), (33)

Xη(t) = X̄η + δXη(t), (34)

Uη(t) = Ūη + δUη(t). (35)

We obtain the following locally linearized equations on the small
perturbations around the steady state with Jacobian matrix K.

⎛
⎝ δmη(t + 1)

δXη(t + 1)

δUη(t + 1)

⎞
⎠ = K

⎛
⎝ δmη(t)

δXη(t)
δUη(t)

⎞
⎠ . (36)

The stability of the system can be determined by the eigenvalues
of the Jacobian matrix on the steady state; the stability is distin-
guished by the absolute value of the eigenvalues. Elements on the
Jacobian matrix K are given as

∂Fmη

∂mη′
= g ′

β(h)pη′η · η′(2Xη′ (t)Uη′(t)/Use), (37)

∂Fmη

∂Xη′
= g ′

β(h)pη′η · η′(2mη′(t)Uη′(t)/Use), (38)

∂FUη

∂Uη′
= g ′

β(h)pη′η · η′(2mη′(t)Xη′(t)/Use), (39)

where

g ′
β(h) = β

2

(
1 − tanh2(βh)

)
, (40)

h =
∑
η′

pη′η · η′ (2mη′Xη′ Uη′/Use − 1
)
. (41)

Furthermore, the remaining matrix elements are given by

∂FXη

∂mη′
= −UηXηδη,η′ , (42)

∂FXη

∂Xη′
=

((
1 − 1

τR

)
− mηUη

)
δη,η′ , (43)

∂FXη

∂Uη′
= −mηXηδη,η′ , (44)

∂FUη

∂mη′
= Use(1 − Uη)δη,η′ , (45)

∂FUη

∂Xη′
= 0, (46)

∂FUη

∂Uη′
=

((
1 − 1

τF

)
− Usemη

)
δη,η′ , (47)

where δη,η′ is Kronecker’s delta, namely, δη,η′ is 1 if the η = η′,
and 0 otherwise. By using this Jacobian matrix, we analyze the
stability of the steady states in the following section.

In the following analysis, we fix the number of stored pat-
tern to be p = 3. In this case, neurons can be divided into eight
sublattices with the following combination of η:

η ∈ {(1,1,1)T, (1,1, −1)T, (1,−1,1)T, (1,−1,−1)T,

(−1,1,1)T, (−1,1,−1)T, (−1,−1,1)T, (−1,−1, −1)T}. (48)
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Since the memory patterns are provided by Equations (8) and (9),
the number of neurons |Iη| in the sublattice Iη is given as follows
(Otsubo et al., 2010):

|Iη|=
{

N(1 + 3b2)/8, if η = (1, 1, 1)T, (−1,−1,−1)T,

N(1 − b2)/8, otherwise.
(49)

The model with p = 3 is composed of 24 variables in total.

3. RESULTS
In this section, we present the results of simulation in the stochas-
tic model and of analyses of the macroscopic behavior in the
associative memory model with dynamic synapses. In particu-
lar, we analyze the changes in the structure of the dynamics,
depending on the parameters T, τF , τR, and Use.

To quantify the similarity between the state of the network s(t)
and the μth memory pattern ξμ, we use an overlap given by

Mμ(t) = 1

N

N∑
i = 1

ξ
μ

i [2si(t) − 1]. (50)

In the Equation (50), if 2si(t) − 1 is equal to ξ
μ

i , ∀i, then Mμ(t) =
1. This means that if the state of neurons completely matches the
μth memory pattern, the overlap becomes unity. In the formula-
tion of the macroscopic mean field model, the above equation can
be rewritten as follows:

Mμ(t) =
∑
η′

pη′η′μ[2mη′(t) − 1]. (51)

Furthermore, the state of the network is classified according to
the symmetry of the overlaps by using the effective dimension
(ED) which is defined in the following. We consider only the
case with p = 3. If the values of three overlaps at time t are
equal or nearly equal, namely, if they satisfy |Mμ(t) − Mν(t)| <

ε, ∀(μ, ν) ∈ {(1, 2), (2, 3), (3, 1)}, then ED(t) = 1, where ε =
10−5. If the values of all the overlaps are different i.e., if they sat-
isfy |Mμ(t) − Mν(t)| > ε,∀(μ, ν) ∈ {(1, 2), (2, 3), (3, 1)}, then
ED(t) = 3. Otherwise, namely, if the values of two of three over-
laps are equivalent, ED(t) = 2. The mean effective dimension
(MED) is defined as MED = ∑L

t = 1 ED(t)/L, where L is the
length of a given time course.

We classified the state of the network according to the overlaps
and the ED. There are four different types of steady state (fixed
point), described as follows. In the memory state (MEM), one of
the memory patterns or inverted memory patterns is retrieved.
In the symmetric (asymmetric) mixed state [SMIX(AMIX)], one
of the symmetric (asymmetric) mixture of the memory patterns
is retrieved. In the paramagnetic state (PARA), the network does
not retrieve any patterns and the state of each neuron is random.
The oscillatory states have been classified according to the ED of
the macroscopic mean field model giving rise to three oscillatory
regimes: OS1, OS2, and OS3 states, which satisfy MED = 1, 1 <

MED ≤ 2, and 2 < MED ≤ 3, respectively.
Figure 2 shows typical time courses indicating that the state

of the network converges to the steady states. The top panels in

each subfigure in Figure 2 show a raster plot; the dots indicate
the active state of the neuron with si(t) = 1. The initial states of
the simulation in the stochastic model are xi(t) = 1, ui(t) = Use,
and si(t) are set to be 0 or 1 randomly so that the overlaps are
almost zero in the initial state. We used N = 104 neurons in the
simulation. The bottom panels show overlaps M1(t), M2(t), and
M3(t) of the stochastic model (solid curves) and its correspond-
ing steady states in the macroscopic mean field model (dashed
lines). Appearance of the steady states of the stochastic model is
consistent with the corresponding macroscopic mean field model.

In the MEM state (Figure 2A), one of the memory patterns
or inverted memory patterns is retrieved. The state of the net-
work converges to a steady state, which corresponds to a stable
fixed point in the macroscopic mean field model. The steady state
can be represented with the overlaps as e.g., (M1, M2, M3) =
(M, M∗, M∗), where M and M∗ satisfy M > M∗ > 0, and the
corresponding memory pattern is ξ1. There are six possible MEM
states: the states obtained by the permutations on the three mem-
ory patterns and its inversion. Figure 2A shows a typical time
course of the process of convergence to the MEM state (to the
memory pattern ξ3 in the Figure 2A ) in the stochastic model.

In the SMIX state (Figure 2B), the mixture of the memory
patterns or the inverted memory patterns is retrieved. There
are two possible SMIX states; the SMIX states are represented
as (M1, M2, M3) = (M̄, M̄, M̄) for the mixture of the stored
patterns and (M1, M2, M3) = (−M̄, −M̄,−M̄) for its inverse,
where M̄ > 0. The corresponding memory patterns are sgn(ξ 1 +
ξ 2 + ξ3) and −sgn(ξ1 + ξ2 + ξ3), respectively. Figure 2B shows a
typical time course that the network converges to the SMIX state
[to the mixture of the stored patterns sgn(ξ 1 + ξ 2 + ξ 3) in the
Figure 2B].

In the AMIX state (Figure 2C), one of the asymmetric mixture
of the memory patterns is retrieved. The AMIX state can be rep-
resented as e.g., (M1, M2, M3) = (−M′′, M′, M′), where M′ >

M′′ > 0, and the corresponding memory pattern is sgn(−ξ 1 +
ξ 2 + ξ3). There are six possible AMIX states: the states obtained
by the permutations on the three memory patterns and its inver-
sion. Figure 2C shows a typical time course of the state of the net-
work when the state converges to the AMIX state that corresponds
to the pattern sgn(ξ 1 − ξ 2 + ξ 3).

In the PARA state, the state of each neuron is random.
Thus, the PARA state is represented as (M1, M2, M3) = (0, 0, 0).
Figure 2D shows that the network stays on the PARA state.

Figure 3 shows typical time courses of the oscillatory states in
the stochastic model with N = 104 and the corresponding macro-
scopic mean field model. Dynamics of the mean field model is
shown in the third panel in each subfigure and is consistent with
that of the corresponding stochastic model.

In the OS1 state shown in Figure 3A, the network oscillates
between the mixed state and the inverse of the mixed state; thus,
the overlaps M1, M2, and M3 oscillate in phase and the ED = 1.
The time course of overlaps in the macroscopic mean field model
is shown in the third panel in Figure 3A.

In the OS2 state shown in Figure 3B, the network oscillates
between one of the memory patterns and its inverse pattern; one
of the overlap (M1 in the Figure 3B) oscillates with larger ampli-
tude than others. The remaining two overlaps oscillate in phase.
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FIGURE 2 | Transient processes in the simulation where the associative

network converges to the steady state with Use = 0.1, b = 0.2, τR = 4,

and τF = 2. The initial states si (0) of the simulation are set randomly so that
the overlaps are almost zero in the initial state. (A) Memory state (T = 1.0).
(B) Symmetric mixed state (T = 0.2). (C) Asymmetric mixed state (T = 0.2).
(D) Paramagnetic state (T = 1.6). In the top panel of each subfigure, dots
indicate the active state of the neurons [si (t) = 1]. 96 of 104 neurons are

displayed. The indices of the neurons on the vertical axis are sorted according
to the stored memory patterns. The black and white striped pattern indicates
the stored memory pattern. Each black and white indicate 1 and 0,
respectively. In the second panel of each subfigure, the overlaps between
M1, M2, and M3 are indicated by red, green, and blue curves, respectively.
The solid curves are the simulation in the stochastic model and dashed lines
indicate the steady state in the macroscopic mean field model.

Because the model is symmetric, three possible patterns of oscil-
lation exist and the realization of the oscillatory pattern depends
on the initial state of the network.

In the OS3 state shown in Figures 3C,D, there are two sub-
modes of oscillatory states. The first mode oscillates symmetri-
cally between one of memory patterns and its inverted patterns,
and appearance of the oscillation circulate among the three mem-
ory patterns (see Figure 3C ). The order of the three memory
pattern randomly changes in the stochastic model. In the macro-
scopic mean field model, the oscillatory pattern with the orders
M1 → M2 → M3 and M3 → M2 → M1 coexist (the oscilla-
tory pattern with the order M1 → M2 → M3 is shown in the
third panel of Figure 3C). The second mode shows asymmet-
ric oscillation among three memory patterns (see Figure 3D) or
among three inverted patterns. The order of circulation in the
three memory (or inverted-memory) patterns is random in the
simulation.

Figure 4 shows the qualitative difference in the bifurcation
diagrams with respect to the noise intensity T in three differ-
ent parameter regions: the pseudo-constant region (τR = 4 and
τF = 2), the depression-dominant region (τR = 10 and τF = 2),
and the facilitation-dominant region (τR = 4 and τF = 24). Here,
we set b = 0.2 and Use = 0.1.

In the pseudo-constant region (Figure 4A), the time constants
τR and τF are relatively small, then the effect of the short-term
plasticity quickly disappears, and the transmission efficacy of
the dynamic synapses remains nearby its steady state. Figure 4A
shows the bifurcation diagram with respect to the noise intensity
T in the pseudo-constant region with τR = 4 and τF = 2. In the
relatively low noise range with T < 0.4, AMIX, SMIX, and MEM
states coexist as the stable fixed points. The absolute values of the
overlaps decreased with T. As T increases, the fixed points that
correspond to the AMIX states are destabilized via the saddle-
node (SN) bifurcation at T = 0.429. Each of two SMIX states
intersects with three unstable fixed points and becomes unstable
at T = 0.781 via the transcritical (TC) bifurcation, which is sta-
bilized again at T = 1.161 via another TC bifurcation. The two
SMIX states disappear by coalescing with an unstable fixed point
at T = 1.488 via the pitchfork (PF) bifurcation, and the stable
fixed point that corresponds to the PARA state emerges. All six
MEM states disappear at T = 1.248 via the SN bifurcation.

In the depression-dominant region (Figure 4B), τR is relatively
large, and the effect of decreases in the releasable neurotransmit-
ters remains long. In this region, the position of the fixed point
shrink to the low-noise side and quasi-periodic circles that corre-
spond to oscillatory states appear. As T increases, AMIX, SMIX,
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FIGURE 3 | Oscillatory states of the associative network with

Use = 0.1, b = 0.2, and τF = 2. The first and second panels of each
subfigure are the simulation results in the same format as in Figure 2.
The third panel of each subfigure shows the time course of the overlaps
in the macroscopic mean field model. Subfigures (A–D) display the

different modes of oscillation. (A) Oscillatory state with MED = 1 (OS1).
(B) Oscillatory state with 1 < MED ≤ 2 (OS2). (C) Oscillatory state
showing the symmetric oscillatory pattern with 2 < MED ≤ 3 (OS3).
(D) Oscillatory state showing the asymmetric oscillatory pattern with
2 < MED ≤ 3 (OS3).

and MEM states are destabilized via the Neimark-Sacker (NS)
bifurcations at T = 0.212, T = 0.311, and T = 0.576, respec-
tively. The oscillatory states appear at T = 0.569 and exhibit
quasi-periodic oscillation on an invariant circle. There exists a
multi-stable state of the stable fixed point and quasi-periodic
states on the range from T = 0.569 to T = 0.576. As T increases,
OS2, OS3, and OS1 appear in this order. The oscillatory states
disappear via the NS bifurcation at T = 1.180.

In the facilitation-dominant region (Figure 4C), τF is rela-
tively large, and the effect of increase in the utilization parameter
remains long. In this region, the range of the fixed points that
correspond to the MEM, SMIX, and AMIX is expanded. The over-
all bifurcation structure is similar to that of the pseudo-constant
region, but the SMIX state is destabilized at T = 1.845 via the NS
bifurcation. Furthermore, the OS1 state appear at T = 1.811 and
disappear at T = 1.964 via the NS bifurcation.

Figure 5A shows a bifurcation diagram for comparison
between the macroscopic mean field model and the simulation
when we set Use = 0.1, τR = 10, τF = 2, b = 0.2, and N = 104

with several initial values. The simulation shows good agree-
ment with the corresponding macroscopic mean field model.
Figure 5B shows an orbit of an OS3 state for Use = 0.1, τR = 6.5,
τF = 2, b = 0.2, and T = 0.91 in the simulation with N = 104

(red dots) and in the macroscopic mean field model (the blue
solid curve). The quasi-periodic orbit in the macroscopic mean
field model also shows good agreement with the simulation. We
have confirmed that the simulation result becomes closer to the
macroscopic mean field model when N is increased.

The phase diagrams in Figures 6, 7 show sets of bifurcation
points that switch the stability of the fixed points and the distribu-
tion of the oscillatory states obtained by the brute-force methods.
We calculated the time evolution of the macroscopic mean field
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FIGURE 4 | Continued
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FIGURE 4 | Bifurcation diagrams with respect to T show changes in

dynamical structure of the macroscopic mean field model with

Use = 0.1 and b = 0.2. (A) In the pseudo-constant region the effects
of dynamic synapses are relatively small (τR = 4 and τF = 2). Three
overlaps (M1, M2, M3) on the steady state are represented by positive
real numbers that satisfy M > M∗ > 0, M′ > M′′ > 0, M̄ > 0.
(B) The depression-dominant region (τR = 10 and τF = 2). (C) The
facilitation-dominant region (τR = 4 and τF = 24). The red and blue curves

indicate the fixed point where the ED is 1 and 2, respectively. The solid
and dashed curves indicate stable and unstable fixed points, respectively.
The orange, green, magenta, and cyan filled circles indicate the
saddle-node (SN), Neimark–Sacker (NS), transcritical (TC), and pitchfork
(PF) bifurcations, respectively. The cyan, magenta, and orange open circles
indicate the maximum and minimum values of the oscillatory states OS1,
OS2, and OS3, respectively. The gray dots indicate the orbit of the
oscillatory state.

FIGURE 5 | Comparison between the stochastic model (N = 104) and

the macroscopic mean field model. (A) A bifurcation diagram (Use = 0.1,
τR = 10, τF = 2, and b = 0.2). The blue curves, dots, and circles indicate
the fixed points, orbits, and maximal or minimal values of the orbit in the
macroscopic mean field model, respectively. The red crosses and squares
indicate the corresponding simulation results. (B) Distribution of the orbits
(Use = 0.1, τR = 6.5, τF = 2, T = 0.91, and b = 0.2). The simulation result
is indicated by red dots. The invariant circle in the macroscopic mean field
model is indicated by the blue solid curve.

model on each parameter points; the parameter points where the
orbit converges to the oscillatory states are indicated by colored
dots in Figures 6, 7. In the higher-noise boundary of the oscilla-
tory state, the oscillatory states are separated by the supercritical
type of the NS bifurcation; the region of the oscillatory states is
well separated by the sets of the NS bifurcation. On the other
hand, the oscillatory states appear with the subcritical type of
NS bifurcation in the lower-noise boundary. Thus, the oscillatory
states and the steady states coexist as multi-stable states in this
region. Similar bifurcation structure is found in the uniformly
connected network (Katori et al., 2012).

The (T, τR) phase diagram in Figure 6A shows changes in the
dynamical properties of the network from the pseudo-constant
region to the depression-dominant region. As τR increases, the
regions of the stable fixed point of MEM, SMIX, and AMIX
shrink, while the regions of the PARA state and the oscillatory
states expand. The (T, τF) phase diagram shown in Figure 6B
illustrates the dynamical properties from the pseudo-constant
region to the facilitation-dominant region. As τF increase, the
regions of MEM, SMIX, and AMIX expand, while the region
of the PARA state shrinks. Furthermore, the oscillatory states
appear. As τF increases from the depression-dominant region
(Figure 6C), the regions of the oscillatory states expand. As Use

increases, the region of the PARA state expands, while regions of
other states shrink.

The (T, b) phase diagrams in Figure 7 show that the dynamical
properties of the network depend on the correlation level between
the memory patterns. As b increases, the region of the SMIX
state expands, while regions of the other states shrink. In the
depression-dominant range (Figure 7B), as the correlation level b
increases, the region of the OS3 state shrinks but that of OS1 state
remain, which corresponds to the oscillatory state between SMIX
states. In the facilitation-dominant range (Figure 7C), the over-
all bifurcation structure is similar to that of the pseudo-constant
range, but the region of MEM states expands.

4. DISCUSSION
In this study, we investigated the dynamical properties of an asso-
ciative memory network composed of a stochastic neural network
with both short-term depression and facilitation synapses on the
basis of the macroscopic mean field model. We analyzed the
behavior of the network in broad ranges of parameters that spec-
ify the noise intensity and the properties of the dynamic synapses.
We found that the associative memory network exhibits the vari-
ety of dynamics, including the memory state, SMIX and AMIX,
and several modes of the oscillatory states, and that its properties
change with various types of bifurcations.

The performance of the memory retrieval can be character-
ized by the appearance of the MEM state in which the state
of the network successfully converges to one of the memory
patterns. In addition to the MEM state, in the relatively-low-
noise range, there exists SMIX and AMIX states that corre-
spond to pseudo-memory patterns. In this parameter range, the
retrieval of the memory pattern is not assured and depends
on the initial state of the network. In the high-noise range,
the network tends to the PARA state, which corresponds to
the state in which the pattern of neural activity is disrupted
and randomized because of the noise. We classified the oscil-
latory states into three modes according to the ED. The OS1
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FIGURE 6 | Phase diagrams with respect to parameters that specify the

properties of dynamic synapses. (A) (τR, T ) phase diagram. (B,C) (τF , T )
phase diagrams. (D) (Use, T ) phase diagram. The orange, green, magenta,
and cyan curves indicate the sets of saddle-node (SN), Neimark–Sacker (NS),

transcritical (TC), and pitchfork (PF) bifurcation points, respectively. The cyan,
magenta, and orange dots indicate the oscillatory states OS1, OS2, and OS3,
respectively. The dotted lines indicate the parameter points we used in
Figure 4.

state corresponds to oscillation between the pseudo-memory pat-
terns, and it appears in the relatively high noise range. The
OS2 state is the oscillation between one of the memory pat-
terns and its inverse pattern, and it appears next to the MEM
state. The OS3 state is the transitive state between memory
patterns and their inverse patterns. Such transitive dynamics is
related to the itinerant dynamics in terms of chaotic dynamics
(Tsuda et al., 1987; Adachi and Aihara, 1997; Kanamaru et al.,
2013).

The appearance of the above mentioned states of the network
depends on the properties of the dynamic synapses (Figure 6)
and on the correlation level between memory patterns (Figure 7).
In the pseudo-constant region (Figure 4A), the state of the
network converges to one of the fixed points like the conven-
tional associative memory model (Anderson and Bower, 1972;

Nakano, 1972; Hopfield, 1982). In the depression-dominant
region, which is archived by increasing the recovery time con-
stant τR from the pseudo-constant region, the area of successful
memory retrieval shrinks, whereas the oscillatory states appear as
shown in Figure 6A. Increase in the fraction of neurotransmitter-
release Use intensifies the influence of the depression. As Use

increase, the area of the PARA state expands, whereas the areas
of other states shrink (Figure 6D). In the facilitation-dominant
region, which is archived by increasing the time constant τF from
the pseudo-constant region, the area of the memory retrieval
expands (Figures 6B, 7C), which suggests that the facilitation
synapses contribute to the memory retrieval (Mongillo et al.,
2008). As the correlation level among memory patterns increases
(Figure 7), the network loses the ability to retrieve the mem-
ory pattern, and the state of the network tends to become the
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FIGURE 7 | (b, T) phase diagrams in (A) the pseudo-constant, (B)

depression-dominant, and (C) facilitation-dominant ranges. The format
is the same as in Figure 6.

pseudo-memory pattern. In the region of the oscillatory states,
the oscillatory state among the memory patterns shrinks, whereas
the oscillatory state between pseudo-memory patterns remains
(Figure 7B).

These results have implications regarding brain functions. The
distribution of facilitation and depression synapses in the brain
varies according to the region of the brain. Many facilitation
synapses exist in the prefrontal lobe and, whereas many depres-
sion synapses appear in the parietal lobe (Wang et al., 2006).
The facilitation synapses may form a synaptic working mem-
ory and contribute to the prefrontal function, which requires a
flexible executive function. Conversely, the depression synapses
might be involved in memory search or mental rotation, which
requires to imagine to handle an object in the parietal cor-
tex (Tagaris et al., 1996). The oscillatory states OS3 observed
in the present model correspond to the states that the neu-
ral network sequentially retrieves stored memory patterns. The
oscillatory state appears with the incorporation of depression
synapses. Furthermore, the area of the oscillatory state expands
with increase in the time constant of the facilitation process.
These findings imply that the depression and facilitation synapses
contribute to various brain functions e.g., a generation of sequen-
tial actions or the flexible information representation (Katori
et al., 2011).

The main findings of this work are consistent with previ-
ously reported studies on associative memory networks, and we
revealed further details of the network dynamics. In the previous
study on the associative memory network with both depression
and facilitation synapses by Torres et al. (2007), the mean activi-
ties with active and inert neurons are considered to construct the
mean field model, in which the number of the variables in the
model is on the order of p. On the other hand, in our present
study, we constructed the mean field model formulated with the
sublattice method that enables to analyze the non-homogeneous
network structure of the associative memory network; the num-
ber of the variables is on the order of 2p. In the case with p = 1,
these two mean field models are equivalent, whereas these are
differences in cases with p ≥ 2. Here we discussed the case with
p = 3 and reported that the associative memory network exhibits
a variety of dynamical states, including the memory and pseudo-
memory states, as well as several oscillatory states among memory
patterns. Furthermore, we reported the dependency of these states
on the noise level and the parameters that specify the prop-
erties of the dynamic synapses, including details of bifurcation
structure.

Although, we have considered the properties of the steady
state and the oscillatory state as the attractors in the present
study, properties of a transient process of memory retrieval
should be evaluated. The relation between the stability of the
memory retrieved states and irregularity of the neural activ-
ity (Mongillo et al., 2012) remains to be further investigated.
In the present study, we used a simple neuron model, namely
the discrete-time and binary neuron model. Meanwhile, the
behavior observed in the present model should be qualitatively
and/or quantitatively evaluated in more realistic neuron mod-
els e.g., integrate-and-fire or Hodgkin–Huxley model in the
future.
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