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The brain is a complex network of neural interactions, both at the microscopic and
macroscopic level. Graph theory is well suited to examine the global network architecture
of these neural networks. Many popular graph metrics, however, encode average
properties of individual network elements. Complementing these “conventional” graph
metrics, the eigenvalue spectrum of the normalized Laplacian describes a network’s
structure directly at a systems level, without referring to individual nodes or connections.
In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of
the macaque and cat, and the microscopic network of the Caenorhabditis elegans were
examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra
revealed an integrative community structure in neural brain networks. Extending previous
findings of overlap of network attributes across species, similarity of the Laplacian spectra
across the cat, macaque and C. elegans neural networks suggests a certain level of
consistency in the overall architecture of the anatomical neural networks of these species.
Our results further suggest a specific network class for neural networks, distinct from
conceptual small-world and scale-free models as well as several empirical networks.
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INTRODUCTION
The brain is a complex system of structurally and function-
ally interconnected elements. Within this system, healthy brain
function depends on a constant interplay between local informa-
tion processing and efficient global integration of information,
facilitated by neural interactions within a large-scale network of
structurally interconnected neurons and brain regions; a network
known as the connectome (Sporns et al., 2005; Bullmore and
Sporns, 2009). Neural interactions occur on multiple scales, rang-
ing from the microscopic level -considering neuronal cells and
their synaptic connections- to the macroscopic level -defining
neural projections between large-scale brain regions (Sporns
et al., 2005). In the past decades, studies examining the topo-
logical structure of neural systems, including the neural systems
of mammalian species (Scannell et al., 1995; Modha and Singh,
2010) as well as the connectomes of nematode (Varshney et al.,
2011) and diptera species (Pavlou and Goodwin, 2013), have been
reported to display several network attributes of an efficient com-
munication architecture. Neural systems show high levels of local
clustering and community structure, together with short commu-
nication pathways and central communication hubs, suggested to
facilitate efficient long-distance communication and global inte-
gration of information between subparts of the system (Sporns
and Zwi, 2004; Bassett and Bullmore, 2006; Hagmann et al., 2008;
Bullmore and Sporns, 2009; Sporns, 2011; van den Heuvel and
Sporns, 2011; Harriger et al., 2012; van den Heuvel et al., 2012;
Collin et al., 2013).

Neural systems can be mathematically described as a graph
G = (V, E), comprising a collection of nodes V, representing
neurons or brain regions, and interconnecting edges E (Boccaletti
et al., 2006; van den Heuvel and Hulshoff Pol, 2010a,b; Sporns,
2011; Bullmore and Sporns, 2012). Commonly explored graph

theoretical metrics involve the level of local clustering of nodes,
level of degree, level of betweenness or closeness centrality and
their level of global and local communication efficiency (Watts
and Strogatz, 1998; Newman, 2003; Boccaletti et al., 2006). These
“conventional” metrics are primarily focused on mapping the
properties of individual nodes, and the examination of overall
aspects of network organization, such as the examination of a
network’s small-world or scale-free features, most often involves
a global generalization (for example averaging) of these node
metrics to the whole network.

Complementing conventional metrics, an examination of the
global structure of neural networks at a systems level may cap-
ture qualitative aspects of the network as a whole, including
aspects that remain out of sight from conventional measures
(Atay et al., 2006; Banerjee and Jost, 2007; Varshney et al., 2011;
Banerjee, 2012). In recent years, studies have started to utilize
spectral graph theory to examine neural networks (Banerjee and
Jost, 2007; Varshney et al., 2011), providing metrics on basis of
the eigenvectors of matrices of a network, such as node cen-
trality (Bonacich, 1972, 2007; Page et al., 1999; Lohmann et al.,
2010) and community identification methods (Newman, 2006;
Fortunato, 2010; Liang et al., 2011; Harriger et al., 2012). While
these eigenvectors are still closely related to properties of individ-
ual network elements, and are often used as such, the spectrum of
the associated eigenvalues contains valuable information related
to the overall structure of a graph (Vukadinović et al., 2002;
Banerjee and Jost, 2007; McGraw and Menzinger, 2008; Banerjee,
2012), providing new insight in the workings of the brain as
a system.

In this paper, we investigate the architecture of neural net-
works, describing the organization of maps of connections
between neural elements (neurons, brain regions), at a systems
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level by examining the Laplacian eigenvalue spectrum of the con-
nectome data of the macaque, cat and Caenorhabditis elegans.
These connectome data are comprehensive descriptions of the
anatomical neural networks of the three species, describing the
structural connectivity networks of, on the microscopic level, the
whole neuronal system (in the C. elegans) or, on the macroscopic
level, the networks of long-range white matter projections of the
cerebral cortex (in macaque and cat). These three connectome
maps are often used in literature (Hilgetag et al., 2000; Sporns and
Kötter, 2004; Kaiser, 2011; Zamora-López et al., 2011; de Reus and
van den Heuvel, 2013) and in this study, we refer to these neural
networks as representatives for a “neural network class.”

The normalized Laplacian matrix, in short referred to as the
“Laplacian,” is a transformation of the connectivity matrix of the
network, with the Laplacian eigenvalues describing aspects related
to global network structure and dynamic interactions among net-
work parts (Chung, 1996; Banerjee, 2012). The spectrum of the
normalized Laplacian of undirected networks has the advantage
that all eigenvalues are in the domain between 0 and 2, enabling
the comparison of networks of different sizes (Banerjee, 2012).
Furthermore, it has been noted that similarities between the spec-
tra of networks can be used for the classification of networks
(Ipsen and Mikhailov, 2001; Vukadinović et al., 2002; Banerjee
and Jost, 2008b; Cetinkaya et al., 2012). Therefore, the spectra of
the neural networks are examined in light of providing indica-
tions of general organizational characteristics of neural networks
across species.

MATERIALS AND METHODS
DATA
In this study, the Laplacian spectrum of three neural connectiv-
ity datasets was examined, describing macroscopic interactions of
the macaque and cat brain, and microscopic connectivity of the
Caenorhabditis elegans neural system. All connectivity datasets
were transformed to undirected and unweighted versions (i.e., all
directed edges were transformed to reciprocal binary edges, see
also Supplementary Material) to make the analysis of the eigen-
values feasible. A description of the three datasets is included
below.

Macaque
The connectivity dataset of the macaque was based on tract trac-
ing studies collected in the online Collation of Connectivity data
on the Macaque brain (CoCoMac) database [cocomac.g-node.org
(Stephan et al., 2001; Kötter, 2004)], analyzed by Modha and
Singh (2010), and describes macroscopic white matter projections
between cortical regions of the macaque cortex. The connection
matrix as examined in this study was a subset of the matrix
provided by Modha and Singh (Modha and Singh, 2010) and
was taken from the study of Harriger et al. (2012), excluding
subcortical areas (thalamus, basal ganglia and brainstem) and
including only connected areas (i.e., regions having at least one
ingoing and at least one outgoing connection). In all, the included
macroscopic connectivity dataset included 242 cortical regions
connected by 4090 directed binary connections (Harriger et al.,
2012). The density of this matrix, represented by the number of
connections divided by the number of possible connections, was

7.0%. In the main analysis of this study, the connectivity data
was converted to an unweighted, undirected network, with 6108
connections and 10.5% density. For detailed information on the
macroscopic macaque connectome see also (Modha and Singh,
2010; Harriger et al., 2012).

Cat
The macroscopic connectivity dataset of the cat cortex was
taken from the paper of Scannell et al. (1995), as previously
analyzed by e.g., (Hilgetag et al., 2000; Sporns et al., 2004;
Zamora-López et al., 2009; de Reus and van den Heuvel, 2013).
Similar to the macaque connectome map, this dataset resulted
from a literature review, combining information from neu-
roanatomical literature and tract tracing studies (Scannell et al.,
1995). The dataset includes 65 cortical areas connected by 1139
directed weighted connections (all areas having at least one
in- and one outgoing connection), giving a density of 27.4%.
Three connections strengths were distinguished: weak connec-
tions having weight 1, medium strength connections with weight
2 and strong connections with weight 3. For our study, the
dataset was converted to a binary, undirected network, includ-
ing 730 unweighted, undirected connections with a total density
of 35.1%.

Caenorhabditis elegans
The microscopic connectivity dataset of the Caenorhabditis ele-
gans (C. elegans) was taken from the study (Varshney et al., 2011).
The dataset was based on original data from White et al. (1986),
and was further improved by Varshney and colleagues, adding
new data from serial section electron microscopy reconstruc-
tions. The connectivity dataset described 279 neurons, of which
274 were included in this study. Five neurons (IL2DL/R, PLNR,
DD06, and PVDR) were excluded as they had not at least one
in- and one outgoing connection (Varshney et al., 2011). In total
the dataset contained 2956 directed connections by gap-junction
and chemical synapses and the density was 3.95%, with connec-
tions weighted by the number of junctions between two neurons.
For the current analysis, the connectivity matrix was transformed
to an undirected, unweighted network having 2253 undirected
connections and a density of 6.02%.

Model networks
The Laplacian spectra of the neural networks were compared to
the spectra of three commonly used model networks. First, the
network model by Erdös-Rényi (ER) was considered, in which
nodes are linked by randomly placed connections (Erdös and
Rényi, 1959). Second, the Watts-Strogatz (WS) model was consid-
ered for the examination of the spectra of small-world networks,
obtained by randomly rewiring 30% of the connections of a lat-
tice ring network with degree 4 for each node (Watts and Strogatz,
1998). Third, the Barabási-Albert (BA) model was considered to
examine the spectra of scale-free networks. BA networks were
formed by a stochastic growth process on basis of preferential
attachment: starting from a lattice of 4 nodes, a new node was
added to the network at every timestep by connecting this node
to four already existing nodes with selection probabilities propor-
tional to the degree of the old nodes (Barabási and Albert, 1999).
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All model networks had 274 nodes and a density close to 6%
comparable to the C. elegans network (6.59% density in the WS
small-world networks, 6.02% for the ER networks, 5.78% for the
BA scale-free networks). Computations showed that the spectra
had similar shapes for different numbers of nodes equal to that
of the macaque and cat connectome maps. The Laplacian spectra
of the model networks were obtained as average over 1000 model
networks.

Empirical networks
Four empirical networks were examined, describing a food web,
an email interchange network, a network of football games
and a power grid network. The food web network described
the food web of Florida Bay during wet season and consisted
of 121 connected living compartments [http://www.cbl.umces.
edu/~atlss/ATLSS.html (Ulanowicz et al., 1998)]. After trans-
formation to an undirected, unweighted network, the food
web consisted of 1763 undirected connections, with a density
of 23.9%. The email interchange network described the email
communication at the university of Rovira i Virgili and had
1133 nodes and 5451 undirected unweighted connections, with
density 0.85% [http://www.cise.ufl.edu/research/sparse/matrices
(Guimerà et al., 2003)]. The American football network described
the games between Division IA colleges in 2000 and had 115
nodes and 613 undirected unweighted connections resulting in
density 9.35% [http://www.cise.ufl.edu/research/sparse/matrices
(Girvan and Newman, 2002)]. The power grid of the Western
States of the United States had 4941 nodes, with 6594 undi-
rected and unweighted connections and 0.054% density [http://
www.cise.ufl.edu/research/sparse/matrices (Watts and Strogatz,
1998)].

Reference networks
The eigenvalues of the Laplacian spectra of the examined net-
works were compared to average values of 1000 randomized ref-
erence networks, which had comparable degree distributions but
were randomly wired. These reference networks were obtained
by rewiring the connections of the original networks following
the Markov random switching algorithm, ensuring preservation
of overall network size, network density and degree sequence
(Maslov and Sneppen, 2002).

LAPLACIAN SPECTRUM
The normalized Laplacian matrix
In this paper we considered spectra of the normalized Laplacian
matrix L, which has the advantage that all eigenvalues are in the
domain between 0 and 2, enabling the comparison of networks of
different sizes (Chung, 1996).

The normalized Laplacian matrix is defined as:

L(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

1 if u = v

− 1

deg u
if u and v are connected

0 otherwise

with u and v representing two nodes of the network, L(u,v) the
edge from node u to v and deg u the (binary) degree of node u.
Alternatively, the normalized Laplacian can also be expressed in

its relation with the adjacency matrix A as L = I − D−1A where
I is the identity matrix and D is a diagonal matrix with D(u,u) =
deg u. The Laplacian spectrum of the network is then given by the
collection of all eigenvalues of L; i.e., the collection of all scalars
λ for which there exists a non-zero vector v (being the associated
eigenvector) that satisfies the eigenvalue equation Lv = λv.

The normalized Laplacian matrix is unitarily equivalent to
the symmetric normalized Laplacian defined by Chung (1996),
in which L = I − D−1/2AD1/2, showing that the eigenvalues
of both Laplacians are real. Furthermore, the smallest eigen-
value of the normalized Laplacian is always 0 as the constant
eigenvector c, assigning the same value to each node and thus
describing the stationary state of the network, satisfies Lc = 0.
The multiplicity of the eigenvalues equal to 0 (λ = 0) is equal
to the number of connected components, i.e., the number of
network parts that are not connected to each other (Chung,
1996). The largest eigenvalue is always equal or smaller than
2, labeling the range of eigenvalues as 0 ≤ λ1 ≤ · · · ≤ λn ≤ 2
(Chung, 1996).

Spectral plots
Spectral plots were obtained from the smoothed eigenvalue dis-
tribution �(x), that consisted of eigenvalue frequencies convolved
with a Gaussian kernel,

�(x) =
n∑

i = 1

1√
2πσ2

exp

(
−|x − λi|2

2σ2

)

with n being the number of eigenvalues and σ being a smoothing
factor of 0.015. For the plots, a discrete smoothed spectrum was
used in which � had steps of 0.001. Furthermore, the distribution
was normalized such that the total eigenvalue frequency was one.

Spectral distance
The similarity between spectra was quantified using a spectral
distance measure, based on the distance measure introduced by
Wilson and Zhu (2008), defined as the average Euclidean distance
between two spectral plots �1 and �2:

D(�1, �2) = 1

n + 1

n∑
i = 0

min
j

(√
(�1(i) − �2(j))2 + (i − j)2

)

+ 1

n + 1

n∑
j = 0

min
j

(√
(�1(i) − �2(j))2 + (i − j)2

)

where �(i) is the discrete, normalized and smoothed eigenvalue
distribution and the number of intervals n is 2000. As this distance
function is dependent on the scaling of axes, different scales result
in different distances. Therefore, this measure of spectral distance
is not an invariant distance measure between two networks but
only a tool to underpin the visual results quantitatively.

Robustness
To investigate the effect of (small) modifications to the neural
datasets, reflecting the inclusion of noise to the connectome maps,
we examined the spectra of “noise including neural networks.” In
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the noise including neural networks, a small proportion, respec-
tively 1, 2, and 5% of the edges in the original networks (i.e.,
macaque, cat and C. elegans) were randomly rewired, such that
the degree distributions of the networks were preserved (Maslov
and Sneppen, 2002). The upper and lower eigenvalue boundary
of 1000 generated noise including networks were plotted and the
spectral similarity between the original network and the noise
including networks was quantified by computing the average
spectral distance between each of the noise including networks
and the original network.

RESULTS
In what follows we describe the Laplacian spectra of three neu-
ral networks (i.e., macaque, cat, and C. elegans). We compare
these spectra with spectra of commonly used network models and
a number of empirical networks and then give a more detailed
description of specific properties of the Laplacian spectra of the
examined neural networks.

LAPLACIAN SPECTRUM
Neural networks
The Laplacian spectra of the macaque, cat and C. elegans
revealed several characteristic properties that were observed for
all three networks, see Figure 1. First, all the spectra, from
micro- (C. elegans) to macroscale (cat and macaque), showed
a left skewed distribution in which the largest eigenvalue was
closer to one than the smallest eigenvalue. Second, all dis-
tributions showed a peak around one. Third, the first (i.e.,
smallest) eigenvalues were scattered around a few small peaks
at the beginning of the spectra, suggesting similarities in the
community structure. The close relation between the Laplacian
spectra of these networks suggest shared underlying structural
properties of the neuronal systems of the macaque, cat and
C. elegans.

Comparison of neural networks to network models
Given that similar spectra reflect similar network structures, it has
been noted that the distribution of Laplacian eigenvalues can be
used for classification of networks (Ipsen and Mikhailov, 2001;
Vukadinović et al., 2002; Banerjee and Jost, 2008b; Cetinkaya
et al., 2012). Spectral similarity was examined by visual inspec-
tion of the characteristics of the spectral plots and quantified
by computing the average Euclidean distance between spectra.
Comparing the Laplacian spectra of the neural networks to the
spectra of conceptual Erdös–Rényi (ER) random networks (Erdös
and Rényi, 1959), the Watts-Strogatz (WS) model for small-world
networks (Watts and Strogatz, 1998) and Barabási-Albert (BA)
model for scale-free networks (Barabási and Albert, 1999) (see
Figure 2) revealed distinct dissimilarities. ER random networks
showed an oval shaped Laplacian spectra, which were, except
for a small bump at λ = 0 reflecting the number of connected
components of the network, completely symmetric around one.
WS small-world networks showed an asymmetric spectrum, with
similarities to both the spectrum of a regular ring lattice and a
random network (Banerjee and Jost, 2008b). BA scale-free net-
works showed symmetric spectra similar to that of the random
network, but with a small peak around one. ER random and BA

A

B

C

FIGURE 1 | Laplacian spectra of neural networks. Figure shows the
spectrum of the connectivity networks of the (A) macaque (242 cortical
regions, 10.5% edge density), (B) cat (65 cortical regions, 35.1%), and (C)

C. elegans (274 neurons, 6.02%). All neural spectra shared three
characteristics, being (i) an asymmetric skewed distribution in which the
largest eigenvalue was closer to one than the smallest eigenvalue, (ii) a
maximum at one, and (iii) a few scattered small eigenvalues. Laplacian
spectra showed large overlap across the three neural datasets, suggesting
a level of consistency and conservation of overall structure of neural
networks.

scale-free networks showed a maximum around one, but did not
show the characteristic skewed distribution that was observed in
the neural networks. In contrast, the spectra of the WS small-
world networks showed a skewed distribution, but these spectra
showed a maximum around 1.2 instead of having a peak around
one, as compared to the neural spectra. In addition, the spec-
tra of the WS small-world networks did not reveal scattered first
eigenvalues as seen in the neural spectra. Confirming visual obser-
vation, the average Euclidean distance (see Table 1) between the
Laplacian spectra of the macaque and cat connectomes revealed
to be relatively small, indicating a high level of overlap between
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the anatomical communication infrastructure of the macaque
and cat brain. Comparing across scales, the spectra of the C.
elegans connectome and the cat and macaque brain networks
were found to be more distant, suggesting relative differences
between the spectra (Table 1). It appears that this distance results
from differences in the density of the eigenvalues close to one,
as the Laplacian spectra of the cat and macaque network showed
a stronger peak around one than the Laplacian spectrum of the
C. elegans connectome. In all, the spectra of the neural networks
and model networks were found to be distant, suggesting that the
neural networks were distinct from the conceptual ER random,
WS small-world or BA scale-free models. These findings suggest
a certain level of uniqueness of neural networks in comparison to
these characteristic model networks in terms of global topological
organization.

Comparison of neural networks to empirical networks
In addition to the comparison of the neural spectra to the
spectra of conceptual models, the Laplacian spectra of neural net-
works were also compared to an ensemble of empirical networks.
Empirical networks included the Food web in Florida during wet
season (referred to as “Food web”), the email interchange network
at the university of Rovira i Virgili (Email network), a network
of American football games between colleges in the United States
(Football network) and the power grid of the Western States of the
United States (Power grid). Spectra of these networks are plotted
in Figure 3.

The spectrum of the power grid and email network (Figure 3)
both showed a maximum around one, but did not display an
asymmetrically skewed spectrum or scattered first eigenvalues,
opposed to the spectra of the neural networks. Furthermore, the
power grid and email network showed a large spectral distance
to the neural networks (Table 1), suggesting differences in global
topological organization between these two networks and the
neural networks.

The food web showed a spectrum with a maximum at one
and with the first eigenvalues scattered (Figure 3), overlapping
with the characteristics of the neural spectra. However, in con-
trast to neural spectra, the spectrum of the food web showed to be
highly symmetric, with a weaker community structure compared
to the neural networks (see below). The high peak around one in
the spectrum of the food web was similar to the peak observed
in the cat and macaque. In terms of spectral distances, the food
web was found to be closer to the macaque and cat network
than to the C. elegans network (Table 1). This suggests that the
food web shares, to some extent, structural properties with neu-
ral networks, in particular the organization of macroscopic neural
networks.

The football network showed a similar skewed asymmet-
ric spectrum as reported for the neural networks (Figure 3).
Furthermore, the first eigenvalues were scattered likewise to the
neural spectra, but higher levels of eigenvalues below 0.5 were
observed. The football spectrum displayed a maximum at one
and, similar to the spectrum of the C. elegans, there was only a
modest peak observed around this maximum (Figure 3). These
resemblances were also found when evaluating the spectral dis-
tances, showing that the football spectrum was spectrally closest

A

B

C

FIGURE 2 | Spectral plots of model networks. Figure shows the
Laplacian spectra of (A) the Erdös-Rényi random model, (B) the
Watts-Strogatz small-world model, and (C) the Barabási-Albert scale-free
model. The model spectra were averaged over a set of 1000 generated
networks. All model networks had 274 nodes and densities close to 6%
comparable to the C. elegans. The spectra of the neural networks of the
macaque, cat and C. elegans are plotted in the background, and were found
to be dissimilar from the three model spectra, suggesting a different global
topological organization.

to the C. elegans network, but distant from the macaque and
cat neural network. This indicates a relatively higher similarity
in global topological organization between the football network
and the C. elegans connectome, than with the macaque and cat
networks.

SPECTRUM PROPERTIES: SMALLEST EIGENVALUES
General description
The smallest eigenvalues of the Laplacian spectrum -meaning
the first few eigenvalues of the labeled spectrum with 0 = λ1 ≤
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Table 1 | Spectral distances.

Cat C. elegans ER WS BA Food web Email Power grid Football

Macaque 0.0667 0.1249 0.2004 (0.0040) 0.3030 (0.0093) 0.3473 (0.0124) 0.0777 0.2175 0.4964 0.1409

Cat – 0.1776 0.2610 (0.0042) 0.3310 (0.0088) 0.3835 (0.0119) 0.0866 0.2491 0.4392 0.1716

C. elegans – 0.1034 (0.0039) 0.1761 (0.0078) 0.2336 (0.0129) 0.2181 0.1402 0.4797 0.0849

ER – 0.2198 0.2143 0.2840 (0.0034) 0.6632 (0.0022) 0.5229 (0.0016) 0.1343 (0.0029)

WS – 0.1654 0.3726 (0.0083) 0.8226 (0.0101) 0.3960 (0.0071) 0.1488 (0.0100)

BA – 0.4092 (0.0104) 0.8359 (0.0047) 0.4850 (0.0058) 0.2672 (0.0132)

Food web – 0.1124 0.4761 0.2191

Email – 0.4057 0.1620

Power grid – 0.4055

Table summarizes the spectral distances (computed as the average Euclidean distance between the points of the two spectra) between the three neural networks

(i.e., macaque, cat, C. elegans), the three model networks (ER: Erdös-Rényi random model, WS: Watts-Strogatz small-world model and BA: Barabási-Albert scale-free

model) and 4 empirical networks. Values indicate mean distances and standard deviations.

A

C D

B

FIGURE 3 | Spectral plots of empirical networks. Figure shows the
Laplacian spectra of (A) a food web (121 components, 23.9% edge
density), (B) email communication network (1133, 0.85%), (C) football
games network (115, 9.35%), and (D) power grid (4941, 0.054%). The
neural networks of the macaque, cat and C. elegans are plotted in the
background and show only little similarity with the spectrum of the email

and power grid network. The spectra of the food web and football network
showed overlap with the neural spectra. The spectra of the food web and
football network differed in the height of their peak around one, resulting
the food web to be spectrally closest to the macaque and cat networks,
whereas the football network was found to be the closest to the C.
elegans network (see also Table 1).

· · · ≤ λn ≤ 2 – include information on the community struc-
ture of a network (Figure 4A) (Shi and Malik, 2000; Donetti and
Munoz, 2005; Fortunato, 2010; Shen and Cheng, 2010). Each
eigenvector vi describes a unique bisection of the network by
assigning a positive or negative value to each node (the eigen-
vector components) and the associated eigenvalue λi describes
the inverse diffusion time of this division to the stationary state
(Cheng and Shen, 2010). As such, smaller eigenvalues indicate

longer diffusion times, revealing a large proportion of intramod-
ule connections and a low number of intermodule connections.
The smallest non-zero eigenvalue λ2 (in connected networks)
thus provides information on the best possible cut of the network
into two modules (Chung, 1996). The divisions of all eigenvec-
tors up to vi can subsequently be combined to separate the nodes
of the network into i communities, where a possible number of
communities for the optimal division might be suggested by the
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A

B

C

FIGURE 4 | Topological properties reflected in the Laplacian spectrum.

Figure shows several properties of the Laplacian spectra. (A) The first
eigenvalues reflect community structure with smaller first eigenvalues
indicating stronger community structures. (B) Motif manipulations, i.e.,
motif addition or duplication, result in explicit eigenvalues in the spectrum.
Hence, recursive manipulations can result in eigenvalues with high
multiplicities, giving rise to peaks in the Laplacian spectrum. (C) The largest
eigenvalue reflects the level of bipartiteness of the most bipartite subpart
of the network, which is closely related to the number of odd cyclic motifs
in the network.

largest eigengap (λi + 1 − λi) (Shi and Malik, 2000; Cheng and
Shen, 2010). In all, the number of small eigenvalues, their val-
ues, and eigengaps reflect aspects of the community structure of
the network.

Macaque
The smallest non-zero eigenvalue of the macaque dataset was
found to be λ2 = 0.2718, which is significantly lower compared
to the randomized reference networks (see methods, 1000 ran-
dom networks were examined, with an average λ2 of 0.61 ±
0.06 [mean ± standard deviation], p < 0.001, permutation test-
ing). This finding indicates a good cut of the network into two
parts and thereby a relative high level of community structure.
This result was endorsed by λ6 − λ5 = 0.1153 being the largest
eigengap, indicating that an optimal division of the network is
suggested to be into 5 communities.

Cat
For the cat dataset, the smallest eigenvalue revealed to be λ2 =
0.3782, which was again significantly lower compared to matched
random networks, having an average λ2 = 0.6937 ± 0.0134 (p <

0.001). Additionally, λ5 − λ4 = 0.2512 was the largest eigen-
gap, suggesting an optimal division of the network into four
communities.

C. elegans
For the C. elegans network, the smallest eigenvalue λ2 = 0.1818
was also found to be significantly lower relative to randomized
networks (λ2 = 0.5438 ± 0.0142, p < 0.001). Although various
small eigenvalues showed relatively large eigengaps, demonstrat-
ing the existence of a number of stable communities, the eigengap
λ2 − λ1 revealed to be the largest, indicating that there is no
clear optimal network division of the neural network map of the
C. elegans. This showed that although there is a certain level of

modular structure within the C. elegans connectome dataset, the
community structure is relatively weak.

SPECTRUM PROPERTIES: LARGEST EIGENVALUE
General description
The largest eigenvalue of the Laplacian spectrum provides infor-
mation on the level of “bipartiteness” of (subparts of) a network
(Figure 4C) (Bauer and Jost, 2012). A (sub)network is said to
be (fully) bipartite if its nodes can be divided into two groups
in such a way that nodes within the same group are not con-
nected. As a result, bipartite networks lack cycles with an odd
number of nodes. A division of nodes on basis of the posi-
tive and negative values in the largest eigenvector indicates the
most bipartite configuration of the network. The largest eigen-
value λn reflects the level of bipartiteness of this configuration.
Considering that it is possible that only a subset of the net-
work is explicitly positive or negative in the largest eigenvec-
tor, λn may not be a metric reflecting global properties of a
network per se.

Macaque
The largest eigenvalue λn of the macaque was reported to be
equal to 1.4341, not significantly higher than observed in a set
of comparable networks with a randomized structure (λn =
1.3927 ± 0.0558 and p = 0.2291). Additional visual inspection
of the eigenvector linked to the largest eigenvalue, presented with
respect to communities as identified in Harriger et al. (2012),
showed that this eigenvector was localized on two of the five struc-
tural modules, identified to include frontal/orbitofrontal and
temporal regions (Harriger et al., 2012).

Cat
The largest eigenvalue in the cat dataset was found to be λn =
1.2875. For comparable random networks, the largest eigenvalue
was on average 1.3319 ± 0.0119, indicating that the level of bipar-
titeness of the cat cortex was significantly lower (p < 0.001) as
compared to that in random networks. Visual inspection of the
associated eigenvector showed that this eigenvalue represented the
global network, suggesting an overall weaker bipartiteness in the
network of the cat cortex, indicating more odd cyclic motifs (i.e.,
non-reducible cycles with an odd number of nodes) in the cat
cortex compared to random networks.

C. elegans
The largest eigenvalue of the C. elegans showed to be λn =
1.4827, which was higher than in comparable random net-
works (λn = 1.4613 ± 0.0136), although this effect was only
marginal and present at a trend-level (p = 0.0574). Additional
visual inspection showed that the eigenvector associated with this
eigenvalue was restricted to one of the four communities iden-
tified (Newman, 2006). This community included mostly ventral
cord motor neurons, indicating that this class constitutes a relative
high bipartite community.

SPECTRUM PROPERTIES: MOTIF MANIPULATIONS
General description
Repeated addition and duplication of nodes and motifs in the
development of a network has been shown to leave traces in a
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network’s Laplacian spectrum (Banerjee and Jost, 2008a, 2009).
For example, node duplication, in which one new node is intro-
duced to the network that has the same connectivity pattern as
the duplicated node resulting in two nodes with an identical con-
nectivity profile, has been shown to result in an increase in the
eigenvalue λ = 1 of the spectrum (Figure 4B) (Banerjee and Jost,
2008a). Hence, recursive node duplication results in a character-
istic high multiplicity of the eigenvalue λ = 1 in the spectrum.
Duplication of an edge motif, i.e., duplication of two connected
nodes j1 and j2 and their connections, has been noted to pro-
duce eigenvalues symmetric around 1 with eigenvalues λ± =
1 ± (1/

√
dj1dj2), with dj being the degree of node j. Also addi-

tion of motifs to the network generates specific eigenvalues, with
for example the inclusion of a new triangle motif to a network
resulting in the addition of an eigenvalue λ = 1.5 to the spectrum
(Banerjee and Jost, 2008a). In general, motif joining or dupli-
cation produces specific exact eigenvalues and subsequent repe-
tition of these processes result in characteristic high eigenvalue
multiplicities, visible as peaks in the Laplacian spectrum. Hence,
the presence of eigenvalues with high multiplicities (e.g., a high
peak at λ = 1) or eigenvalues at equal distances to 1 may provide
an indication of local organizations resulting from recursive motif
manipulations.

Macaque, cat and C. elegans
The spectra of all three neural networks showed a peak around
one, suggesting traces of node duplication. Additionally, the
observed peaks around one revealed to be rather symmetric, indi-
cating traces of edge duplication in the networks. Comparison
between the neural spectra showed that the peak around one and
its symmetry was most clearly seen in the spectra of the macaque
and cat network and to a lesser extent in the C. elegans neural
system. This might indicate higher levels of duplication in the net-
works of the macaque and cat compared to that of the C. elegans.
The spectra showed no other clear peaks indicative of recurrent
addition of motifs.

ROBUSTNESS ANALYSIS
The level of robustness of the obtained spectra in relation to
(small) amounts of noise, reflecting modifications to the original
connectome datasets, was examined through means of a robust-
ness analysis. Noise was simulated by means of randomly rewiring
a (small) proportion of the edges in the networks (ranging from
1 to 5%, preserving network size, density and degree distribu-
tion) over a series of iterations (1000). For each of the obtained
“noise including networks” the spectra was computed and com-
pared to the original network. The lower and upper boundary
of spectra of the 1000 “noise including networks” are shown in
Figure 5, together with the original networks, for each of the
three examined neural networks (panel 1A–C: macaque, panel
2A–C: cat, panel 3A–C: C. elegans). Overall, large overlap (as
expressed by small spectral distances) was found between the
original and noise including networks, for all three neural net-
works (see Table 2). As expected, with the inclusion of increasing
levels of random noise (from 1 to 5%), the spectra of the noise
including neural networks started to reveal slightly more random
properties, including higher smallest eigenvalues and a less steep
peak around one.

DISCUSSION
The main finding of this paper was a common underlying struc-
tural organization of neural networks across species. Examining
and comparing the Laplacian spectrum of the macroscopic or
microscopic neural network maps of the macaque, cat and C. ele-
gans connectome, it was found that the neural spectra showed
mutual overlap on several characteristics. Furthermore, no clear
overlap between spectra of the macaque, cat and C. elegans and
the spectra of strict, conceptual ER random, WS small-world or
BA scale-free models could be observed (Figure 2), nor between
the neural spectra and the spectra of an email network and a
power grid network (Figure 3). As such, our findings indicate a
relatively unique shape of the spectra of neural networks, sug-
gesting that neural networks may form, to some extent, a type
of special network class.

Examination of the small eigenvalues in the neural spectra
revealed a community structure in all of the three networks, con-
sistent with earlier observations showing community structure
in neural networks (Hilgetag et al., 2000; Arenas et al., 2008).
Furthermore, the largest eigenvalue reflecting the level of bipar-
titeness of a network revealed to be significantly smaller in the
cat dataset as compared to random networks, suggesting a lower
level of bipartiteness in the cat network compared to random
networks. As bipartiteness is strongly related to the presence of
odd cyclic motifs, this would agree with commonly observed
global small-world properties of neural networks, predicting
more triangle motifs (Bassett and Bullmore, 2006; Hagmann
et al., 2008; van den Heuvel et al., 2008b; Bullmore and Sporns,
2009). However, in the dataset of the macaque and C. elegans
this effect was less clear, with the largest eigenvalue indicat-
ing random levels of bipartiteness. This may suggest that these
neural networks, or at least one community in these neural net-
works, show similar odd cycle levels as seen in random wiring.
This was unexpected, since the small-world property of brain
networks implies a high (normalized) clustering coefficient, indi-
cating the existence of more triangle motifs than in random
networks. An explanation for this observation would be the
absence of non-reducible odd cyclic motifs with five nodes or
more. The symmetric peak around one observed in all three
neural spectra suggested traces of node and edge duplication
in the neural networks. The macaque and cat spectra showed
more evident peaks around one compared to the spectrum of
the microscopic C. elegans network, suggesting higher levels
of duplication in the macroscopic networks of the macaque
and cat.

Considering the relative strong overlap of the three types of
examined neural networks, and the relative high distance between
the spectra of the three neural networks and the spectra of the
simple model ER random, WS small-world and BA scale-free
networks tends to suggest that the rich architecture of neural
networks cannot be simply explained by one of these simple
network models. However, this does not imply that neural net-
works do not show small-world (i.e., high clustering and short
paths) or scale-free properties (i.e., heavy tailed degree distribu-
tions), but merely suggests that the rich architecture of neural
networks cannot be explained by one of these simple network
models alone. WS small-world and BA scale-free networks only

Frontiers in Computational Neuroscience www.frontiersin.org January 2014 | Volume 7 | Article 189 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


de Lange et al. The Laplacian spectrum of neural networks

1A 1B 1C

2A 2B 2C

3A 3B 3C

FIGURE 5 | Robustness of neural network spectra to edge rewiring.

(A1) Spectrum of the macaque with 1% of the edges rewired, (A2) spectrum
plotted with 2% rewiring, and (A3) spectrum plotted with 5% rewiring.
(B1–3) show the spectra of the cat network with added noise. (C1–3) show
the spectra of the C. elegans network with added noise. The figure shows the
lower and upper boundary of the 1000 iterations for each eigenvalue. Across

all three rewiring levels, the figures show a high level of consistency between
the spectra across original and noise including networks. The cat network
(C1–3) appears the most affected by the rewiring processes, which is likely a
consequence of its relatively small network size. In general, the spectra of the
“noise including networks” show large overlap with the original spectra,
indicative of the spectra to be robust to small modifications to the datasets.

Table 2 | Robustness of neural network spectra to edge rewiring in

spectral distance.

1% rewired 2% rewired 5% rewired

Macaque 0.0124 (0.0022) 0.0189 (0.0030) 0.0352 (0.0044)

Cat 0.0185 (0.0050) 0.0281 (0.0076) 0.0575 (0.0112)

C. elegans 0.0159 (0.0023) 0.0217 (0.0023) 0.0317 (0.0028)

Table shows the spectral distances between the neural networks (macaque,

cat and C. elegans) and the noise including neural networks in which a small

proportion (1, 2, and 5%) of the edges in the original networks were randomly

rewired. Values indicate mean distances and standard deviations.

represent an example class of networks that display small-world
and scale-free properties. Indeed, several network studies have
shown that neural networks of the human brain deviate from
the simple BA scale-free or WS small-world network model. For
example, studies have suggested that low resolution networks tend

to display a truncated power-law degree distribution rather than
a power-law with an exponent around 2.9 as seen in BA scale-
free networks (Barabási and Albert, 1999; Achard et al., 2006).
Furthermore, studies have suggested that neural networks display
properties such as a rich modularity structure (Salvador et al.,
2005; van den Heuvel et al., 2008a; Rubinov and Sporns, 2011)
and high levels of intermodular connectivity (de Reus and van
den Heuvel, 2013; van den Heuvel and Sporns, 2013b), properties
that cannot be expected from WS small-world networks derived
from rewiring a small number of edges from an otherwise lattice
architecture. The observed relatively unique shape of the neural
spectra of the examined neural networks does suggest that these
neural networks exhibit a rich repertoire of network attributes,
together forming an underlying architectural organization that
cannot be properly described by one simple model network class
(e.g., ER random, WS small-world or BA scale-free).

The used methodology, as well as the spatial resolution at
which connectivity datasets are acquired, is likely to have an
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effect on the reported network structure and thus their spec-
trum (Bullmore and Sporns, 2009). In this study, we examined
the spectra of the anatomical networks of the cat, macaque and C.
elegans. These neural networks are commonly referred to in the
literature and widely considered as reference connectome datasets
for these species (Hilgetag et al., 2000; Kötter, 2004; Sporns and
Kötter, 2004; Kaiser, 2011; Zamora-López et al., 2011; de Reus
and van den Heuvel, 2013). However, general caution is needed
when comparing network attributes across species, and, although
the three examined networks are interpreted as representatives of
the “class of neural networks,” we note that it remains unclear
whether, and if so to what extent, our findings can be generalized
to the neural networks of other species and to neural networks of
other modalities. A few comments are in place. First, connectome
research is a rapidly growing field and the connectivity data as
used in this paper is likely to be complemented by more detailed
data in the near future, which may result in (small) modifica-
tions to the connectivity matrices. To understand the robustness
of the spectrum to such modifications and noise in general, the
effects of modest modifications to the neural network maps was
simulated by randomly rewiring a small proportion (1–5%) of
the edges in the networks. Spectra of these noise including neu-
ral networks were found to show large overlap with the original
networks, illustrating a high level of robustness to small variation
in overall wiring layout (Figure 5). These findings suggest that
small changes to the neural networks examined in this study have
only limited effect on the shown neural spectra. However, second,
the neural datasets examined in this study describe anatomical
connectivity, incorporating results from tracer studies (macaque
and cat) and studies using electron microscopy (C. elegans). It
remains unclear whether the spectra of these three neural net-
works can be generalized to the spectra of anatomical networks
of other species, including human. Third, the examined spectra
might differ from spectra of structural brain networks obtained
by other techniques to reconstruct anatomical connectivity, such
as Diffusion MR Imaging (Hagmann et al., 2008; Iturria-Medina
et al., 2008; van den Heuvel et al., 2010). Furthermore, in our
study we examined the spectra of anatomical networks, but these
spectra might differ from spectra of functional brain networks
derived from functional MRI data. Studies have suggested that
the architecture of structural and functional networks are related,
but their relationship is complex (Hagmann et al., 2008; Bullmore
and Sporns, 2009; van den Heuvel and Sporns, 2013a). This is
likely to result in differences in the spectra of functional net-
works as compared to the spectra of anatomical networks. Future
studies examining the spectra of networks derived from diffusion
imaging and resting-state fMRI, in particular of human data, are
needed to examine to what extent our findings can be generalized
across neural networks.

In context of our study, it might be worth to note that some
of the spectral differences observed between networks may be
accounted for by external factors not directly related to the net-
work’s topological features. First, in networks of smaller size, such
as that of the cat, small variations in the eigenvalues have rela-
tively great impact on the spectrum. Hence, in these networks,
small spikes in the spectra should be interpret with caution, and

are likely not to reflect global network properties. Indeed, simu-
lation of noise showed to have the largest effect on the cat dataset
(Figure 5). Second, the size and density of a network, describ-
ing the number of nodes and edges representing the network,
might have a strong influence on the distribution of the eigen-
values (Chung et al., 2003). In random networks, higher density is
associated with a larger λ2 and smaller λn and this trend is consis-
tent with reported differences in λ2 and λn between the macaque,
cat and C. elegans spectra. Third, in the analysis all networks were
regarded as binary and undirected, which made the connectivity
data less accurate. An exploratory analysis including informa-
tion on the directionality and weighting of the connections in
the networks was included in the Supplementary Material. In
this supplementary analysis, the method proposed by Chung
(2005) was used to ensure real eigenvalues. However, this trans-
formation does not exploit the directionality of the connectivity
data to the full extent possible, and future studies examining the
Laplacian spectrum of directed networks in more detail (includ-
ing detailed information on complex eigenvalues) would be of
high interest.

The Laplacian spectra of the food web and football network
showed resemblances with the spectra of the neural networks,
with the food web spectrum spectrally closest to the spectra of
the macroscopic macaque and cat network and the spectrum
of the football network closest to the spectrum of the micro-
scopic C. elegans network. This dissociation in spectral distance
might indicate differences in the structural organization of the
neural networks. The football network has a geographically con-
strained community structure, with a high number of matches
between teams from the same conference and sparse intercon-
ference matches that have a strong preference for geographically
close teams (Girvan and Newman, 2002). Conversely, the food
web is the result of a long interplay between the introduction
of new species resulting from differentiation and immigration,
and the extinction of species on basis of their fitness (Drossel
and McKane, 2002). Hence, the spectral similarities between the
neural networks and the food web and football network possi-
bly suggest that neural networks on the microscopic level share
organizational properties related to a spatially driven community
structure, whereas as macroscopic interactions might be shaped
by a long developmental trajectory influenced by evolutionary
constraints. Such growth constrains would be in agreement with
a proposed balance in brain architecture between minimizing
wiring cost and advantageous topological properties such as effi-
ciency or robustness (Bullmore and Sporns, 2012; Collin et al.,
2013; van den Heuvel and Sporns, 2013a).

Extending previous findings on the architectural organization
of neural networks, our findings show a high level of similarity of
the Laplacian spectra across the cat, macaque and C. elegans neu-
ral networks, indicative of a relatively high level of consistency and
conservation of overall network structure of neural systems. Our
findings suggest that neural networks display an architecture that
includes a rich repertoire of network attributes, forming a rela-
tive unique network class that is distinct from simple conceptual
WS small-world and BA scale-free models, as well as from several
empirical networks.
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