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In a previous study, Harris et al. (2002) found disruption of vibrotactile short-term
memory after applying single-pulse transcranial magnetic stimulation (TMS) to primary
somatosensory cortex (Sl) early in the maintenance period, and suggested that this
demonstrated a role for Sl in vibrotactile memory storage. While such a role is compatible
with recent suggestions that sensory cortex is the storage substrate for working memory,
it stands in contrast to a relatively large body of evidence from human EEG and single-cell
recording in primates that instead points to prefrontal cortex as the storage substrate for
vibrotactile memory. In the present study, we use computational methods to demonstrate
how Harris et al’s results can be reproduced by TMS-induced activity in sensory cortex
and subsequent feedforward interference with memory traces stored in prefrontal cortex,
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INTRODUCTION

Vibrotactile short-term memory [often referred to as vibrotactile
working memory (VWM)] is a powerful paradigm for studying
the behavioral and neural correlates of working and short-term
memory (Bancroft et al., 2011a). VWM tasks usually involve pre-
senting subjects with two vibrational stimuli delivered to the hand
(the target and the probe), separated by an unfilled delay period,
and instruct subjects to report whether the two stimuli are of same
or different frequencies, or whether the probe is of a higher or
lower frequency than the target. Notably, the salient stimulus fea-
ture (vibrational frequency) can be represented as a scalar value,
and the firing rates of neurons encoding vibrotactile stimuli tend
to be monotonic functions of stimulus frequency (Romo et al,,
1999; Romo and Salinas, 2003). This makes vibrotactile memory
a useful paradigm for integrating research results across various
research methodologies, and recent studies have taken advantage
of this property by demonstrating that it is possible to decode
the stimulus frequency held in memory from beta-band EEG
activity in frontal cortex (Spitzer et al., 2010, 2014; Spitzer and
Blankenburg, 2011, 2012). Intriguingly, recent research has sug-
gested that vibrotactile memory may be one of a family of scalar
short-term memory tasks, including auditory memory for pure
tones and memory for the frequency of visual flicker (Spitzer and
Blankenburg, 2012), as well as stimulus amplitude and duration
(Spitzer et al., 2014), that appear to share a similar, supramodal
neural code in both sensory cortex and higher cortical regions,
and rely on the same region of prefrontal cortex as a storage
substrate.

An intriguing study, however, poses a challenge to this inter-
pretation of results. Harris et al. (2002) presented subjects with
two vibrotactile stimuli, separated by an unfilled delay period, and
asked them to compare the stimuli. During the delay period, they
applied single-pulse transcranial magnetic stimulation (TMS)
to primary somatosensory cortex (SI). This study employed a

thereby reconciling discordant findings in the tactile memory literature.
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“virtual lesion” design, in which TMS-induced changes in behav-
ior suggest a causal relationship between peri-stimulation neu-
ral activity and task-related perceptual and cognitive functions
(Robertson et al., 2003). Harris et al. (2002) found a significant
decrease in performance when the TMS pulse was applied to con-
tralateral SI (relative to ipsilateral SI) 300 or 600 ms into a 1500 ms
delay period, but not when it was applied 900 or 1200 ms into
the delay period. (Note that while the decrease in performance
in response to the 900 ms onset TMS pulse did not reach statis-
tical significance (p = 0.16), a trend is visible.) In contrast, TMS
to ipsilateral SI did not significantly reduce performance. Harris
et al. suggested that contralateral SI acts as a memory storage
system for VWM. Such a notion is consistent with a previous
single-cell recording study that reports SI encoding of complex
tactile stimuli (Zhou and Fuster, 1996).

However, this notion conflicts with recent findings from
human EEG studies and single-cell recording in non-human pri-
mates. Various studies by the research group of Romo et al. have
suggested that regions in prefrontal cortex are the storage sub-
strate used during VWM tasks and that no representation of the
stored stimulus persists across the delay period in SI (see Romo
and Salinas, 2003, for a review), and recent EEG studies by Spitzer
and colleagues have reported being able to decode the frequency
of a stored vibrational stimulus from prefrontal beta-band activ-
ity during the delay period of VWM (and other scalar STM)
tasks (Spitzer et al., 2010, 2014; Spitzer and Blankenburg, 2011,
2012). The apparent incompatibility of these findings and those
of Harris et al. (2002) raises questions about the scalar mem-
ory interpretation of results from VWM research, and also about
whether the neural systems underlying VWM differ between
humans and non-human primates.

The location of VWM storage has important implications
for working and short-term memory theory, and the factors
that determine storage location are unresolved. Postle (2006)
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suggested that stimuli tend to be stored in relevant regions of cor-
tex that have pre-existing representations of that type of stimulus,
such as sensory cortex; in order to account for recent experi-
mental findings (including those around vibrotactile memory),
we have recently suggested that less complex stimuli with sim-
ple neural codes instead tend to be stored in prefrontal cortex
(Bancroft et al., 2014). As this theoretical framework is partly
based on research showing prefrontal storage of scalar stim-
uli, reconciling Harris et al’s (2002) results with other find-
ings (i.e., Romo and Salinas, 2003; Spitzer et al.,, 2010) has
theoretical importance.

We offer an alternative interpretation of Harris et al’s (2002)
findings. According to the former view, the application of TMS
suppressed neural activity within SI during the delay period, and
the consequent impact on VWM performance can be interpreted
as evidence that SI is involved in VWM storage. However, beyond
local changes in cortical activity, TMS can induce distal effects
at brain regions receiving feedforward inputs from the targeted
brain region (e.g., Paus et al., 1997). Rather than SI being a storage
medium for vibrotactile memory, we suggest that the application
of TMS induces or increases activity in sensory cortex (both in
SI and in secondary somatosensory cortex (SII), via feedforward
connections), and that this activity then interferes with VWM
storage in PFC.

It has been established that TMS can induce neural activ-
ity when applied to some areas of sensory cortex, including
somatosensory cortex (Sugishita and Takayama, 1993; Ray et al.,
1998; Stewart et al., 2001; Ptito et al., 2008). As well, recent
behavioral and computational studies have suggested that when
irrelevant vibrotactile stimuli are presented during the mainte-
nance period of a VWM task, they reduce performance by being
encoded into memory (Bancroft and Servos, 2011; Bancroft et al.,
2011b, 2012, 2013). As there is a direct mapping between induced
activity in SI and the frequency of the stimulus perception cre-
ated by that induced activity (e.g., Romo et al., 1998), it follows
that increased activity in SI due to TMS could have similar effects
to irrelevant somatosensory stimuli.

Perhaps most compellingly, somatosensory memory studies
that have used TMS to increase activity in the middle frontal gyrus
(aregion of prefrontal cortex known to inhibit activity in SI) have
reported decreased response times when TMS was applied early
(300 ms onset) but not late (1200 ms onset) in the delay period,
suggesting a decrease in interference (Hannula et al., 2010; also
see Savolainen et al., 2011). Given that these TMS manipulations,
known to suppress activity in SI, have been shown to improve, not
reduce, performance on tactile memory tasks, it raises an inter-
esting question: Is Harris et al’s (2002) manipulation suppressing
activity in SI, or is it producing excitatory or facilitatory effects
that impact storage systems further downstream?

In the present study, we adapted a computational model of
prefrontal cortex (Miller and Wang, 2006) in order to demon-
strate that Harris et al’s (2002) results can be produced by
TMS-induced activity in sensory cortex, resulting in interfer-
ence with information stored in prefrontal cortex. As pointed out
by Miller and Wang, feeding noise into an integrator causes a
decrease in performance proportional to the duration of noise.
In the present study, the accumulation of noise in PFC leads to

an inverse relationship between task performance and the delay
between TMS offset and probe onset.

MODEL

The model used in the present study was originally developed
by Miller and Wang (2006) as a model of prefrontal neurons
involved in VWM tasks. We have previously adapted it to model
the interfering effects of distractor stimuli on VWM (Bancroft
et al., 2013). It is a rate model, based on the interaction of pairs
of populations of prefrontal neurons. While the Miller and Wang
model operates at a relatively high level of abstraction, it captures
the fundamentally subtractive nature of the stimulus comparison
process (Romo and Salinas, 2003), and has proven capable of fit-
ting a variety of experimental data (e.g., Bancroft et al., 2013).
In addition, the model can be fit to data with relatively few free
parameters, which is beneficial when fitting a dataset with rela-
tively few data points (such as the Harris et al. data we consider in
this paper).

In this model, comparison (C) populations receive input
from sensory cortex and have excitatory outputs to populations
of memory (M) neurons. Memory populations have excitatory
self-connections (allowing persistent activity in the absence of
external input), and inhibitory connections to C populations. The
equations governing the behavior of the network are as follows:

drc/dt = (1/v) (=r¢c + wmerm + wicl) (1)

dry/dt = (1/7) (=ry + wamrm + wemrc) (2)

where r is the firing rate of a population, T is a time constant, wap
represents the strength of a connection from a population A to
another population B, and I is the input received from sensory
cortex. The addition of wy¢ to the model is intended as a poten-
tial scaling factor to allow presentation of stimulus frequencies
outside of biologically-realistic firing rates (for example, auditory
stimuli in the kHz range).

Note that if wagy is set to 1, the M population becomes a per-
fect (i.e., lossless) integrator, and the equation governing behavior
of M populations can be reduced to:

dry/dt = (1/7) (wemrc) (3)

We have used this reduced equation in the present study.

Upon presentation of a target stimulus, a C population transmits
the stimulus frequency to an M population. The M population
then inhibits activity in the C population, driving the C firing rate
back to baseline. The self-connection allows the M population
to maintain its firing rate in the absence of external stimulation.
Upon presentation of the probe stimulus to the C population,
the combination of inhibitory input from the M population and
excitatory input from sensory cortex results in the C population
calculating some function of frarger - fprobe> cOnsistent with exper-
imental findings (Romo and Salinas, 2003), and also consistent
with decision-making mechanisms used in abstract mathematical
models of VWM (Bancroft et al., 2012). Note that experimen-
tal findings have reported finding neurons in sensory cortex that
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have firing rates that are positive monotonic functions of stim-
ulus frequency, as well as neurons that have negative monotonic
functions of stimulus frequency (Romo and Salinas, 2003). This
plays an important role in the functioning of the model. C popu-
lations that receive positive monotonic input (we refer to these as
C populations) will fire above baseline when the probe stimulus
is a higher frequency than the target stimulus, while populations
that receive negative monotonic input (C_ populations) will act
as detectors for lower-frequency probes.

We have also added decision (D) populations to the model
to facilitate decision-making. The D populations receive excita-
tory output from C populations during the presentation of probe
stimuli:

drp/dt = (1/7) (wepre) 4)

During target presentation and the delay period, wcp is set to
0, and only assumes a non-zero value upon presentation of the
probe stimulus. During probe presentation, the D populations
act as perfect integrators of the activity of the relevant C popu-
lation; this allows a direct comparison between the total activities
of the C; and C_ populations (and therefore the probe-higher
and probe-lower detectors).

In the present study, we simulated two triplets of C/M/D pop-
ulations (see Figure 1), one receiving positive monotonic input
(with subscript +), the other receiving negative monotonic input
(with subscript —). The triplets were not connected to each other.
To determine a simulated response, we compared the activity of
the D4 and D_ populations shortly after probe offset. If activ-
ity in the Dy population exceeded that in the D_ population,

FIGURE 1 | Diagram of a C/M/D triplet. Arrows indicate excitatory
connections, while lines ending in circles indicate inhibitory connections.

it follows that overall activity in the C; population exceeded
that in the C_ population across the probe presentation period,
and we recorded a probe-higher response. If activity in the D_
population exceeded that of the D, population, we recorded a
probe-lower response, and if activity in the two populations was
equal, a response was randomly chosen.

During the delay period, the model received constant input,
with input values drawn from an exponential distribution with
the distribution parameter X, inversely proportional to the mean
and variance of the distribution. This noisy input represents
ongoing, baseline activity in sensory regions. Critically, we mod-
eled the application of TMS to sensory cortex by allowing \ to
vary as a free parameter. If TMS increases activity in sensory cor-
tex, we would expect the magnitude of the noise to increase (and
therefore the value of \ to decrease). Further, allowing values
of \ to vary separately for ipsilateral and contralateral stimula-
tion allows us to test for differing effects of inhibition depending
on laterality—if ipsilateral SI is more greatly inhibited than con-
tralateral SI, we would expect a smaller magnitude of interference
(and therefore a greater value for ). The exponential distribution
was chosen for this study as it has one parameter that determines
both the mean and the variance of the distribution.

SIMULATION METHODOLOGY

In the present study, input to PFC was of two types. During tar-
get and probe presentation, C populations received input equal
to wicf, and C_ populations received input equal to wyc(40 - f),
where f was the frequency (in Hz) of the stimulus, and wic was
the strength of the connection from sensory cortex to prefrontal
cortex. Consistent with previous work (Bancroft et al., 2013),
stimulus frequency (f) was drawn from a Gaussian distribution
with a mean equal to that of the presented stimulus, and stan-
dard deviation (o) allowed to vary as a free parameter, in order
to account for inaccuracy in the neural signal introduced during
neural transmission and processing. Firing rates (rpopulation) Were
not allowed to decrease below zero. Other parameter values are
presented in Table 1.

During the delay period, C populations received noisy input
drawn from an exponential distribution at each integration
timestep, with the distribution parameter N\ set as a free

Table 1 | Simulation parameters.

Parameter Value

ftarget 20 Hz

fprobe,higher 22 Hz

fprobe,lower 18Hz

Stimulus duration 1000 ms

Delay period duration 1500 ms

T 10

Wic 0.4

Wem 0.4

Wnic -0.4

wep 0 (during target presentation/delay
periods); 0.5 (during probe presentation)

Iminimum 0
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parameter. The parameter A determines the mean (1/\) and
variance (1/22) of an exponential distribution.

Harris et al. (2002 Exp. 2) presented subjects with two 1000 ms
vibrotactile stimuli (the target and probe), separated by a 1500 ms
delay period. TMS was applied to either ipsilateral or contralateral
SI, at an onset of either 300, 600, 900, or 1200 ms into the delay
period. The target and probe stimuli differed by +2 Hz, and sub-
jects were required to report whether the probe was of a higher or
lower frequency than the target.

To simulate the effects of TMS, \ was allowed to assume two
values during the delay period: The initial value (Mpgseline)> and a
new value upon the application of TMS (A 1pss). Pilot studies were
performed to estimate approximate parameter ranges (based on
minimizing error between experimental and simulated results),
after which the o parameter was allowed to vary freely within
the range (1.00, 3.00), with a stepsize of 0.5; Npgseline Was fixed
at 0.5, and )\TMS(ipsiluteml) and NTMS(contralateral) WETE varied across
the range of (0.5, 0.025), taking possible values of 0.5, 0.375,
0.25, 0.125, 0.1, 0.075, 0.05, and 0.025. Two thousand trials were
simulated for each combination of onset time and free parame-
ter values. Parameter fit was assessed by minimizing the sum of
squared error (SS) between the experimental results from Harris
et al. (2002) (rounded to four places) and simulated results, and
the selected parameter values were those that minimized total SS
across both ipsilateral and contralateral TMS conditions. (Note
that parameter selection was constrained by requiring the value of
o to be the same for both ipsilateral and contralateral stimulation
conditions).

To improve the model fit, a second round of simulations
was performed based on the best-fitting parameters from the
first round of simulations [0 = 2.00, Mrass(ipsilateraly = 0.375,
and NruMS(contralateraly = 0.125]. The value of ¢ was set to 2.00,
and )\TMS(ipsilateml) and )\TMS(contmlateml)Varied within the ranges
(0.425, 0.325) and (0.175, 0.075), respectively, with a stepsize
of 0.025.

Simulations were performed with code written in Python,
with the NumPy and standard Python random libraries (specif-
ically, random.expovariate for the generation of noisy input).
Integration was performed using a 4th-order Runge-Kutta, with
an integration stepsize of 0.5.

RESULTS AND DISCUSSION

The results of the final round of simulations are presented in
Figures 2, 3. The best-fitting parameter values were found to be
o =2.0, )\TMS(ipsilateml) = 0.350, and )\TMS(contmlateml) = 0.150.
The SS for the best fit was found to be 0.00446 (0.00273 for the
ipsilateral condition, and 0.00173 for the contralateral condition),
and the variance explained by the model (r?) was calculated to
be 0.780.

Model performance was largely robust against changes in
parameter values, with maximum overall SS of 0.0962 in the final
round of simulations (0.00485 for the ipsilateral condition, and
0.0914 for the contralateral condition).

The results of the present simulation suggest that Harris et al’s
(2002) results can be replicated by assuming that TMS increases
activity in sensory cortex, which then interferes with the contents
of memory, held in PFC. This interpretation is consistent with the
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FIGURE 2 | Simulated and empirical results of TMS to ipsilateral SI.
Triangles denote results from Harris et al. (2002)(Exp. 2); diamonds denote
simulated results.
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FIGURE 3 | Simulated and empirical results of TMS to contralateral SI.
Triangles denote results from Harris et al. (2002) (Exp. 2); diamonds denote
simulated results.

single-cell electrophysiology and EEG literatures (e.g., Romo and
Salinas, 2003; Spitzer et al., 2010, 2014; Spitzer and Blankenburg,
2011, 2012), and requires no need to suggest that SI is involved in
vibrotactile memory storage.

One crucial part of Harris et al’s argument was that TMS to
SI ipsilateral to the hand receiving vibrotactile stimulation did
not produce effects on task performance. They suggested that if
VWM storage relied (at least in part) on areas further down-
stream, such as SII (which possesses bilateral receptive fields),
TMS to ipsilateral cortex would produce similar effects to TMS
to contralateral cortex. However, recent EEG and MEG studies
of tactile memory have reported greater alpha-band activity over
ipsilateral SI than over contralateral SI (Haegens et al., 2010, 2012;
Spitzer and Blankenburg, 2011). Further, when irrelevant stimuli
were expected to be presented to the opposite hand, pre-stimulus

Frontiers in Computational Neuroscience

www.frontiersin.org

March 2014 | Volume 8 | Article 23 | 4


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Bancroft et al.

Sensory noise affects STM storage

alpha power in cortex varied with laterality (Haegens et al., 2012).
As alpha-band activity is believed to be linked to inhibitory activ-
ity (e.g., Rihs et al., 2007; Haegens et al., 2011), Haegens et al.
(2012) suggested that activity in ipsilateral SI could be suppressed
in order to inhibit the processing of irrelevant sensory input. In
this case, the failure to find effects of ipsilateral TMS does not
necessarily reflect a reliance on contralateral SI for VWM stor-
age, but rather may reflect differences in endogenous inhibitory
activity between ipsilateral and contralateral sensory cortex.

The results of the present study have an impact reach-
ing beyond the VWM literature. Postle (2006) introduced the
emergent-property model of working memory, which suggests
that working memory does not rely on a specialized neural
system, but rather the interaction between neural systems that
primarily serve other sensory, cognitive, or action-related func-
tions. Indeed, Postle explicitly argues that PFC is not involved in
the storage of information. For example, task-relevant sensory
cortex has been suggested as the storage medium for work-
ing memory, and recent neuroimaging studies that have applied
novel methods for decoding the contents of sensory cortex have
reported finding stimulus information in early visual cortex dur-
ing the maintenance period of visual memory tasks (e.g., Serences
et al., 2009; Christophel et al., 2012). Other, similar results
exist.

However, there is an increasing body of evidence that PFC is
the storage substrate for simple stimuli and novel stimuli (e.g.,
Freedman et al., 2001; Bancroft et al., 2014). Perhaps most persua-
sive are recent studies that have reported decoding the contents
of short-term or working memory from prefrontal beta-band
activity, regardless of whether the stored aspect of the stimulus
was delivered as a tactile vibration, auditory tone, visual flicker
(Spitzer et al., 2010; Spitzer and Blankenburg, 2012), or stimulus
intensity or duration (Spitzer et al., 2014). While the emergent-
property model is compelling, in that it is simple, parsimonious
and able to explain a wide variety of results from the literature,
when combined with previous findings, the results of the present
study suggest that VWM research may require an expansion of
the emergent-property model. We have recently suggested that
the complexity of a stimulus is at least a partial factor in deter-
mining what neural storage systems are recruited (Bancroft et al.,
2014).

We acknowledge that the timecourse of the effects of TMS
to SI are not well-understood. Indeed, the effects of TMS to SI
are not well-understood in general. Harris et al. (2002) selected
a target in SI by using TMS to identify the region of greatest
tactile extinction, which could be interpreted as evidence of an
inhibitory, rather than excitatory effect of TMS. However, other
research has found excitatory or facilitatory effects of TMS over
sensory and motor cortex (Gerwig et al.,, 2003; Ragert et al,
2004, 2008), and even combined excitatory and inhibitory effects
(Oliveri et al., 2000; Moliadze et al., 2003; Strafella et al., 2004).
Indeed, even inhibitory effects on neurons in a stimulated region
can produce increased neural activity or excitability, due to a
reduction in the activity of inhibitory interneurons. Further,
Amassian et al. (2002) suggest that single-pulse TMS can excite
a large number of neurons in sensory cortex without the effects
reaching consciousness.

Effects are also likely to depend heavily on cortical structure
and connectivity. Identical stimulation parameters can produce
excitation or inhibition in different cortical regions (Paus, 2005),
and there is growing evidence that the effects of TMS over a corti-
cal region are state-dependent, with effects possibly depending on
pre-existing activity in the region (Harris et al., 2008; Pasley et al.,
2009; Abrahamyan et al., 2011). Recently, a number of authors
(including Harris) have suggested that TMS resulting in what
appears to be inhibitory behavioral effects can actually be due to
increased neural excitability resulting in an unfavorable signal-
to-noise ratio (Silvanto and Muggleton, 2008; Miniussi et al.,
2013).

Whether TMS-induced behavioral results are driven by corti-
cal inhibition, an unfavorable neuronal signal-to-noise ratio, or
both to some extent, the present work highlights another critical
issue: the local vs. remote interpretation of the neural interven-
tion. Combined TMS/fMRI studies have shown that, even at
relatively low intensities, TMS modulates hemodynamic activity
in both the targeted brain region and distant cortical and subcor-
tical regions (e.g., Bohning et al., 1999; Bestmann et al., 2005).
Though the distinction between local or remote effects of TMS
may be inconsequential in some settings, in the case of Harris
et al’s (2002) findings, interpreting the effects of TMS as related
to SI inhibition or PFC signal-to-noise modulation produce fun-
damentally different insights for neurocognitive models of STM
storage. In such a case, it might be useful to, wherever possible,
choose multiple stimulation sites (e.g., SI and PFC) and timings
(e.g., early vs. late in the delay period at both sites) in order to
design experiments that use TMS to conclusively elucidate the
where and when of a given cognitive task in the brain.

It is likely that relatively limited activity in SI can produce
effects downstream, given the feedforward nature of output con-
nections from SI (Romo and Salinas, 2003). When discussing
Harris et al’s (2002) results, Romo and Salinas (2003) sug-
gested that TMS was likely to produce localized effects in cor-
tex for approximately 200 ms after application. This may be
a conservative estimate; others have reported that the initial
phase of increased neural activity can persist for approximately
500 ms after TMS application (Moliadze et al., 2003; Silvanto and
Muggleton, 2008). However, given that the effects of activity in
SIT produced by vibrotactile stimuli can persist for several hun-
dred milliseconds after stimulus offset (Romo and Salinas, 2003),
as well as possible feedback loops within the vibrotactile mem-
ory system (e.g., Auksztulewicz et al., 2012), it appears plausible
that effects of a TMS pulse in SI could produce longer-lasting
effects downstream, and could produce substantial interference
with VWM storage. Experimental tests of this hypothesis (pos-
sibly involving a combined TMS/ERP paradigm) should prove
fruitful.

In the present study, we have suggested a way to integrate the
TMS results of Harris et al. (2002) with the EEG and single-
cell literatures. The present study also poses a challenge to the
emergent-property model of working memory, and suggests a
manner in which that model may be extended. Finally, and
perhaps most intriguingly, the results of the current study are
consistent with growing evidence that short-term and working
memory may rely on different neural storage substrates, based on
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the salient property of the stimulus that is being maintained in
memory; for example, in the present study, we have shown that
simple tactile stimuli are stored in PFC (as are simple stimuli in
other sensory modalities, see Bancroft et al., 2014) but complex
tactile stimuli may be stored in sensory cortex (e.g., Zhou and
Fuster, 1996).
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