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The understanding of the subjective experience of a visually stable world despite the
occurrence of an observer’s eye movements has been the focus of extensive research for
over 20 years. These studies have revealed fundamental mechanisms such as anticipatory
receptive field (RF) shifts and the saccadic suppression of stimulus displacements, yet
there currently exists no single explanatory framework for these observations. We show
that a previously presented neuro-computational model of peri-saccadic mislocalization
accounts for the phenomenon of predictive remapping and for the observation of saccadic
suppression of displacement (SSD). This converging evidence allows us to identify the
potential ingredients of perceptual stability that generalize beyond different data sets
in a formal physiology-based model. In particular we propose that predictive remapping
stabilizes the visual world across saccades by introducing a feedback loop and, as an
emergent result, small displacements of stimuli are not noticed by the visual system. The
model provides a link from neural dynamics, to neural mechanism and finally to behavior,
and thus offers a testable comprehensive framework of visual stability.
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1. INTRODUCTION
When we shift our gaze, which occurs about three times per
second, the retinal image changes, yet we perceive the environ-
ment as a stable entity. Well-established experimental findings
suggest that the maintenance of a stable world percept is an
active, constructive process which relies on corollary discharge
signals from the motor system (Sperry, 1950; Von Holst and
Mittelstaedt, 1950; Sommer and Wurtz, 2006; Klier and Angelaki,
2008; Melcher and Colby, 2008; Wurtz, 2008; Medendorp, 2011).
Thus, our percept of space is not only determined by the images
from the eyes. The general idea is that a corollary of a motor plan
can inform brain areas involved in perception about the upcom-
ing motor action allowing for compensatory or predictive com-
putations. In addition, predictive remapping, first observed in the
lateral intraparietal area (LIP) (Duhamel et al., 1992; Kusunoki
and Goldberg, 2003), has often been tied to the maintenance of
visual stability across eye movements. Predictive remapping refers
to the observation that some neurons with retinotopic receptive
fields, i.e., fields that move with the eyes, become responsive to a
stimulus placed in the future receptive field (FRF) of the cell prior
to saccade or at least respond with a shorter latency compared to
a condition without saccade. The FRF denotes the receptive field
(RF) of the cell after the eye movement. Thus, just before saccade
onset these neurons process a stimulus that will be in their RF
after saccade. However, neither the exact mechanism of predic-
tive remapping nor its function in the perception of a stable world
is understood. On the contrary, Bays and Husain (2007) casted
doubt on the role of predictive remapping for visual stability and

instead proposed that remapping served a non-perceptual role,
such as action control.

Other than corollary discharge, stimulus localization across
saccades could involve eye position information (Schlag and
Schlag-Rey, 2002). A prominent example of retinotopic, eye posi-
tion dependent coding are gain fields as illustrated by several
computational models (Zipser and Andersen, 1988; Salinas and
Sejnowski, 2001; Pouget et al., 2002). Gain fields describe neurons
that show a multiplicative coding of eye position and retinotopic
stimulus position, i.e., while the stimulus is placed at exactly the
same position on the retina, the neural response to that stimu-
lus depends on the position of the eye in the orbit. Such gain
fields have been observed in several parietal areas, such as in
LIP (Andersen and Mountcastle, 1983; Bremmer et al., 1997;
Boussaoud and Bremmer, 1999) and recent computational mod-
eling demonstrated that gain field properties can be learned using
Hebbian learning rules (De Meyer and Spratling, 2011). While
most visual areas have neurons with retinotopic receptive fields,
it has been reported that some cells in the lateral intraparietal
area (LIP) have head-centered stimulus representations (Galletti
et al., 1993; Mullette-Gillman et al., 2005). However, the basic
mechanisms of visual stability should already act at the retinocen-
tric level. In the static case, i.e., during fixation, gain fields are
known to solve the stability problem since they can serve as
basis-functions to compute an eye position invariant representa-
tion (Pouget et al., 2002). However, in trans-saccadic perception
gain-fields would require slightly delayed, but perfect information
about eye position: According to the reafferent principle (Von
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Holst and Mittelstaedt, 1950) changes in the afferent visual path-
way that occur during gaze shifts can be compensated by an
efference signal from the motor command to ensure perceptual
stability. Recent computational studies showed that an instanta-
neous eye position is not necessary but a slightly delayed one
(Teichert et al., 2010). However, there is so far no evidence that
this kind of information is available. In particular, a solution of
visual stability based on gain fields has recently been challenged
by the observation that eye position information in LIP updates
late after saccade (Xu et al., 2012), so that the post-saccadic
view would be still processed with pre-saccadic eye position
information.

We propose a solution that considers two interacting streams
of processing, one stream influenced by corollary discharge and
the other by eye position. We implemented this concept in a
neuro-computational model and first show how both streams
interact to produce a remapping of receptive fields. We then link
the mechanism of remapping to visual stability by simulating the
saccadic suppression of displacement (SSD) paradigm using the
same model. In brief, the SSD experiment requires subjects to
report if a stimulus has been displaced either to the left or right.
In human subjects it has been observed that the threshold for
the detection of stimulus displacements is increased when the
displacement occurs during a saccade (Bridgeman et al., 1975;
Deubel et al., 1996). However, SSD has so far not been explained
by any neuro-computational model.

As our neuro-computational model has been already intro-
duced in Ziesche and Hamker (2011), we here follow the
approach to accumulate evidence for an already existing model
of visual stability, as one of the ultimate goals in computational
neuroscience should be to demonstrate that a single computa-
tional systems-level model can account for multiple experimental
observations. Ziesche and Hamker (2011) introduced this model
and showed that it can explain data of peri-saccadic mislo-
calization of briefly flashed stimuli in total darkness, i.e., the
observation that a stimulus, briefly flashed around saccade onset,
is not perceived at its flashed location but at a location almost
half of the saccade amplitude away in direction of the saccade
vector. Keeping the same parameters that have been chosen to
match the behavioral data of peri-saccadic mislocalization in
total darkness (Ziesche and Hamker, 2011), we show here that
the model can also account for predictive remapping and SSD,
which are experimentally quite different from flashes in total
darkness.

The model relies on two sources of eye position related
signals. The first signal encodes eye-in-head position, which
may be proprioceptive and may originate in the somatosen-
sory cortex (Wang et al., 2007). This eye position signal is only
updated late after saccade, consistent with the data from Xu
et al. (2012). Object and eye-in-head position are integrated
into a LIP gain field by a subset of LIP cells, referred to as
LIP(PC) cells, inspired by the concept of radial basis func-
tion (RBF) networks for coordinate transformation (Pouget and
Sejnowski, 1997; Pouget et al., 2002). LIP(PC) neurons are orga-
nized in a two-dimensional cartesian coordinate system com-
posed of an axis encoding the retinotopic stimulus position and
an axis encoding eye position. The multiplicative interaction

between retinotopic stimulus position and eye position leads to
a local activation blob of gain field neurons. A projection which
sums up all activity along the diagonals of the map provides
a head-centered representation of the stimulus, at least during
fixation.

The second eye related signal used in the model, a corollary
discharge signal (Sommer and Wurtz, 2006; Wurtz, 2008) modu-
lates the gain of another subset of LIP cells, referred to as LIP(CD)
cells. The initially independent streams merge at the level of
LIP and a perceptual decision about stimulus displacement is
obtained by a temporal integration of the neural responses in
both streams, corollary discharge and eye position modulated
cells. Thus, we show that the impairment of perception due to the
delayed update of eye position signals observed in LIP (Xu et al.,
2012) can be compensated by a corollary discharge signal.

The model explains the reduced sensitivity to stimulus dis-
placement, observed in SSD experiments, by recurrent processing
such that the pre-saccadic stimulus affects the neural response
of the post-saccadic stimulus. While the pre-saccadic stimulus
is processed it affects the processing of the displaced stimulus
which could be referred to a masking phenomenon. Predictive
remapping not only establishes to connect the pre- with the post-
saccadic view but also facilitates recurrent processing to increase
the threshold for displacement detection. By suppressing corol-
lary discharge and predictive remapping in the model, we provide
for the first time testable predictions how these basic physiological
phenomena contribute to visual stability.

2. MATERIALS AND METHODS
2.1. SIMULATION OF EXPERIMENTAL PARADIGMS
Our model has been tested on two well known experimental
paradigms: Predictive remapping and SSD (Figure 1). The pre-
dictive remapping paradigm investigates the response of the cell
toward a probe presented around saccade onset either within its
present or FRF. (Figures 1A,B). In SSD tasks, a saccade target is
slightly displaced during the eye movement (Figures 1C,D). After
saccade, subjects are required to report the direction of the dis-
placement (e.g., left or right). Both experimental setups have been
implemented in a one dimensional space using the same spatial
and temporal layout as in the experiments.

2.2. COMPUTATIONAL MODEL
As the model has been published previously where we applied it to
explain the mislocalization of briefly flashed stimuli in total dark-
ness (Ziesche and Hamker, 2011) we here only present the coarse
structure of the model. The model and its parameters are identical
to those reported by Ziesche and Hamker (2011). The difference
to the previous study refers only to the different decision process
as obtained by the readout of the neural activity described later in
Materials and Methods.

The model is focused on area LIP but also relates to some
brain areas which project to LIP (Figure 2). It has three different
inputs: (proprioceptive) eye position XePC, corollary discharge
signal XeCD, and retinal object position Xr. LIP combines infor-
mation about stimulus position with two eye related signals, an
eye position and a corollary discharge signal. One set of LIP cells
are gain field neurons modulated by eye position (XePC) and thus
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FIGURE 1 | The simulated experimental paradigms. (A,B) Predictive
remapping according to the procedure of Kusunoki and Goldberg (2003).
(A) The spatial setup of predictive remapping. For simplicity we only
simulate a one-dimensional space. We simulate saccadic eye movements
from fixation to a saccade target using a saccade amplitude of 14◦, while
the stimulus is presented at the fixation position (in the future receptive
field) or at −14◦ (present receptive field). (B) The temporal setup of
predictive remapping. 100 ms flashes are presented at a variable time
around the saccade between 500 ms before and 100 ms after saccade
onset and the neural response has been recorded and averaged in a time
window between 50 and 350 ms after stimulus onset in monkey and
model. (C) The spatial setup of saccadic suppression of displacement
(SSD). We simulate saccadic eye movements from a fixation to a

saccade target using a saccade amplitude of 8◦. Peri-saccadically the
saccade target is displaced in small steps within a range of −4◦ to +4◦.
We simulate a stochastic saccadic scatter with a Gaussian distribution
(standard deviation: 0.58◦) with an undershoot relative to the intended
saccade amplitude (mean undershoot: 0.52◦) similar to experimental
observations (Niemeier et al., 2003). (D) The temporal setup of saccadic
suppression of displacement. The stimulus at the saccade target is
presented for 500 ms before saccade onset. As in real experiments the
saccade target displacement is triggered by the detection of the saccade
onset determined by an analysis of the acceleration of the eyes, the
displacement is set to take place 30 ms after saccade onset. In the gap
condition the stimulus is first extinguished and appears after a temporal
gap of 250 ms at its displaced position.

referred to as LIP(PC) cells and another set of cells, LIP(CD) cells,
are gain modulated by a corollary discharge signal (XeCD). We
first explain the characteristics of the retinotopic input map that
represents early visual areas such as MT or V4, the eye-related
signals, then the two types of LIP cells and their interaction,
either via the map of Xh or by direct lateral connections. Finally,
we explain how the neural activity in the model is read out for
a perceptual decision with respect to the direction of stimulus
displacement.

We simulate all one-dimensional maps with n = 40 neurons
and all two-dimensional maps with n neurons along each dimen-
sion resulting in a total of n2 neurons for each of these layers. The
firing rate of each neuron is computed in a time continuous fash-
ion using an ordinary differential equation (ODE). We simulate a
visual field of v = 160◦, ranging from −80◦ to 80◦.

2.2.1. Retinotopic map Xr
A set of n = 40 neurons with Gaussian receptive fields covers
the whole visual field such that the strength of the neural input
of each neuron depends on the distance between stimulus posi-
tion and RF center. The width of the RF is a function of the
eccentricity. The activity of a given Xr cell i is given by τ d

dt rXr
i =

I
(

1 + f
(

rXbPC
l,m

))
− rXr

i , where I is the input as determined by the

Gaussian receptive fields which is gain modulated by the feedback

of the response rXbPC
l,m from the neurons in the XePC map using a

non-linear function f . The feedback term is not critical for the
results as it only transfers changes in higher areas back to earlier
ones, a putative mechanism of attention.

2.2.2. Eye position map XePC

A set of n eye position neurons code the present eye position
by a Gaussian activation profile. The activity of a XePC cell i

is given by τ d
dt rXePC

i = r
XePC,in

i − rXePC
i , where r

XePC,in

i is the eye
position input. We take the assumption that the eye position sig-
nal updates only after saccade to its new location, as supported
by recent findings (Xu et al., 2012). As it might originate in
the primary somatosensory cortex (Wang et al., 2007; Xu et al.,
2011), we use the term XePC to refer to this eye-position signal.
However, its exact origin is not fundamentally relevant for the
results presented.

2.2.3. Corollary discharge map XeCD

A set of n corollary discharge neurons code the planned saccade
displacement in retinotopic coordinates by a Gaussian activa-
tion profile at the eccentricity coding the particular displacement.
Corollary discharge might originate in the superior colliculus
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FIGURE 2 | Overview of the implemented model. Rectangular boxes
indicate a one dimensional space, squared boxes a two dimensional
space as determined by their inputs. The equations illustrate how
signals are combined in each map, but do not represent the full neural
response equations. The bars in the LIP(PC) and LIP(CD) maps
illustrate the Gaussian connectivity matrix of a single input neuron to
other neurons in the map. Inputs into the whole model are the
stimulus position Xr in eye centered coordinates, an eye position signal
and a corollary discharge signal that encodes eye displacement. The
eye displacement signal is then fed into a gain field to combine the
present eye position with corollary discharge, such that one input into
LIP is not raw eye displacement, but the anticipatory eye position
XeFEF, which is only available around saccade, similar to the time
course of movement and visuo-movement cells in the frontal eye field.
LIP consists of two types of cells which are here organized in different
maps. The response of LIP(PC) cells expressed by XePC is determined
by the multiplicative interactions of Xr and XePC. As the connection
pattern of both inputs is determined by a Gaussian function an
activation blob emerges at those LIP(PC) cells which are tuned to the
present stimulus (ordinate) and eye position (abscissa). LIP(CD) cells,
expressed by XbCD, are also organized by a two dimensional map
where the ordinate represents stimulus position and the abscissa the
future (post-saccadic) eye position. LIP(CD) cells generally respond to
the stimulus position, even without the presence of other eye
position-related inputs. However, the gain of those cells that are tuned
to the future eye position is increased by XeFEF in the moment around
saccade. Essential for the observation of predictive remapping is the
additional input XeFEF × Xh to LIP(CD) cells. First of all, Xh receives its
input from LIP(PC) cells such that it encodes the stimulus position in a
head-centered reference frame by taking a sum along the diagonals
(Pouget et al., 2002). However, in addition Xh neurons receive input
from LIP(CD) cells, which encodes prior to saccade onset the stimulus
position also in a head-centered reference frame, but now with
reference to the future eye position. This combination of stimulus
position related to the present and future eye position is fed back to
LIP(CD) cells and elicits a response at those neurons that are tuned to
pre-saccadic visual locations with respect to the CD signal (see
Figure 3), as illustrated by the connections matrix in the LIP(CD) map.

(SC) and is routed via the frontal eye field (FEF) to visual areas
(Sommer and Wurtz, 2004, 2006). Thus, a natural assumption is
that its time course is similar as reported from single cell record-
ings of visuo-movement cells in SC and FEF (Sommer and Wurtz,
2004). It increases prior to saccade, is maximally active around
saccade onset and then decays. This time course is modeled by a
Gaussian rise and a slower Gaussian decay similar as in a previous
model (Hamker et al., 2008). The firing rates are again modeled
by ODEs.

2.2.4. Eye movement map XeFEF

As both streams, the corollary discharge and eye position, are
integrated at the level of LIP, eye position and eye displacement
have to be transferred into a common reference frame. Inspired
by observations of Cassanello and Ferrera (2007), Ziesche and
Hamker (2011) showed that a gain field in the FEF can trans-
form eye displacement into eye position (Figure 2), while keeping
the time-course of the signal, such that two eye-in-head posi-
tion signals are available, one phasic signal that anticipates the
goal-location of the saccade (XeCD) and one tonic signal that
encodes the present eye position and updates after saccade (XePC).
The transformation is sketched as XbFEF = XeCD × XePC and the
implementation follows the classical basis function map of Pouget
et al. (2002), except that it is computed with a time varying input
and different equations for the rate coded neurons. XeFEF is now
simply the sum along the diagonals in this map.

2.2.5. Basis function map XbPC

The eye position related stream of stimulus position describes the
response of LIP(PC) cells. The neurons are organized as a basis
function map XbPC, which follows the classical basis function
map of Pouget et al. (2002), except that it is computed with a time
varying input and different equations for the rate coded neurons.
The transformation is sketched as XbPC = Xr × XePC. Basically, a
two-dimensional map of n × n neurons is created from the two
single dimension population inputs (eye position and stimulus
position) which mimics eye position dependent responses in LIP.
Given a particular stimulus and eye position, a single activity hill
in XbPC emerges which is maximal at the intersection between
both inputs (Figure 3A).

2.2.6. Gain modulation map XbCD

The gain modulation map XbCD describes the response of
LIP(CD) cells. It is composed of n × n neurons and integrates
the CD signal with stimulus position. Different from XbPC the
cells in XbCD are simply gain modulated by the CD signal and
thus would not be classified as an eye position gain field. The cells
always respond to stimuli in their RF even in the absence of a CD
signal long before a saccade (Figure 3A) indicated by the term
Xr × (1 + XeFEF) in Figure 2, which is typical for attentional gain
modulation (Zirnsak et al., 2011a). In addition to this feedfor-
ward input, mutual interactions between LIP(PC) and LIP(CD)
cells are essential for predictive remapping. Two slightly different
model versions have been developed (Ziesche and Hamker, 2011),
while both can account for the peri-saccadic spatial mislocaliza-
tion of briefly flashed stimuli in total darkness (Van Wetter and
Van Opstal, 2008): one model that avoids any non-retinocentric
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FIGURE 3 | Illustration of how our model produces predictive

remapping behavior. Please refer to Movie S1 that shows the model
simulation. We show the activity of the two LIP cell types in different maps.
On the vertical axis they code retinal stimulus position; on the horizontal
axis head-centered proprioceptive (PC) signal in LIP(PC) and head-centered
corollary discharge (CD) in LIP(CD). Both maps are connected via the
intermediate cells. The wedge points to a LIP(CD) cell which shows a
predictive remapping response. (A) Network activities long before the
saccade when a stimulus is presented in the present receptive field.
LIP(PC) shows a joint representation of the visual signal and the
proprioceptive signal, which encodes the pre-saccadic eye position. The
“predictive remapping” LIP(CD) cell responds to the stimulus presented
within its receptive field. (B) Network activities shortly before the saccade
when the stimulus is presented in the future receptive field of the
“predictive remapping” cell. In LIP(PC) a cell responds, for which the
stimulus is in its normal receptive field. LIP(CD) similarly responds to this
stimulus, however, due to the corollary discharge, which encodes the
saccade target, the visual response in LIP(CD) is partially increased.
Furthermore, the activity from LIP(PC) is projected along the dashed lines
into LIP(CD) using the connection via the intermediate cells. This

(Continued)

FIGURE 3 | Continued

activity interacts with the corollary discharge leading to activity at the
“predictive remapping” cell. (C) After the saccade, the receptive field of the
“predictive remapping” cell has moved to the position of the future
receptive field from the previous step. In LIP(CD) the evoked response
includes the “predictive remapping” cell. Hence this cell responds to the
same stimulus as shortly before the saccade. It shows “visual stability.”

stimulus representation where LIP(PC) and LIP(CD) cells com-
municate via lateral connections and another where LIP(PC) and
LIP(CD) cells communicate via intermediate cells (Xh) whose
receptive fields are head-centered (Figure 2). The communica-
tion within the maps has been implemented to show predictive
remapping in LIP(CD) cells: The maps in LIP(PC) and LIP(CD)
will be read out by a projection of all cells along the diagonals to
integrate the evidence of stimulus position relative to the present
eye position and relative to the intended saccade target position
into a single population of Xh cells. As the population of Xh
cells projects back into LIP(CD) along the diagonal direction and
this feedback signal is multiplicatively combined with the antic-
ipatory saccade target Xh × XeFEF (see also Figure 2), LIP(CD)
cells do respond to stimuli in their FRF given the anticipatory
CD signal (Figure 3B). Thus, our model does not need all-to-
all connections among LIP cells as required in a previous model
of remapping (Quaia et al., 1998), it only requires a short range
Gaussian connectivity profile from each input (Figure 2): XeFEF

in the vertical direction, Xr in the horizontal direction and Xh in
the diagonal direction.

2.2.7. Intermediate cells Xh
One of the two developed models uses an explicit representation
of stimulus position in a head-centered reference frame at the
level of Xh. A set of n intermediate cells receive their input from
both streams: XbCD and XbPC by collecting all activity along the
diagonals, which ensures a head-centered reference frame (Pouget
et al., 2002). Thus, these cells merge information about stimulus
position relative to eye position and the anticipatory component
which is stimulus position relative to the predicted future eye
position. Both are not identical around saccade.

2.3. DECODING OF NEURAL ACTIVITY FOR DECISION MAKING
The SSD paradigm requires the model to report “forward dis-
placement” and “backward displacement” decisions instead of
absolute spatial positions as required by the localization of briefly
flashed stimuli. Rather than taking a particular snapshot in time
we use a layer of decision neurons that accumulate evidence over
time and compete for the final decision, but compared to the
previous approach (Ziesche and Hamker, 2011) require only two
cells (forward and backward displacement). In the model with-
out intermediate cells, the decision process receives input from
both, LIP(CD) and LIP(PC). In the model with intermediate cells
their activity is used as input for the decision process. Thus, the
neural response is fed into a diffusion model with decision neu-
rons (Usher and McClelland, 2001; Hamker, 2007). Besides being
justified by empirical studies (Kiani et al., 2008; Stanford et al.,
2010) this approach has the advantages of accumulating varying
evidence over time and allowing stochastic simulations.
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In order to compute a final response of the model with respect
to forward or backward displacement in the SSD paradigm a
temporal integration composed of the following steps is applied:

1. In the head-centered model the input IDP to the decision pro-
cess consists of the firing rates of Xh, i.e., IDP

i = rXh
i . In the

non-head centered model a similar input is generated by

IDP
i =

∑
lm

wXbPC,DP
ilm rXbPC

lm +
∑
lm

wXbCD,DP
ilm rXbCD

lm + (1)

where the connection weights are also similar to those of Xh:

wXbPC,DP
ilm = KXbPC,DP exp

−‖i − l − m‖2

(σXbPC,DP)2

(σXbPC,DP = 15.0, KXbPC,DP = 0.035) (2)

wXbCD,DP
ilm = KXbCD,DP exp

−‖i − l − m‖2

(σXbCD,DP)2

(σXbCD,DP = 15.0, KXbCD,DP = 0.02) (3)

2. The start time of the accumulation process is set to 28 ms
after saccade offset for conditions where the displaced stim-
ulus reappears during the saccade and 60 ms after stimulus
onset when the displaced stimulus reappears after saccade off-
set. We chose not to couple the accumulation onset to stimulus
onset for peri-saccadic stimuli since peri-saccadic detectability
of stimuli is suppressed (Volkmann et al., 1978). The timing
of 28 ms after saccade offset is motivated by assuming that
perceptual decision primarily relied on the post-saccadic view
(while considering neural latency).

3. The position information encoded in the input IDP is decoded
using template matching with precalculated templates with a
step size of 0.5◦. Template matching is done using correla-
tion. The match mc of the template tc

i representing a stimulus
at position c with neurons i is mc = ∑

j
IDP
j tc

j . The spatial

resolution of the decision neurons equals that of the templates.
4. We introduce noise by transforming the firing rate into a

Poisson spike train. To be more specific, one time step of the
input mc (the template match from the previous step) is equiv-
alent to n time steps of the spiking neuron m̃c (n = 20 is the
bin size). Spiking is simulated in the simplest way: In each of
the n time steps the neuron spikes if and only if mc > R × smax

where R is a random number between 0 and 1. The spiking
activity of the neuron is smax = 1 while the non-spiking activ-
ity is 0. Then the spike train is averaged for accumulation in
the decision neurons.

5. The previous step provides us evidence for the presence of a
stimulus at each spatial position with a resolution of 0.5◦. At
this step, we collect all these evidences into two evidences mf

and mb, one for forward and one for backward displacements
using the pre-saccadic stimulus position cpre as a decision
border: mf = ∑

c ≥ cpre
mc and mb = ∑

c ≤ cpre
mc

6. We implement a competition between the decision neurons
by subtracting each input from the other: mf = mf − mb and
mb = mb − mf .

7. Accumulating decision neurons are implemented as in
Hamker (2007). The ODE of each of the two decision neu-
rons df and db is: τDN t

dt df /b(t) = mf /b with time constant
τDN = 50 ms. Each decision neuron dc is initialized with a
baseline firing rate of 0.1 before the decision process begins. A
decision is made once one of the neurons reaches the threshold
dthresh = 0.3 to 0.9 (the threshold is varied in some of the sim-
ulations). If none of the neurons reaches this threshold after
100 ms the neuron with the highest activity at that time wins
(see Kiani et al., 2008).

8. This whole process is repeated 20 times and then averaged
over all trials for each condition, i.e., saccade amplitude, motor
error, displacement. Thereby, we calculate the average number
of “forward displacement” responses.

2.4. SIMULATION OF SACCADIC EYE MOVEMENTS
We reimplemented the saccade generator from Van Wetter and
Van Opstal (2008) to simulate the spatiotemporal trajectory of
a saccade. The simulation of the suppression of displacement
paradigm requires to account for stochastic scatter in order to
compute realistic trial to trial variations. In addition, we chose
on average a small undershoot in amplitude, as often observed
in experimental data (Niemeier et al., 2003). Thus, from each
experimentally required “correct” saccade we substract the scatter
sampling from a Gaussian distribution N(μ = 0.52◦, σ = 0.58◦).
In addition to a variation of the saccade amplitude, we have
to specify in how far the CD signal anticipates the final sac-
cade amplitude. We assume that the saccadic scatter arises on the
motor side, thus it is not reflected in the CD signal, but the CD
signal reflects the average undershoot (Collins et al., 2009).

3. RESULTS
3.1. PREDICTIVE REMAPPING IN THE MODEL
All simulations have been done with the whole systems-level
model (Figure 2). We initially focus on explaining the imple-
mented mechanisms that result in the predictive remapping
responses of LIP(CD) cells. Although the particular type of imple-
mentation of predictive remapping is novel, it has been explicitly
built into the model. Long time before saccade (Figure 3A),
a stimulus leads to visual responses in LIP(PC) and LIP(CD).
Shortly before saccade (Figure 3B, see also Movie S1), the eye
is still fixating at the same position (Figure 3B, left) while a
saccade plan is set in place (Figure 3B, right) that in turn will
change the spatial selectivity of the LIP(CD) cell being recorded
from. The saccade plan is fed as a saccadic displacement vec-
tor into the model FEF mimicking the CD signal from the SC
reported by Sommer and Wurtz (2008). Due to eye position
gain fields in FEF (see Ziesche and Hamker, 2011), the corol-
lary discharge encodes the intended saccade target in LIP(CD).
The crucial component for predictive remapping to occur is that
the visual response from LIP(PC) elicited by the probe in the
FRF is fed into LIP(CD) via the intermediate cells. The connec-
tion patterns are such that all activity in LIP(PC) which occurs
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along the diagonal lines are fed to those cells in LIP(CD) that are
located along the diagonal (Figure 2). In this particular case the
activity along the dashed line in LIP(PC) is summed up and pro-
jected to all LIP(CD) cells along the dashed line (Figure 3). In
LIP(CD) this input interacts multiplicatively with the corollary
discharge which is fed into LIP(CD) along vertical lines. In effect,
the recorded cell in LIP(CD) responds to the probe in the FRF.
This response is what would have been expected from the clas-
sical formulation of predictive remapping. However, the Movie
S1 illustrates that cells with receptive fields in between the RF
and FRF can also show predictive remapping responses. The exact
spatio-temporal distribution of predictive remapping responses
depends on a number of parameters that influence the dynam-
ics in the network. Theoretically, the model can be tuned toward
more sharply tuned, separated activity hills with less activation
of cells having receptive fields in between the classical and future
RF. However, this rather broad activation can be considered as an
implicit prediction of the model, since it was helpful in fitting the
model to the behavioral data of peri-saccadic mislocalization of
briefly flashed bars in total darkness (Ziesche and Hamker, 2011).
So far only a few cells in the FEF but not in LIP have been analyzed
to explore the spatial distribution of remapping (Sommer and
Wurtz, 2006). Note, that there is also an increased visual response
in LIP(CD) for those cells which receive the activity from the
corollary discharge [illustrated by a blob on the horizontal line of
activity in LIP(CD)]. Some time after the saccade (Figure 3C), the
corollary discharge signal has decayed and the proprioceptive eye
position signal has updated to encode the post-saccadic fixation.
Now, the normal receptive fields in LIP(CD) are restored.

Figure 4 illustrates the implemented mechanism of remapping
by showing the relevant connections in detail and leaving out
all other ones for a more clear illustration. Figure 4A shows a
LIP(CD) remapping cell that responds to a visual stimulus placed
within its RF. The same neuron also responds to a stimulation
of its future RF (Figure 4B). Rather than by an immediate feed-
forward connection, the remapping response is elicited, given the
presence of a corollary discharge, by a feedback from interme-
diate cells who in turn receive their input from LIP(PC) cells.
The remapping response does not necessarily require an explicit
representation of the intermediate cells that encode the stimu-
lus in a head-centered reference frame, the input into LIP(CD)
cells can also arise directly from LIP(PC) cells. While, as shown
later, both model versions can explain predictive remapping, the
model version with intermediate cells has an additional important
characteristic relevant for explaining SSD, which is its recur-
rent loop between LIP(CD) cells and intermediate cells, as this
loop stabilizes the pre-saccadic representation during the saccade
(Figure 4B).

Having explained how LIP(CD) cells in our model show pre-
dictive remapping behavior, we now provide further insight into
the model and qualitatively compare it to data from area LIP. In a
typical experimental paradigm for studying predictive remapping
behavior a stimulus is presented at various times around the sac-
cade in the RF and the FRF of a recorded cell. Figure 5A shows
experimental data recorded from LIP cells with predictive remap-
ping behavior (replotted from Kusunoki and Goldberg, 2003).
LIP(CD) cells in our model exhibit a comparable predictive

remapping behavior (Figures 5B,C). Note that in the model’s
LIP as presented in Figure 4 all LIP(CD) cells are gain modu-
lated by the corollary discharge and thus show a pre-saccadic
enhancement (Bremmer et al., 2009). However, since predic-
tive remapping is also observed for cells without pre-saccadic
enhancement (Kusunoki and Goldberg, 2003), we present time
courses for the responsiveness to stimuli which are presented in
the (normal) RF for a purely visual and visual cell with pre-
saccadic enhancement (Figure 5B). The different connectivity for
the two types of LIP(CD) cells are shown in Figures 5D,E where
the feedforward gain of the cell in Figure 5D is not modulated
by the corollary discharge. Since no study has systematically ana-
lyzed the remapping of visual cells in LIP with a pre-saccadic
enhancement, our model data (dashed line in Figure 5B) serves
as a prediction for future experiments. As the difference between
the two types of LIP(CD) cells does not affect the predictive
responses, we only show one curve for the predictive remapping
behavior (Figure 5C). Similar to the experimental data, the sim-
ulated cell starts to respond about 150 ms before the saccade to
a stimulus which will only be in its RF after the saccade. This
predictive remapping response in LIP(CD) cells can be equally
well realized without the layer of intermediate cells using a lateral
connection from LIP(PC) and LIP(CD) cells (Figure 6).

3.2. SACCADIC SUPPRESSION OF DISPLACEMENT
In order to investigate the influence of predictive remapping on
visual stability across eye movements we operationalize visual
stability using the SSD paradigm. Experimental studies revealed
that small displacements of the saccade target stimulus are hardly
noticed. When forced to make a decision between only two
alternatives (forward or backward displacement relative to sac-
cade direction) subjects are uncertain and make more errors as
becomes evident by a flat psychometric function which plots the
decision of the subject (e.g., the percentage of forward displace-
ments) over the displacement. The exact degree of uncertainty
varies across individual subjects (Bridgeman et al., 1975; Deubel
et al., 1996; Collins et al., 2009; Ostendorf et al., 2013). However,
when the target stimulus is initially extinguished and reappears
after a delay of 250 ms at its displaced location, human subjects
can detect the displacement surprisingly well as expressed by a
steep psychometric function (Deubel et al., 1996).

We focus our analysis exactly on this qualitative difference
and performed simulations for three different models: The full
model as described above (Figure 7A), a model without pre-
dictive remapping (Figure 7B), and a model without corollary
discharge (Figure 7C). The full model shows a typical SSD behav-
ior: The psychometric response curve has a shallow slope, indi-
cating that small target displacements are not perceived well.
This diminished detection of displacements is not due to a
reduced processing of stimuli but due to the neural trace stem-
ming from the pre-saccadic stimulus. As a control that the
steepness of the response curve of the full model (Figure 7A)
indeed shows an SSD effect we replicate the well-known, but
puzzling blanking effect (Deubel et al., 1996), where the stimu-
lus appears much after the end of the saccade. Such a blanking
period of 250 ms restores the displacement detectability also in
our model (Figure 7D). According to the model, this blanking
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FIGURE 4 | Schematic diagram of the neural circuit that

implements predictive remapping in the model LIP. This diagram
details the connections from Figure 2 but shows only relevant
connections in high detail and does not visualize all other
projections. “Predictive remapping” refers to the phenomenon that
some visual cells with retinotopic receptive fields (RFs) transiently
respond to stimuli in their post-saccadic receptive fields (future
receptive field, FRF) shortly before an upcoming saccadic eye
movement. We propose a model of the lateral intraparietal area (LIP)
which is composed of two types of retinotopic visual cells. LIP(PC)
cells, which are gain modulated by a proprioceptive (PC) eye position
signal, and LIP(CD) cells, which are gain modulated by a corollary
discharge (CD). Thus, each LIP(PC) cell only responds to a specific

combination of retinotopic stimulus position and gaze direction. In
contrast, the receptive fields of LIP(CD) cells show a gain increase
for certain saccade targets encoded by the corollary discharge. Black
circles indicate active and white circles inactive synaptic connections.
(A) During fixation both, an LIP(PC) and an LIP(CD) cell respond to
a stimulus in their retinotopic receptive field. Long before saccade
the CD signal is inactive. (B) A predictive remapping cell, here a
LIP(CD) cell, responds when the stimulus is presented shortly before
saccade onset at the future receptive field. In our model, this
occurs as LIP(PC) cells, which have their RF located at the location
of the FRF of the considered LIP(CD) remapping cell, project to
intermediate cells. Their activity, but only in combination with a
spatially selective activation of a CD signal drives the remapping cell.

effect occurs since the activity traces elicited by the pre-saccadic
stimulus have ceased and the proprioceptive eye position sig-
nal has updated to its correct, post-saccadic value. In addition,
the corollary discharge signal has decayed. Thus, the localization
of the displaced stimulus depends solely on the proprioceptive
eye position and retinal signals which both are veridical at this
time. Thereby, stimulus displacements at this time are detected
well.

The model without predictive remapping (Figure 7B) is real-
ized by disabling the feedback from the intermediate cells
to LIP(CD) (see the model illustration on the right side of
Figure 7B). It predicts two effects on the simulated behavioral

outcome: The response is biased toward negative target displace-
ments, i.e., against saccade direction, indicated by the rightward
shift of the psychometric function. Moreover, the response curve
is steeper which indicates a higher sensitivity. To understand why
disabling predictive remapping has this effect, it is necessary to
examine the dynamics of the full model, where the perceived
target displacement is initially influenced by two main factors
(we later discuss a third factor): (1) The saccadic eye move-
ment leads to a movement of the target stimulus on the retina
in the opposite saccade direction, i.e., it gives evidence for a
negative target displacement (rightward shift of the psychome-
tric function). (2) Predictive remapping distorts the stimulus
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FIGURE 5 | The time courses of predictive remapping of cells in real

and simulated LIP. The y-axis shows the neural response in the interval
from 50 to 350 ms after the appearance of the stimulus aligned to
saccade onset. The stimulus was visible for 100 ms. (A) Experimental
data replotted from Kusunoki and Goldberg (2003). Shown are the
averaged responses of 36 visual cells in LIP. Error bars are standard
errors. The gray area indicates the duration of a saccade. (B) Responses
of LIP(CD) cells around saccade (14◦ amplitude) when a stimulus is
presented in the receptive field of the neuron. Green line: responses of a
purely visual cell. Red line: responses of a visual cell with a pre-saccadic
gain increase. (C) Blue line: responses where the stimulus is shown in

the future receptive field of the recorded cell. This response is the same
for both cell types of panel (B) and shows a predictive response. (D)

Illustration of the connections of a purely visual cell. Its feedforward input
from the stimulus is not influenced by the corollary discharge (CD),
however, it receives CD-dependent input from the intermediate cells. (E)

Illustration of the connections of a visual cell with a pre-saccadic gain
increase. Its feedforward input from the stimulus increases its gain due
to the influence of the CD signal. It can also be driven via the
CD-mediated input from intermediate cells (compare Figure 2). Note, this
cell does not respond to the planned eye movement in total darkness, as
it requires a visual stimulation or at least activity in the intermediate cells.

representation in saccade direction, i.e., it gives evidence for a
positive target displacement, since the corollary discharge, which
drives the remapping, acts like an anticipatory eye position sig-
nal. When remapping is removed, we reduce the evidence for a
forward displacement, which explains the bias (Figure 7B).

To understand why the psychometric function is steeper in
the model without remapping we have to consider a third factor.
(3) Remapping establishes a feedback loop. Predictive remapping

originates from the lateral projection of LIP(PC) and LIP(CD) via
the intermediate cells to LIP(CD) which is modulated by a corol-
lary discharge and is stabilized in the recurrent loop of LIP(CD) to
the intermediate cells and back to LIP(CD). Such stabilizing feed-
back loop has been demonstrated in Figure 3B: Shortly before the
saccade the stimulus representation in LIP(PC) is correct since
neither the visual signal nor the proprioceptive eye position signal
have started updating yet. All network activities along the dashed
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FIGURE 6 | The time course of predictive remapping in the model

without intermediate cells. (A) Responses of LIP(CD) cells around
saccade (14◦ amplitude) when a stimulus is presented in the receptive
field of the neuron. Green line: responses of a purely visual cell. Red
line: responses of a visual cell with a pre-saccadic gain increase. (B)

Blue line: responses where the stimulus is shown in the future receptive

field of the recorded cell. (C) Illustration of the connections of a purely
visual cell. Its feedforward input from the stimulus is not influenced by
the corollary discharge (CD). Different to the model with intermediate
cells it receives CD-dependent lateral input directly from another LIP(PC)
cell without any further delay. (D) Illustration of the connections of a CD
modulated cell.

lines in LIP(PC) and LIP(CD) represent the same stimulus posi-
tion (in a head-centered reference frame, which is used for the
perceptual readout). Since the predictive remapping response is
also on the dashed line, it represents the same (correct) stimu-
lus position. Stabilizing the pre-saccadic network activity leads
to reduced effects of peri-saccadic stimulus displacements, which
explains the SSD effect. If this feedback by remapping is turned
off, the stabilizing effect does not occur and peri-saccadic stim-
ulus displacements are detected well. However, this increase in
sensitivity for the model without predictive remapping comes
with the cost of a bias that occurs by the missing anticipatory
component. If we keep predictive remapping in place, but imple-
ment it just by a lateral projection directly from LIP(PC) and

LIP(CD) without the intermediate cells in between and thus with-
out the recurrent loop of LIP(CD) to the intermediate cells and
back to LIP(CD) we also do not observe the typical SSD effect
(Figure 8). Thus, predictive remapping together with a peri-
saccadic stabilization of the pre-saccadic representation are the
crucial ingredients of perceptual stability.

Finally, if the corollary discharge itself is turned off
(Figure 7C), the model predicts a large response bias. This is
because, similar as for remapping, the corollary discharge signal
leads to a distortion of the stimulus representation in saccade
direction. Thus, when corollary discharge is disabled, there is
an increased response bias toward negative displacements. At
the same time, the steepness of the response curve is similar to
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FIGURE 7 | The function of predictive remapping for visual stability

measured by saccadic suppression of displacement (SSD). Shown are
the model performances in the SSD paradigm for three different model
versions. The psychometric plots show the percentage of “forward” replies
depending on stimulus jump size. Crosses are simulated data points
(averaged over 20 trials per conditions); black lines are cumulative Gaussian
distributions which are fitted using ordinary least squares. Parameters of
the fitted distributions are shown in each plot. The fitting parameter σ

expresses the uncertainty and μ a potential bias in the decision. The right
side of each panel depicts which parts of the model are disabled in those
simulations. (A) In the full model, including corollary discharge and
predictive remapping, the response is unbiased. Furthermore, the
psychometric curve is shallow, indicating a high threshold for the detection
of small stimulus jumps. (B) When corollary discharge remains enabled, but
predictive remapping responses are disabled [by disabling the feedback to
LIP(CD)] the model detects stimulus displacements well. In addition, the

(Continued)

FIGURE 7 | Continued

response is biased such that displacements of 1.7◦ are perceived as stable.
(C) When the corollary discharge signal is disabled, the model has a similar
displacement detection performance as in (B), but with an even larger
response bias of about 3◦. (D) When we introduce a 250 ms gap before the
stimulus reappears at the displaced position, the displacements are
detected well (blanking effect).

FIGURE 8 | Simulation of the saccadic suppression of displacement

(SSD) paradigm using the model without intermediate cells. The
LIP(CD) cell is modulated by lateral input from LIP(CD) cells. Compared to
the model with intermediate cells (Figure 7) the typical flat psychometric
response function is missing indicating only little suppression of
displacements.

the model without remapping (in panel B) as without corollary
discharge the stabilizing feedback loop is interrupted.

In order to further reveal the effect of predictive remapping
we show in Figure 9B the psychometric detection curves from
Figures 7A,B in a different fashion on top of each other and with-
out the bias. We removed the bias by shifting the psychometric
curves such that they pass through 50% detection performances
for 0◦ target displacements. For comparison, Figure 9A shows
a histogram of the saccadic scatter from eye movement simula-
tions (where the bias was removed as well). It can be observed
that without predictive remapping, the stimulus jump detection
curve is steep and trials with a large saccadic (motor) error (+1◦
to +2◦ and −1◦ to −2◦) would falsely be detected as target jumps.
With predictive remapping a false interpretation of the saccadic
error as target displacement is less likely. In other words, Figure 9
illustrates how the SDD effect is a by-product of visual stabil-
ity: Visual stability can be understood as perceiving the world as
being displaced peri-saccadically only if it actually is displaced.
Saccadic scatter leads to different post-saccadic retinal positions
of the saccade target in each trial. Without the SSD effect, these
different retinal positions would be misperceived as peri-saccadic
displacements. Thus, SSD helps to avoid such misperceptions by
increasing the threshold for the detection of peri-saccadic target
displacements. Predictive remapping is involved in this increase
of the threshold for displacement detection since it keeps the
veridical pre-saccadic stimulus position in peri-saccadic “mem-
ory” thereby distorting new (displaced) sensory signals toward
the memorized (veridical) position representation.
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FIGURE 9 | The SSD effect in relation to saccadic scatter. (A) Histogram
of the saccade endpoint with removed bias (in the simulations, the
saccades undershoot by 0.52◦ on average). (B) For better comparison, we
replot the psychometric detection curves of the full model (dark line) and of
the model without remapping (gray line) from Figures 7A,B with the biases
removed.

4. DISCUSSION
Since its first discovery by Duhamel et al. (1992) there have been
numerous reports of peri-saccadic dynamic RF updating. Some
of these RF shifts might not exactly remap to the FRF location
and rather shift into the direction of the focus of attention at the
saccade target which leads for most previously tested spatial lay-
outs to similar RF shifts as those of predictive remapping (Zirnsak
et al., 2010; Hamker et al., 2011; Zirnsak et al., 2011b). However,
in this study we investigate the potential role of the classical def-
inition of predictive remapping which posits that a neuron starts
responding to a stimulus presented in its FRF just before the
eye movement (Duhamel et al., 1992). From early on, predictive
remapping has been proposed as the central neural mechanism
for the subjective experience of visual stability (Duhamel et al.,
1992), an idea that has been further refined in recent reviews
(Melcher and Colby, 2008; Wurtz, 2008), but neither its com-
putational mechanisms nor its exact role in maintaining visual
stability have been well understood (Hamker et al., 2011). We
have focused on area LIP as one particularly important area for
predictive remapping but similar mechanisms might also take
place in the FEF (Sommer and Wurtz, 2006; Shin and Sommer,
2012).

While there is no widely accepted explanation about the
underlying neural substrate of predictive remapping, a few com-
putational models have explained predictive remapping in dif-
ferent ways. Quaia et al. (1998) explain remapping in LIP by
means of a routing circuit. LIP cells are required to be all-
to-all connected and the oculomotor-related signal from the
FEF that indicates the saccade amplitude gates a particular

set of connections to establish a predictive response. However,
such all-to-all connection is biologically very unlikely. Keith
et al. (2010) designed a variant of the Zipser and Andersen
(1988) model to learn spatial updating in the double-step task.
Interestingly, some cells in the model developed receptive fields
that shift along the saccade vector. However, a reverse shift in
other cells has also been observed. While the ability to learn
receptive fields that remap is a great advantage of this model,
learning is implemented in a supervised regime, that is, it requires
a teacher signal about the correct output, which is unlikely to
exist in LIP. Schneegans and Schöner (2012) recently proposed a
model of remapping based on gain-fields which do not require
all-to-all connections. However, remapping has been modeled
using a gaze input with dual peaks in eye position, the present
and future one, without further specifying where such eye posi-
tion signals would originate. Our model differs from the one
of Quaia et al. (1998) in that it does not require the massive
all-to-all connections as it relies on the concept of gain fields.
From the viewpoint of connectivity, our model only requires
local (Gaussian) weight connections from the input/output maps
to each neuron in the XbCD map where remapping takes place.
Remapping in our model is an inherent aspect of coordinate
transformation, but part of the feedback stream. While the feed-
forward streams do either code stimulus position with respect to
present or future eye position, the feedback component encodes,
given the predicted future eye position, the predicted stimulus
location that would lead to the same head-centered response as
the present stimulus position with respect to present eye position.
Thus, remapping plays in our model a particular role in trans-
saccadic perception where eye position information is used to
align the pre-saccadic with the post-saccadic view and remapping
anticipates the post-saccadic view.

Previous models of remapping mainly addressed the spa-
tial updating of saccade targets (Quaia et al., 1998; Xing and
Andersen, 2000; Keith and Crawford, 2008) or full field coordi-
nate transformation (Schneegans and Schöner, 2012), but not its
function in visual stability (Hamker et al., 2011). In this study
we offer a comprehensive explanation of the function of pre-
dictive remapping in SSD. SSD has been previously explained
by an object reference theory (Deubel et al., 1996; Bridgeman,
2007) and by an optimal transsaccadic inference theory (Niemeier
et al., 2003). The object reference theory does not refer to predic-
tive remapping and rather explains SSD as a build-in assumption
of the brain, which aligns the pre-saccadic to the post-saccadic
view according to available references, such as the saccade target.
Niemeier et al. (2003) explain SSD on a rather abstract compu-
tational level. According to their Bayesian model, SSD represents
optimal integration of all available information including a prior
that transsaccadic position changes are unlikely events. To explain
the blanking effect, however, they have to assume that this prior
changes. While the conceptual framework of such transsaccadic
integration is very interesting and relates to our model, such a
Bayesian account does neither allow to specify the neurophysi-
ological mechanism nor does it allow to make inferences about
the temporal dynamics of perception around eye movements.
Our physiology-based model adds to this rather abstract model
in that it allows explaining the blanking condition by means
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of a dynamic circuit without any changes of parameters: Under
normal transsaccadic conditions stimuli are available before
and after saccade so that the pre-saccadic stimulation remains
encoded in the dynamic neural network and affects the percep-
tion of the immediate post-saccadic stimulus. Blanking means
that the appearance of the post-saccadic stimulus is delayed and
thus according to our model, it occurs at a time where the
trace of the pre-saccadic stimulus already decayed, so that now
perception is not affected by the pre-saccadic view. Thus, our
model predicts that blanking emerges from the temporal systems
dynamics.

The potentially most important progress of our study does
not necessarily lie in the novel explanation of a single partic-
ular experiment but in its ability to generalize across different
studies. As the same model, using identical parameters, has been
previously demonstrated to simulate the systematic localization
errors of briefly flashed bars in complete darkness (Ziesche and
Hamker, 2011), we show that SSD and the mislocalization of
flashed stimuli in total darkness can be explained on an identical
neural substrate involving remapping. How do then SSD and the
mislocalization of flashed stimuli in total darkness relate to each
other, why is such a system, that leads to perceptual errors, useful
at all, and why can a single model based on predictive remapping
account for these seemingly different experimental data? In exper-
iments using flashed stimuli the visual system is probed in a brief
period in time around saccade. Due to the corollary discharge sig-
nal, LIP(CD) cells start representing the stimulus with respect to
a reference that already codes the future eye position (Figure 3)
and thus, integrated over LIP(PC) and LIP(CD) cells, the stimu-
lus is seen at a non-veridical position in direction to saccade. As
an emergent result of the model’s neural dynamics, the amount
of mislocalization deceases with increasing flash location, which
likely explains large variations in the amount of mislocalization
across different studies (Dassonville et al., 1992; Van Wetter and
Van Opstal, 2008; Van Grootel et al., 2012). In SSD the situa-
tion is different. Here the stimulus is visible already prior to the
eye movement and its elicited neural activation inherently stabi-
lizes any slightly displaced new population response, that enters
the visual system after saccade, toward the pre-saccadic stimulus.
Again, the LIP(CD) cells are crucially involved as the stabiliza-
tion takes place within the circuit of LIP(CD) and intermediate
cells. While SSD might appear as a shortcoming of the visual
system, this suppression of displacement also compensates for
inaccuracies in the saccade execution (saccadic scatter) (Kapoula
and Robinson, 1986). Since such errors of the motor system can
only be known by the visual system once post-saccadic propri-
oception about eye position is veridical, which can take longer
than 100 ms after saccade offset (Xu et al., 2012), the visual
system should have an increased threshold for transsaccadic stim-
ulus displacements to avoid false alarms. Indeed, in our model
simulations, the amount of suppression for peri-saccadic target
displacements, which is produced by the stabilizing effect of the
predictive remapping response, is sufficient to avoid false alarms
to the displacements stemming from saccadic scatter (Figure 9).
Thus, a necessary requirement for a stable perception of the
visual world across eye movements is that no displacements of
the world are detected as long as the world actually remains stable

during the eye movements. Using our computational framework,
we show that a predictive remapping response, which is gener-
ated by a corollary discharge of the saccade plan, prevents such
false alarms of stimulus displacements and thus serves a stable
perception of the visual world.

In sum, our model offers a fresh, new view onto the role of pre-
dictive remapping in the subjective perception of a stable world
and provides several testable predictions. For example, it proposes
the existence of two types of LIP cells as far as the extraretinal
modulatory signal is concerned that can be either eye position
or eye displacement, while mixtures are also possible. Second,
it proposes that predictive remapping relies on an intact projec-
tion from eye position modulated to eye displacement modulated
cells which is mediated by corollary discharge. The disruption of
these connections, e.g., by suppressing corollary discharge should
diminish predictive remapping. Third, any disruption of predic-
tive remapping or corollary discharge should lead to a systematic
bias in SSD opposite to saccade direction. Fourth, as the differ-
ence between the normal and the blanking SSD is explained by
the modulatory effect of the pre-saccadic stimulus trace, any dis-
ruption of this trace should decrease the displacement threshold
in SSD. Of course, a full account of perceptual stability requires
testing how well the proposed mechanisms work when scaled up
to more complex scenes. While interesting, the SSD paradigm is
limited in that only a single stimulus is present and it might be
that other mechanisms, such as the relative localization to visual
landmarks (Bays and Husain, 2007), may be important in real
world scenes. Similarly, the role of sustained visual attention has
to be further explored (Golomb et al., 2010; Rolfs et al., 2011).
However, our computational study provides a fundamental step
toward an understanding of the role of predictive remapping since
its first discovery by Duhamel et al. (1992). The model suggests
that predictive remapping stabilizes the visual world across sac-
cades by introducing a feedback loop. The stabilizing effect helps
in avoiding misperceptions which can arise from motor errors in
the saccade execution.
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Movie S1 | Simulation results of the model dynamics in a predictive

remapping experiment as illustrated in Figure 3. The top left panel shows

the visual setup. The cross represents the center of gaze, the dot

represents the stimulus position. The simulation shows a 20◦ saccade

from the position of 10◦ toward the constantly shown stimulus at −10◦.

The top right panel shows the retinal input signal in the model layer Xr (on.

both axes) After the stimulus latency of 50 ms, neurons in this layer start

to respond to the stimulus. At time index 0 the eyes start to move (see

top left panel). After the stimulus latency of 50 ms, Xr shows the gaze

shift-induced movement of the stimulus response. The bottom left and

bottom right panels represent the two simulated LIP populations XbPC

and XbCD, respectively. The retinal input from Xr enters both maps on the

vertical axis. In XbPC (bottom left panel) the visual activity is modulated by

the proprioceptive eye position signal which enters the map on the

horizontal axis. Thus, before saccade the response in XbPC peaks at the

pre-saccadic eye position of 10◦. Peri-saccadically, the activity in this map

is suppressed. Post-saccadically around 110 ms after saccade onset,

suppression ends in XbPC and the activity updates to represent the

post-saccadic eye position of −10◦. In XbCD (bottom right panel) the visual

activity is modulated by the corollary discharge signal, which enters the

map on the horizontal axis at the future eye position (here −10◦). In

contrast to XbPC, cells in XbCD respond to visual input even in the absence

of the CD signal. The green circle indicate the cells which, according the

classical formulation of predictive remapping, should show a predictive

remapping response to the stimulus. Before saccade onset, the visual

response in XbCD starts to show the effects of the rising CD signal. A

remapping response is triggered by the CD signal which is centered

at −10◦ and interacts with the input from the intermediate cells that

enters XbCD diagonally along the dashed line. Thus, both signals together

provide an additional input to the cells located within the green circle,

exactly at the intersection of the diagonal dashed line with the center of

the CD signal at −10◦, just prior to saccade onset. This is the classical

predictive remapping response.
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