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A wealth of experimental evidence suggests that working memory circuits preferentially
represent information that is behaviorally relevant. Still, we are missing a mechanistic
account of how these representations come about. Here we provide a simple explanation
for a range of experimental findings, in light of prefrontal circuits adapting to task
constraints by reward-dependent learning. In particular, we model a neural network shaped
by reward-modulated spike-timing dependent plasticity (r-STDP) and homeostatic plasticity
(intrinsic excitability and synaptic scaling). We show that the experimentally-observed
neural representations naturally emerge in an initially unstructured circuit as it learns to
solve several working memory tasks. These results point to a critical, and previously
unappreciated, role for reward-dependent learning in shaping prefrontal cortex activity.
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1. INTRODUCTION
Working memory is defined as the temporary storage of stimulus-
specific information during a delay period. This function has been
traditionally associated with circuits in prefrontal cortex (PFC).
Classic work in monkeys revealed that single neurons in this
region exhibit selective persistent activity during the delay period
(Miyashita, 1988; Goldman-Rakic, 1990) and its disruption (by
electrical stimulation, or due to distracters) leads to a decay in
performance (Funahashi et al., 1989). These early observations
have been interpreted as the circuit exhibiting attractor dynam-
ics, which enable a subset of the neurons to maintain high firing
throughout the delay after a brief stimulus presentation (Amit
and Brunel, 1997; Brunel and Wang, 2001). This view has been
revised in recent years, as it was shown that most neurons in
PFC change their firing rates during the delay (Miller et al., 1996;
Chafee and Goldman-Rakic, 1998; Pesaran et al., 2002; Rainer and
Miller, 2002; Barak et al., 2010), suggesting that working mem-
ory circuits rely on feedforward rather than attractor dynamics
(Goldman, 2009). Still, while experiments generally agree on
how information is represented in working memory circuits, i.e.,
using spatio-temporal patterns of neural activity, exactly what
information gets encoded is less clear.

An accumulation of data across different working memory
experiments paints an increasingly complex picture of the fea-
tures encoded in PFC. We find neurons may represent the
previous stimulus, the forthcoming action, or a more complex
function of the two (Durstewitz et al., 2000). When the task
requires a generalization across stimuli, neurons develop category
selectivity (Freedman et al., 2001). Moreover, there is a gradual
shift in these representations as the number of examples per class
increases, with animals switching from a stimulus-response asso-
ciation strategy to representing categorical distinctions directly
(Antzoulatos and Miller, 2011).

Things get even more complicated when animals need to
alternate between different tasks. While PFC neurons generally
represent the task to be performed (Asaad et al., 1998; Cromer
et al., 2010; Roy et al., 2010; Warden and Miller, 2010; Meyer
et al., 2011), they can differ significantly with respect to how the
information is distributed across the population in different tasks.
For instance, neurons can show task-specific changes in overall
firing rate, in time-dependent response profiles and in stimulus
and response selectivity (Asaad et al., 2000). In some situations,
the same neurons seem to participate in encoding features related
to different tasks (e.g., making different category distinctions,
Cromer et al., 2010), effectively multiplexing information across
contexts. In other situations, however, information is encoded in
different neurons for different contexts (Roy et al., 2010), and—
worse still—it is unclear when one or the other coding strategy
may be employed. Generally, we are missing a unifying account
for PFC representations during the delay period.

Here we hypothesize that reward-dependent learning under-
lies the variety in PFC representations in different working mem-
ory tasks. The data itself suggest that this may be the case: the most
striking feature of the above experiments is not the diversity of
neural responses, but the sheer number of neurons displaying an
effect. Regardless of the actual task the monkey has been trained
to carry out, a significant subset of the recorded neurons are
found to exhibit selectivity to the specifics of that particular task.
This is a strong indication that PFC neurons adapt their responses
to reflect current cognitive demands. Indeed, PFC representations
change significantly over the course of training (Rainer et al.,
1998b; Rainer and Miller, 2000; Baeg et al., 2003; Kennerley and
Wallis, 2009). Neural responses become increasingly sparse, the
tuning of the neurons narrows, and the representation becomes
more robust to input noise (Rainer and Miller, 2000). These
changes in neural representation parallel behavioral learning, and
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allow for a better decoding of stimuli and actions (Baeg et al.,
2003). Moreover, since the training-induced changes in neural
responses include changes in functional connectivity (Baeg et al.,
2007), it seems likely that associative learning within the cir-
cuit is responsible—at least in part—for the refinement of neural
representations with learning. The specific mechanisms involved
remain unclear, however.

We assume that learning in PFC is reward-dependent. This
hypothesis is consistent with the observation that dopamine,
a neuromodulator associated with reward prediction error
(Schultz, 1998), modulates synaptic plasticity in this circuit
(Otani et al., 2003). It also explains the dependence of neural rep-
resentations on the magnitude of the expected reward (Kennerley
and Wallis, 2009). However, the primary reason for our assump-
tion is computational. Working memory circuits are know to
operate under strict capacity constraints (Cowan, 2001), and a
circuit with limited resources cannot simply encode everything.
To perform well, it needs to represent the specific aspects of
the stimulus that matter for the task at hand (Duncan, 2001).
Hence, reward should modulate learning so as to shift represen-
tations toward task-relevant features. This points to a critical and
previously unrecognized role for reward-dependent plasticity in
shaping prefrontal representations.

Can reward-dependent learning alone explain the wide vari-
ety of experimental observations on PFC encoding? To address
this question, we studied the effects of reward-dependent learn-
ing on the encoding properties of neurons in a working memory
circuit. More specifically, we trained a generic recurrent neu-
ral network to solve tasks similar to those employed in working
memory experiments. We then investigated the neural represen-
tations emerging in the circuit and compared them to neural
data. We chose a simple abstract model for the network dynamics
in which the output of a neuron depends only on its instanta-
neous inputs. Learning was implemented by reward-dependent
spike timing dependent plasticity (rSTDP) (Izhikevich, 2007),
supplemented by homeostatic mechanisms that stabilized the net-
work dynamics during learning (Lazar et al., 2009). Importantly,
as individual neurons have no memory themselves, the storage
of information in this circuit relies exclusively on the recurrent
connectivity. While this simple model cannot capture the full
complexity of the temporal dynamics in PFC, it allows us to focus
specifically on the reward-dependent reorganization of recurrent
connections and its effects on circuit function.

We found that our model is able to capture key aspects of neu-
ronal dynamics during working memory tasks. Neurons in the
model develop specificity in space and time and, depending on
the task, they preferentially encode individual stimuli, actions, or
context information. In a simple delayed-response task, neurons
encode stimulus identity (Miller et al., 1996; Constantinidis and
Franowicz, 2001). In a delayed-categorization task, neurons learn
to preferentially encode category boundaries (Freedman et al.,
2001). Lastly, when learning several tasks at the same time, the
degree of neural specialization depends on the specifics of the
task, mirroring experimental data. When the task involves sev-
eral independent category schemes, neurons act as “multiplexers,”
coding for different things in different contexts (Cromer et al.,
2010); when the same stimuli need to be categorized differently

depending on behavioral context, the neurons segregate into dis-
tinct task-specific subpopulations (Roy et al., 2010). Furthermore,
reward-dependent learning is critical for these results. A similar
circuit trained by unsupervised learning shows a significant loss in
working memory performance, paired with poorer neural repre-
sentations. Taken together, our findings show reward-dependent
learning could be a central force in the organization of working
memory circuits.

2. MATERIALS AND METHODS
2.1. THE GENERAL TASK
The working memory tasks we investigated share a simple gen-
eral structure (Figure 1A): at the beginning of a trial one stimulus
(out of K) is briefly presented to the network. After a delay period
(either fixed for a block of trials or selected at random from
a given distribution) a “Go” cue is presented, after which the
reward is given according to the action selected by the model
(one out of M)—either +1 for a correct answer or −1, other-
wise. Different tasks correspond to different mappings between
stimuli and actions and each are described in detail in the cor-
responding Results section. To speed up learning, we adopt the
same strategy employed in training animals for experiments, i.e.,
we start with the minimum delay version of the task and progres-
sively increase the duration of the delay period during learning
(Klingberg, 2010).

2.2. NETWORK MODEL
An overview of the network is shown in Figure 1B. The recur-
rent network consists of N units (unless otherwise specified,
N = 250), 80% excitatory and 20% inhibitory, with sparse ran-
dom connectivity. Input units encoding different stimuli (and
possibly the context cue) activate small, non-overlapping sub-
sets within the recurrent layer, each consisting of Nin excita-
tory neurons Nin = 5; the activation of the input unit pro-
vides a suprathreshold current which forces the correspond-
ing subpopulation to be active for one time step. The out-
put layer receives inputs from all excitatory units within the
network and generates a decision response through a winner-
take-all (WTA) mechanism. This decision outcome determines
the received reward, which in turn modulates synaptic changes
through r-STDP. Reward-dependent learning affects both excita-
tory synapses within the recurrent network and those connecting
to the decision layer.

We chose a abstract model for the neural dynamics, whose
simplicity allows us to focus on the essential mechanisms required
for explaining the data. More specifically, we used linear thresh-
old units to model neurons within the network, i.e., each unit has
a binary output:

xi(t) = Ii(t) ≥ �i, (1)

with activation depending on the total current to the neuron Ii(t)
and the neuron’s spike threshold �i (this threshold also changes
over a slower time scale because of homeostatic mechanisms, see
below). The activity proceeds in discrete time steps, with syn-
chronous updates for all neurons. The input to a neuron is given
by:

Ii = wT
i · x + ε, (2)
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FIGURE 1 | Schematic description of the model. (A) Delayed response
task: at the beginning of each trial, one of K stimuli is presented to the
network, requiring a stimulus-dependent action to be performed at the end of
the delay period. When the cue appears, an action is selected yielding a
corresponding reward. Initial trials have short delays, and we progressively
increase the delay period during learning. (B) The network of threshold linear
neurons receives localized, stimulus-specific inputs; the decision units

determine the action to be performed by winner-take-all (WTA). The
corresponding reward modulates plasticity events at synapses within the
recurrent network and to the decision units. (C) Reward-dependent STDP is
implemented using eligibility traces, with changes occurring only at the time
of reward (see main text for details); additionally, (D) the neuron threshold is
homeostatically regulated and the incoming synapses to each neuron are
normalized.

where column vectors w and x describe the synaptic weights and
the activity of all presynaptic neurons, respectively. The stochas-
tic term ε corresponds to an unspecific background input to
each unit, modeled as independent uniform random noise, ε ∈
[0, 0.1]. Importantly, since the model neuron has no memory
itself, working memory can develop in the model only through
the network dynamics. Hence, we can use the model to study
specifically reward-dependent plasticity and its effects on infor-
mation storage.

The connectivity matrix was initialized randomly at the begin-
ning of each experiment, with weights drawn from the uniform
distribution wij ∈ [0, 1], followed by a sum-to-one weight nor-
malization of incoming synapses. The connection probabilities
were pee = 0.1, pei = 0.25, pie = 0.4, pii = 0, with indices “e” and
“i” marking the excitatory and inhibitory populations, respec-
tively.

For the decision layer, the current to each neuron is computed
as before, with the WTA mechanism selecting the neuron with the
strongest input as the only active unit: Im = wT

i · x + ε, xm = 1 if
m = argmaxj Ij, and xm = 0, otherwise. Decision neurons were
allowed to fire during the delay period without any effect on
reward.

2.3. PLASTICITY MECHANISMS
2.3.1. Reward-dependent learning
We adapted a model for r-STDP from Izhikevich (2007)
(Figure 1C). As in the original, each synapse has an associated
eligibility trace eij:

deij

dt
= − eij

τe
+ xi(t) · xj(t − 1) − f · xi(t − 1) · xj(t) (3)

where xi and xj are the output of the pre- and post-synaptic neu-
ron, respectively, and f is a model parameter (f = 1 for synapses

in the recurrent layer, and f = 0.01 for synapses in the motor
layer).

The eligibility trace stores a history of potential weight changes
at the synapse, with an exponential decay, specified by the time
constant τe (τe = 2.5). The individual synaptic plasticity events
follow a simplified STDP window: potentiation occurs when
presynaptic activity is followed by a postsynaptic spike, while the
reverse pattern causes depression, with a width of 1 time step
(since that is the timescale of causal interactions in our network).
Additionally, weights are rectified such that wij ≥ 0 in order to
respect Dale’s law.

At the time of the reward synaptic weights change proportion-
ally to the eligibility trace eij and the reward signal r:

wij(t + 1) = wij(t) + η · r(t) · eij(t), (4)

with learning rate η.
For simplicity, we used the absolute reward as the signal mod-

ulating synaptic modifications instead of the reward prediction
error (Schultz, 1998), as done in previous models (Izhikevich,
2007). Additionally, we assumed the reward to be either positive
or negative, as biological evidence from cortico-striatal synapses
suggests that dopamine can induce both potentiation or depres-
sion in response to tetanic stimulation, depending on its con-
centration relative to baseline (Reynolds and Wickens, 2002).
Specifically, at the time of the reward delivery r(t) = 1, if the
motor output was correct and r(t) = −1, otherwise; r(t) = 0 at
all other times.

To ensure that the system is given time to exploit the emerging
neural representation, we assumed that changes at synapses to the
decision layer occur faster than those in the recurrent network
(η = 10−5 for synapses in the recurrent layer and η = 10−4 for
those connecting to decision neurons). These changes in learning
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rate were paralleled for intrinsic plasticity to ensure that the
dynamics remain stable during learning (see below).

2.3.2. Homeostatic plasticity
A critical problem when optimizing recurrent networks is how to
stabilize the dynamics during learning (Turrigiano and Nelson,
2004; Lazar et al., 2009). Traditionally, working memory mod-
els with attractor dynamics circumvent this problem by keeping
weights fixed and fine-tuning a limit set of gain parameters
by hand (Brunel and Wang, 2001). Here, we use two distinct
homeostatic mechanisms to ensure stability (Figure 1D): synap-
tic scaling (Turrigiano et al., 1998) and homeostatic threshold
regulation (Zhang and Linden, 2003).

First, as synaptic scaling constrains the total drive received by
neurons by rescaling all weights in a multiplicative fashion, we
implemented this mechanism by an explicit weight normaliza-
tion, �jwij = 1. We chose this for simplicity, although a similar
outcome could in principle be achieved through a local weight-
dependent rule (Gerstner and Kistler, 2002). Second, intrinsic
plasticity was implemented by assuming that the threshold of
excitatory neurons adapts to maintain a certain mean average
firing rate, x0 ∈ (0, 1):

�� = λexc (x(t) − x0), (5)

where λexc is the time constant for the threshold adaptation
(x0 = 0.03 within the recurrent network and x0 = 0.25 in the
decision layer). As mentioned above, the timescale of plasticity
for the decision units is 10 times faster to match the more rapid
synaptic plasticity (λexc = 10−4 within the recurrent layer, and
λexc = 10−3 for the decision units).

We assumed a similar threshold regulation for controlling the
excitability of the inhibitory neurons. The specific form was sug-
gested by experimental evidence showing that the excitability of
inhibitory neurons is determined by the overall activity of neigh-
boring excitatory neurons, estimated via the release of diffusible
messengers, such as BDNF (Rutherford et al., 1998; Turrigiano
and Nelson, 2000). Specifically, we assume that the threshold of
inhibitory neurons changes as:

��inh = −λinh (〈xexc(t)〉 − x0), (6)

with 〈xexc(t)〉 denoting the population average of the activation
of all excitatory neurons at time t. This is a simplification of a
more realistic input-specific regulation of excitability chosen for
convenience, consistent with inhibitory neurons pooling activ-
ity across a large part of the circuit. As before, x0 is the desired
average firing rate of the excitatory neurons, and λinh is the learn-
ing rate (λinh = 10−5). Although this mechanism is not strictly
necessary for network stability, we find it improves memory per-
formance and ensures a fairer distribution of neuronal resources
across stimuli.

2.3.3. Other simulation parameters
All trials are assumed to have fixed duration Ttrial = 10 time steps,
with 2 · 104 trials per block. We repeat each experiment five times
to quantify effects different sources of variability, such as the
network initialization, internal noise, etc.

3. RESULTS
3.1. A DELAYED RESPONSE TASK
The most common experimental paradigm for exploring the cir-
cuits involved in working memory is the delayed response task,
where a simple stimulus-specific response needs to be deliv-
ered after a delay (Rainer et al., 1998a; Durstewitz et al., 2000).
Computational models of this function assume a circuit with dis-
tinct submodules for storing the initial stimulus (the working
memory component), comparing it to the sample and deciding
on the action (Engel and Wang, 2011). Here we focus on the
first component, and thus assume a one-to-one mapping between
stimuli and actions (M = K). Although we neglect the interme-
diate step, i.e., making same-or-different judgements, nonetheless
the model preserves the nature of the underlying computation.
Hence this simplification should not affect our results concerning
the representation within the working memory circuit.

We used two variants for the basic setup: a fixed-and a variable-
delay version (Figure 2, right). As its name suggests, the first
uses a fixed delay for all trials in a block. This version is useful
for estimating the memory capacity of the network, defined as
the longest delay for which performance is better than chance.
However, it could potentially lead to unrealistic delay-specific
representations. In the second setup, the delay for each trial is
selected uniformly at random between one and a maximum delay
Tmax time steps. This version seems closer to the true constraints
of the biological system, where information needs to be accessible
on demand whenever the the environmental conditions call for
it. Hence, we used the second version of the task to investigate the
emerging neural representations.

We found that the network performance is influenced by task
difficulty (Figure 2). As expected, it decreases with increasing
delay, due to the accumulation of noise. For intermediate delays,
the fixed-delay task yields slightly better results compared to
the variable-delay task, consistent with it being computationally
simpler. At longer delays however, the network exhibits a sharp
performance decay, which signals the network reaching its mem-
ory capacity. In the variable delay task, performance degrades
more gracefully, as shorter memory spans are still rewarded. In
both cases, we found that recall performance increases with net-
work size N, and decays with the number of distinct stimuli K and
that the incremental learning paradigm dramatically improves
network performance (not shown).

Importantly, performance is remarkably stable within a block
of trials despite the constant changes induced by the different
plasticity mechanisms, with the network reaching the final per-
formance after a small number of trials (on the order of 100
trials). The critical condition to achieve such good and stable
performance is a sparse representation within the recurrent layer
(enforced by intrinsic plasticity), combined with balanced rSTDP.
While not strictly necessary, synaptic scaling and inhibitory plas-
ticity improve performance; additionally we found it was benefi-
cial to reduce the LTD component for learning in the motor layer
(presumably because it limits the interference due to motor activ-
ity in the delay period). Overall, the interaction between different
plasticity mechanisms is needed for the circuit to maintain stable
function despite variable underlying neural “hardware.”

To examine the representation that emerges after learning, we
measured both the spatial and the temporal selectivity of neural
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FIGURE 2 | Circuit performance for a simple delayed response task.

Recall performance as a function of the number of trials for K = 4
stimuli. Vertical lines mark the time when the maximum delay is
incremented. Within a block the maximum delay is kept fixed, with two

variations: in the fixed delay task (blue) all trials have the same delay,
while in the variable delay task (red) the delay of each trial is drawn
independently from the uniform distribution [1, max]. Performance
estimated across 100 trial blocks.

responses. For the spatial component, we computed the aver-
age neural activation during the delay period for each stimulus
(Figure 3A, top). This simple measure reveals that most of the
neurons respond to one of the stimuli, while remaining relatively
silent for the others, as demonstrated in classic working mem-
ory experiments (Miyashita, 1988). To better quantify the effect,
we used a measure called the depth of selectivity (Rainer et al.,
1998b), defined as:

S = Ncond − �Ri
Rmax

Ncond − 1
, (7)

where Ri is the firing rate corresponding to stimulus i, Rmax =
max{Ri} and Ncond is the number of different behavioral states
considered, here the K stimuli. This measure takes the value zero
when the neural response is identical for all objects and can reach
the maximum of one when the neuron responds exclusively to
one of the stimuli. Note that we will use this measure more gen-
erally in the following sections, to also measure the specificity
to distinct actions or contexts. The depth of selectivity con-
firmed that most neurons exhibit stimulus-dependent activation
(Figure 3A, bottom).

Neural responses are structured also in the temporal domain,
reproducing at least qualitatively the temporal specificity in
experiments (Meyers et al., 2008). A post-stimulus time his-
togram (PSTH) of the network responses for a given stimulus
reveals that, although before learning the response is highly
variable (Figure 3B, top and Figure 3C, left), after learning neu-
ronal responses become highly reproducible (Figure 3B; note
that neuron indices were reordered as a result of sorting the
neuron by the time of the peak response). Moreover, neu-
rons respond at specific times relative to stimulus onset, point-
ing to a synfire chain-like representation (Aertsen et al., 1996;
Prut et al., 1998). Such temporal dynamics allow neurons to
remain stimulus specific, while maintaining a sparse activation
enforced thorough the homeostatic regulation of neural excitabil-
ity. Additionally, the network dynamics reflect the details of
the task (Figure 3C): the delay itself is encoded much better
during the fixed-delay version of the task. A low-dimensional
projection of the neural activity by principal component analy-
sis (PCA) reveals distinct vs. overlapping stimulus-specific clus-
ters in the fixed- and the variable delay task, respectively. This

reflects the intuition that the time since the stimulus presenta-
tion is important for the fixed delay task, whereas in the variable
delay version the motor layer just needs to linearly separate the
activity corresponding to different stimuli, irrespective of the
delay. The time-dependent encoding is also reflected in the con-
nectivity matrix, which becomes sparse and more feedforward
(Figure 3D). More generally, learning organizes the network in
largely non-overlapping feedforward chains, each starting from
one of the input sub-populations and with a total size deter-
mined by the number of inputs, the size of the network, and the
sparseness enforced through the homeostatic mechanisms (not
shown). In summary, in a simple delayed-response task, the net-
work uses distributed representations for encoding information
about the stimuli across time and space, in a way that makes
it easily accessible for decision circuits and is consistent with
experiments.

3.2. A DELAYED CATEGORIZATION TASK
Neurons in PFC can encode either the initial stimulus, or the
action to be taken in response to it (Brody et al., 2003). For the
simple delayed-response task above there is no difference between
the two, as actions simply signal stimulus identity. To investigate
under which conditions the circuit learns to represent preferen-
tially stimuli or actions, we used a delayed categorization task,
inspired by experiments in monkeys, in which arbitrary categories
are defined using morphed images (generated from e.g., cat and
dog prototypes), see Freedman et al. (2001).

To mimic this paradigm, we constructed an arbitrary map
between K = 8 stimuli and M = 2 decision outputs signaling
stimulus class. Here, category boundaries are defined exclusively
by the reward function (Freedman et al., 2001; Antzoulatos and
Miller, 2011), unlike some experiments in which category speci-
ficity may be—to some extent—stimulus driven (Meyers et al.,
2008). For illustration purposes, we define the mapping by stim-
ulus color (Figure 4A, right), though in the model the random
initialization of the connectivity makes any subdivision of non-
overlapping stimuli to be equivalent.

Our network is able to successfully learn the task (75% cor-
rect for a delay of five time steps). The neural representations for
this task show some novel characteristics compared to the sim-
ple delay task, which reflect the experimental data (Freedman
et al., 2001). While some of the neurons still respond selectively
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FIGURE 3 | (A) Neural selectivity in a simple delayed response task (Tmax = 5,
variable delay). Top: neural responses averaged across trials where one of four
stimuli (different colors) was presented, for a subset of 15 randomly selected
neurons. Bottom: selectivity of neural responses across the population for
one example experiment; estimated using activity in 1000 trials at the end of
learning. Note that the first 20 neurons receive direct inputs from the input
layer. (B) Comparison of the post-stimulus time histogram of neural
responses before and after learning for one example stimulus. Neuron indices

have been reordered based on the time of maximum firing relative to stimulus
onset. (C) A low-dimensional view of the population dynamics in response to
the same stimulus before learning (left) or after training using either the fixed
(right) or the variable delay (middle) paradigm. Individual points correspond to
the state of the network projected along the first three principal components;
color intensity marks the time since the stimulus presentation and different
points of the same color correspond to different trials. (D) The corresponding
weight matrix at the end of leaning.

FIGURE 4 | Neural selectivity in a delayed categorization task.

(A) Average responses to each stimulus in 10 randomly selected example
neurons. (B) Specificity of neural responses to one of the two categories
(red or blue); colors show preferred category for each neuron. Neural
selectivity was estimated using activity in 1000 trials at the end of learning.
Tmax = 5, variable delay.

to individual stimuli, a significant subpopulation responds now
to several stimuli, and often to those belonging to the same cat-
egory (Figure 4A). Using the depth of selectivity (with categories
rather than stimuli as behaviorally relevant variable) enables us
to quantify the category selectivity of neurons across the pop-
ulation (Figure 4B). Using this metric, we found that a signif-
icant fraction of the neurons (32% of excitatory neurons have

S ≥ 0.75) exhibit category selectivity, close to the 33% reported
in monkeys (Freedman et al., 2001). As in the previous exper-
iment, their representations are time-varying; at any time, only
a small fraction of neurons encode category information, with
information being passed between different small subsets of neu-
rons over the course of the trial, as shown in experiments (Meyers
et al., 2008). Overall, these results confirm our hypothesis that
the differences in neural selectivity in category- vs. stimulus-
specific delayed response tasks could emerge due to the task-
dependent reorganization of the circuit by reward-dependent
learning.

3.3. MULTIPLE CATEGORY BOUNDARIES
Up to now, we have looked at representations in a circuit that spe-
cializes on one specific memory task. While this scenario is useful
for describing a typical behavioral experiment in monkeys, in
real-life conditions the PFC needs to flexibly (and quickly) switch
across a variety of different tasks.

How exactly are multiple tasks represented in PFC circuits?
The answer should not come as a surprise: “it depends on the
tasks.” For tasks involving non-overlapping stimuli, in particular,
two independent categorization tasks (cats vs. dogs and sedans
vs. sports cars), the activity of many neurons reflects both cate-
gory distinctions. Thus, the neurons multitask different types of
information depending on the context (Cromer et al., 2010). In
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contrast, when the same stimuli need to be categorized differently
depending on behavioral context, the two category boundaries
are represented by largely non-overlapping neuronal populations
(Roy et al., 2010).

Can a difference in task constraints explain these conflicting
results? To answer this question, we constructed two versions
of the multi-class delayed categorization task, similar to those
used experimentally. First, to implement the multiple indepen-
dent categories task we used K = 8 stimuli and defined two
non-overlapping subsets, representing the animals and cars in
the original experiment. These subsets were each split in two
categories, corresponding to, e.g., the cats vs. dogs distinction,
see Figure 5A, with M = 4 actions, corresponding to the dif-
ferent category distinctions. As in the basic task, the cue signal
(now two inputs) was provided directly the decision layer; the
cue was active for one time step at the end of the delay period.
We found that the network was able to learn this task (average
performance 85% for a variable delay task, with maximum delay
Tmax = 5). To assess the emerging neural representations learned
for this task, we measured the average firing rate of the neurons in
response to different stimuli. We found that many of the neurons
responded strongly to several stimuli (Figure 5B). These stim-
uli often belonged to the same class (Figure 5B, e.g., for neurons
1, 3, 4, etc.), reproducing the category selectivity we have seen
previously, but often neural responses are strong also for stimuli
corresponding to different tasks (Figure 5B, e.g., the first neuron
responds to category 1 and 3). Measuring the category speci-
ficity of neurons for each of the two contexts revealed that most
neurons are strongly category selective (Figure 5C). Moreover,
33.5% of the neurons were sensitive to both category distinc-
tions (selectivity threshold 0.75, see Figure 5D). This suggests
that, indeed, when the tasks do not interfere with one another
the circuit should multiplex information across tasks for good
performance.

Second, to model the scenario involving overlapping category
boundaries, we assumed K = 8 input stimuli that are classified,
depending on the context, using two orthogonal category bound-
aries (Figure 6A, right). In this case, the context needs to be
provided at the beginning of the trial, together with the stimulus
(the context, i.e., which task needs to be performed in the current
trial, is encoded as two non-overlapping sub-populations of the
same size Nin, just as the stimuli). The decision layer consisted, as
before, of M = 4 neurons, one for each category, and trials from
both tasks were interleaved at random.

This version of the multiple categories experiment is signif-
icantly harder, as it requires storing information about both
stimuli and the current context (because of the two extra inputs,
we assumed the recurrent layer has a slightly increased firing
rate x0 = 0.05). Still, the network is able to perform significantly
above chance (approximatively 60%, for a variable delay with
Tmax = 3). In contrast to the task before, however, fewer neurons
develop category specificity (19.5% as opposed to 74.5%), most
represent single stimuli and several neurons encode the context
itself (Figure 6B), suggesting that the network converges to a
largely input-driven solution, in which information about stim-
uli and task is stored separately and combined only at the level
of the decision layer. Among the neurons that exhibit category
specificity, almost all are selective to only one of the category
boundaries (points with high selectivity cluster close to the two
axes, and more so if the neural responses are context modulated,
see Figure 6C), unlike the previous scenario. This observation
is reiterated when restricting the analysis to neurons that show
task specific encoding (Figure 6C, dark red). Thus, the net-
work organizes into separate task-specific subpopulations, as seen
experimentally (Roy et al., 2010).

Overall, we found that reward-dependent learning can account
for the differences in category representation across experi-
ments. Moreover, the emerging representations showed a strong

FIGURE 5 | Multitask categorization with non-overlapping domains.

(A) Given a context cue, the network needs to perform one of two
categorization tasks (“task 1” or “task 2”); there are eight stimuli in
total (colored squares), half of each are used in each task. (B) Average

stimulus-specific responses for 10 randomly selected neurons.
(C) Overlap of the category selectivity in “task 1” vs. “task 2.”
(D) Correlation of the category specificity across tasks; shaded regions
mark regions of high category selectivity.
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FIGURE 6 | Multitask categorization with overlapping domains. The
same eight stimuli need to be classified as belonging to class “blue” vs.
“green” in task 1 or as “red” vs. “yellow” in task 2. The task to be
performed in any given trial is determined by a context cue, provided as an
extra input (in this example to neurons 41–50) during the initial stimulus

presentation. (A) Overlap of the category specificity in the two tasks; color
signals the preferred category for individual neurons. (B) The selectivity of
the neuronal responses to the context; color marks the preferred context.
(C) Correlation in category selectivity across the population. Colored dots
correspond to neurons with high context selectivity (≥0.5).

task-dependent component, consistent with experimental obser-
vations (Asaad et al., 2000; Roy et al., 2010; Warden and
Miller, 2010). The general match between our model and exper-
iments is also quantitative, as shown in Figure 7 (note that the
asymmetry between tasks is a consequence of a small num-
ber of experiments). This is particularly remarkable given that
these results were obtained without any tuning of the model
parameters, beyond that required to obtain a good perfor-
mance in the simple delayed-response task. Taken together, our
results suggest task demands dramatically shape neuronal rep-
resentations in working-memory circuits via reward-dependent
learning.

3.4. THE IMPORTANCE OF REWARD-DEPENDENT LEARNING
To tease apart the contribution of different plasticity mechanisms
to the observed effects, we compared our model to a similarly
constructed network, in which weights within the recurrent layer
remain fixed, or alternatively are modified by STDP indepen-
dently of the obtained reward. In both cases, the readout to
the decision layer was learned by r-STDP, with all homeostatic
mechanisms in place.

We found that learning within the recurrent layer is critical for
good memory performance, and in particular that networks with
r-STDP are consistently better than those in which recurrent con-
nectivity is fixed (Figure 8A). For a simple delayed-response task
(K = 4 stimuli), reward modulation is not strictly necessary for
good performance and unsupervised learning alone can improve
neural representations (the performance in unsupervised learn-
ing is indistinguishable from that using reward-dependent learn-
ing; not shown), as reported elsewhere (Lazar et al., 2009). This
result is expected, since when each stimulus defines an action, it
is best to represent each input as distinctly as possible, something
which can be done by unsupervised learning. Indeed, the emerg-
ing representations are similar for the different learning scenarios
(stimulus-specific synfire chains; not shown), such that they can
be exploited for reward-dependent learning at the decision units.

Importantly, we found that simple unsupervised learning by
STDP is no longer sufficient once the task difficulty is increased,
by introducing more stimuli and more complex decision bound-
aries. Indeed, a very different picture emerges when comparing
reward dependent vs. unsupervised learning in a categorization
task (K = 8 stimuli randomly mapped into M = 2 categories).
In this case, we find that the performance of the two differs sig-
nificantly (Figure 8B). A possible reason for this difference is
that attempting to represent each different stimulus separately,
via unsupervised learning, exceeds the capacity of this partic-
ular network. Because if this, unsupervised learning results in
poorer performance in this task. Furthermore we found that the
outcome of unsupervised learning is less robust than that of
reward-dependent learning: error levels depend on the particu-
lar instantiation of the network, leading to increased across trial
variability (Figure 8B, shaded region in red vs. blue). This disso-
ciation is also apparent at the level of the neural representations.
After reward-independent learning, the percentage of category-
specific neurons is significantly lower to both our model and the
experimental data (20.5% instead of 32% for reward-dependent
learning and 33% in the data; see Figure 8C). Furthermore, the
network responses appear more noisy, suggesting that the number
of stimuli exceed the capacity of the network and the reward-
independent learning cannot learn a robust representations for
all stimuli. All in all, this suggests that for complex tasks, when
the pool of available resources is indeed a limiting factor, neu-
ronal representations need to shift toward task-relevant features
for good memory performance.

4. DISCUSSION
Prefrontal circuits are shaped by a variety of task-related vari-
ables. These representations are likely to form during extensive
training prior to experimental recordings, but the mechanisms
underlying this development are poorly understood. Here, we
have shown that representations similar to those reported exper-
imentally naturally emerge in an initially unstructured circuit
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FIGURE 7 | Summary of the results for different versions of

multitask categorization; comparison between model and

experiments. The category specificity at the end of learning was
measured for the two variants of the multiple-category task using
either overlapping or non-overlapping category boundaries. We restricted
the analysis to the subset of neurons that showed any task specificity
(defined as S ≥ Sspecific), as done for the experimental data analysis;
the proportion of these neurons that are selective to one or both of
the category boundaries was reported, averaging across five runs;
Tmax = 5 and Sspecific = 0.75 for the non-overlapping version and
Tmax = 3 and Sspecific = 0.5 for the overlapping categories discrimination,
reflecting the increase in task difficulty. Experimental data reproduced
from Cromer et al. (2010) for non-overlapping and from Roy et al.
(2010) for overlapping categories, respectively.

through reward-dependent learning. Moreover, we found that a
few generic mechanisms (rSTDP and homeostasis) are sufficient
to explain a range of puzzling (and seemingly complex) experi-
mental observations. Neurons in our model developed stimulus
and action specificity, both across neurons and in time, as seen
experimentally (Miller et al., 1996; Chafee and Goldman-Rakic,
1998; Rainer and Miller, 2002). The same model (with no further
parameter tuning) could also account for neural representations
during context-dependent tasks. For tasks involving multiple
independent category sets, individual neurons multiplexed infor-
mation across different contexts, matching experimental observa-
tions (Cromer et al., 2010); when the same stimuli mapped into
different actions depending on the context, neurons specialized
to represent single category distinctions, as in Roy et al. (2010).
To the best of our knowledge, our model is the first to provide an
unified account of these observations.

When comparing our model to a network using reward-
independent learning we found reward-dependent plasticity to
be critical for solving hard tasks, such as the categorization
of many stimuli. This finding is consistent with the notion
that reward-dependent learning should be particularly important
when resources are limited, either in terms of the amount of infor-
mation that can be stored (unsupervised learning can be used
to store four stimuli for the required time, but not eight), or in
terms of the computations allowed for retrieving it (the readout

is linear). In such scenarios, separately representing each stimu-
lus and then mapping the neural activity into the correct output
becomes unfeasible (because the resources may not suffice for
representing all stimuli individually or because reading out the
answer becomes too complicated). Instead, the circuit needs to
compute some parts of the map between stimuli and actions dur-
ing the delay, by clustering together stimuli which should yield the
same behavioral response. Given generally recognized resource
limitations in working memory circuits (Cowan, 2001), this find-
ing suggests that PFC needs to be malleable, with experience
shaping the sensitivity of neurons to reflect current behavior.

Here we chose a very simple model for the network dynam-
ics, known to have small memory capacity (Büsing et al., 2010),
because we wanted to focus on the recurrent circuitry and
its changes during learning. It should in principle be possible
to extend the memory capacity of the network closer to the
biologically-relevant range (order of seconds) by using larger
networks, a more realistic model of the neural dynamics and
including slow time-constants, e.g., NMDA receptors (Durstewitz
et al., 2000; Brunel and Wang, 2001) or short-term facilitation
(Mongillo et al., 2008). Nonetheless, as the restrictions enforced
by resource limitations are likely general, we expect the main
features of the representations emerging in the model to be pre-
served, at least qualitatively, in a detailed circuit. Thus, we predict
reward-dependent learning should play a general role in the
formation and task-specific tuning of working memory circuits.

From a developmental perspective, it is tempting to hypoth-
esize that reward-dependent learning may play a role in the
age-dependent improvement of working memory (estimated to
be approximately four-fold between the ages of 4 and 14) (Luciana
and Nelson, 1998), complementing other known factors such as
the maturation of the underlying cortical architecture, a better
representation of the inputs, the development of attention, or the
usage of memorization strategies such as rehearsal and chunking
(Gathercole, 1999). This suggestion is consistent with the known
dependence of PFC function on dopamine in early life (Diamond
and Baddeley, 1996). Furthermore, the same mechanisms may
account for training-induced improvements in working memory
in adults (Klingberg, 2010).

From a broader computational perspective, our work is also
relevant in the context of reservoir computing (Lukoševičius
and Jaeger, 2009). While this framework traditionally assumes
fixed recurrent connectivity, recent work has increasingly argued
for the importance of learning in shaping reservoir properties
(Schmidhuber et al., 2007; Haeusler et al., 2009; Lazar et al.,
2009). Previous work used general-purpose optimization through
unsupervised learning. Here, however, the network is shaped
directly by the task, which improves performance significantly
compared to static networks or networks shaped by reward-
independent learning. Thus, our model provides a stepping stone
toward general task-specific optimization of recurrent networks.

Time-dependent representations are preferred to traditional
attractor-based solutions (Amit and Brunel, 1997; Brunel and
Wang, 2001; Mongillo et al., 2008) in our model, consistent with
recent experimental observations (Miller et al., 1996; Chafee and
Goldman-Rakic, 1998; Pesaran et al., 2002; Rainer and Miller,
2002; Barak et al., 2010) and previous theoretical predictions
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FIGURE 8 | The importance of reward-dependent learning for shaping

circuit dynamics. (A) Performance comparison of networks shaped by
r-STDP (blue) vs. circuits where the recurrent connectivity is static
(green) in a simple delayed response task. (B) Performance comparison
of networks shaped by r-STDP (blue) vs. circuits where the recurrent
connectivity is shaped by reward-independent STDP (red) in a 2-class

categorization task; K = 8, fixed delay. For all conditions, the learning of
the decision output was reward-modulated. Dark colors mark averages
across five repetitions; light colors show the standard deviation around
this mean. (C) Neuronal selectivity to stimulus category when learning in
the recurrent circuit is reward independent; K = 8, fixed delay (compare
to Figure 3D).

(Goldman, 2009). This effect is a consequence of intrinsic plastic-
ity, which discourages neurons from remaining active for a long
time (Horn and Usher, 1989). Given that homeostasis plays a
critical role in stabilizing the circuit dynamics during learning
(Turrigiano and Nelson, 2004), the fact that the emerging rep-
resentation is time-varying is not really surprising. While our
model emphasizes the temporal component of this representa-
tion, it is likely that the patterns of activity seen experimentally
emerge through the interaction between feedforward and feed-
back dynamics, which would require a more detailed model of the
neural dynamics. Although the homeostatic mechanisms acting
in PFC circuits have yet to be characterized experimentally, it is
tempting to assume that the sparsification of activity and increase
in robustness observed experimentally after training (Rainer and
Miller, 2000) may be signatures of the interaction between heb-
bian and homeostatic plasticity as shown in our model. More
generally, similar mechanisms could play a role in developing
feedforward dynamics in other recurrent circuits (see also Levy
et al., 2001; Buonomano, 2005; Gilson et al., 2009; Fiete et al.,
2010), for instance in other areas known to exhibit delay period
responses, such as the perirhinal cortex, inferotemporal cortex,

or the hippocampus (Miller et al., 1993; Quintana and Fuster,
1999).

Our model combines both hebbian (r-STDP) and homeostatic
(intrinsic plasticity, synaptic scaling) forms of plasticity, lending
further support to the notion that the interaction between differ-
ent forms of plasticity is critical for circuit computation (Triesch,
2007; Lazar et al., 2009; Savin et al., 2010). In particular, our
results confirm the computational importance of intrinsic plastic-
ity and synaptic scaling in excitatory neurons (Savin et al., 2010;
Keck et al., 2012). To this, we add the role of inhibitory plastic-
ity, which we found improved both neural representations and
memory performance.

We view this model as a starting point for investigating
reward-dependent learning in working memory circuits, to which
many additions can be made. While the abstract network model
used here allowed us to focus on the essential mechanisms
underlying PFC coding, it would be important to investigate
reward-dependent learning in more realistic spiking neural net-
works. Furthermore, the model for different plasticity mecha-
nisms operating in the network could be refined as well. First,
reward-dependent learning could be improved by using recent
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extensions of r-STDP to spiking neuron populations (Urbanczik
and Senn, 2009). Second, the simplistic regulation of inhibi-
tion should be replaced by realistic inhibitory plasticity (Castillo
et al., 2011), which is expected to also aid network selectivity
(Vogels et al., 2011). Third, activity-dependent structural plas-
ticity could optimize the cortical connectivity to best encode
the task-specific information (Savin and Triesch, 2010; Bourjaily
and Miller, 2011), consistent with experimental observations that
working memory training alters circuit connectivity (Takeuchi
et al., 2010). Lastly, preliminary work, supported by recent
observations about the effects of neuromodulation on inhibitory
and homeostatic plasticity (Seamans et al., 2001; Di Pietro and
Seamans, 2011), suggests that the homeostatic plasticity mecha-
nisms themselves may be reward-dependent.
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