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Searching for and recognizing objects in complex natural scenes is implemented by
multiple saccades until the eyes reach within the reduced receptive field sizes of inferior
temporal cortex (IT) neurons. We analyze and model how the dorsal and ventral visual
streams both contribute to this. Saliency detection in the dorsal visual system including
area LIP is modeled by graph-based visual saliency, and allows the eyes to fixate potential
objects within several degrees. Visual information at the fixated location subtending
approximately 9◦ corresponding to the receptive fields of IT neurons is then passed
through a four layer hierarchical model of the ventral cortical visual system, VisNet. We
show that VisNet can be trained using a synaptic modification rule with a short-term
memory trace of recent neuronal activity to capture both the required view and translation
invariances to allow in the model approximately 90% correct object recognition for 4
objects shown in any view across a range of 135◦ anywhere in a scene. The model was
able to generalize correctly within the four trained views and the 25 trained translations.
This approach analyses the principles by which complementary computations in the dorsal
and ventral visual cortical streams enable objects to be located and recognized in complex
natural scenes.
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1. INTRODUCTION
One of the major problems that is solved by the visual system in
the cerebral cortex is the building of a representation of visual
information that allows object and face recognition to occur rel-
atively independently of size, contrast, spatial frequency, position
on the retina, angle of view, lighting, etc. These invariant rep-
resentations of objects, provided by the inferior temporal visual
cortex (Rolls, 2008, 2012), are extremely important for the oper-
ation of many other systems in the brain, for if there is an
invariant representation, it is possible to learn on a single trial
about reward/punishment associations of the object, the place
where that object is located, and whether the object has been
seen recently, and then to correctly generalize to other views etc.
of the same object (Rolls, 2008, 2014). Here we consider how
the cerebral cortex solves the major computational task of view-
invariant recognition of objects in complex natural scenes, still a
major challenge for computer vision approaches, as described in
the Discussion.

One mechanism that the brain uses to simplify the task of rec-
ognizing objects in complex natural scenes is that the receptive
fields of inferior temporal cortex neurons change from approxi-
mately 70◦ in diameter when tested under classical neurophysiol-
ogy conditions with a single stimulus on a blank screen to as little
as a radius of 8◦ (for a 5◦ stimulus) when tested in a complex nat-
ural scene (Rolls et al., 2003; Aggelopoulos and Rolls, 2005) (with

consistent findings described by Sheinberg and Logothetis, 2001).
This greatly simplifies the task for the object recognition system,
for instead of dealing with the whole scene as in traditional com-
puter vision approaches, the brain processes just a small fixated
region of a complex natural scene at any one time, and then the
eyes are moved to another part of the screen. During visual search
for an object in a complex natural scene, the primate visual sys-
tem, with its high resolution fovea, therefore keeps moving the
eyes until they fall within approximately 8◦ of the target, and then
inferior temporal cortex neurons respond to the target object, and
an action can be initiated toward the target, for example to obtain
a reward (Rolls et al., 2003). The inferior temporal cortex neu-
rons then respond to the object being fixated with view, size, and
rotation invariance (Rolls, 2012), and also need some translation
invariance, for the eyes may not be fixating the center of the object
when the inferior temporal cortex neurons respond (Rolls et al.,
2003).

The questions then arise of how the eyes are guided in a
complex natural scene to fixate close to what may be an object;
and how close the fixation is to the center of typical objects for
this determines how much translation invariance needs to be
built into the ventral visual system. It turns out that the dor-
sal visual system (Ungerleider and Mishkin, 1982; Ungerleider
and Haxby, 1994) implements bottom-up saliency mechanisms
by guiding saccades to salient stimuli, using properties of the
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stimulus such as high contrast, color, and visual motion (Miller
and Buschman, 2013). (Bottom-up refers to inputs reaching the
visual system from the retina). One particular region, the lateral
intraparietal cortex (LIP), which is an area in the dorsal visual
system, seems to contain saliency maps sensitive to strong sen-
sory inputs (Arcizet et al., 2011). Highly salient, briefly flashed,
stimuli capture both behavior and the response of LIP neurons
(Bisley and Goldberg, 2003, 2006; Goldberg et al., 2006). Inputs
reach LIP via dorsal visual stream areas including area MT, and
via V4 in the ventral stream (Soltani and Koch, 2010; Miller
and Buschman, 2013). Although top-down attention using biased
competition can facilitate the operation of attentional mecha-
nisms, and is a subject of great interest (Desimone and Duncan,
1995; Rolls and Deco, 2002; Deco and Rolls, 2005a; Miller and
Buschman, 2013), top-down object-based attention makes only
a small contribution to visual search for an object in a complex
natural unstructured scene (such as leaves on a tree), increas-
ing the receptive field size from a radius of approximately 7.8
to approximately 9.6◦ (Rolls et al., 2003), and is not considered
further here. Indeed, in these investigations, multiple saccades
were required round the scene to find a target object (Rolls et al.,
2003).

In the research described here we investigate computationally
how a bottom-up saliency mechanism in the dorsal visual stream
reaching for example area LIP could operate in conjunction
with invariant object recognition performed by the ventral visual
stream reaching the inferior temporal visual cortex to provide for
invariant object recognition in natural scenes. The hypothesis is
that the dorsal visual stream, in conjunction with structures such
as the superior colliculus (Knudsen, 2011), uses saliency to guide
saccadic eye movements to salient stimuli in large parts of the
visual field, and that once a stimulus has been fixated, the ventral
visual stream performs invariant object recognition on the region
being fixated. The dorsal visual stream in this process knows little
about invariant object recognition, so cannot identify objects in
natural scenes. Similarly, the ventral visual stream cannot perform
the whole process, for it cannot efficiently find possible objects in
a large natural scene, because its receptive fields are only approxi-
mately 9◦ in radius in complex natural scenes. It is how the dorsal
and ventral streams work together to implement invariant object
recognition in natural scenes that we investigate here. By investi-
gating this computationally, we are able to test whether the dorsal
visual stream can find objects with sufficient accuracy to enable
the ventral visual stream to perform the invariant object recogni-
tion. The issue here is that the ventral visual stream has in practice
some translation invariance in natural scenes, but this is limited
to approximately 9◦ (Rolls et al., 2003; Aggelopoulos and Rolls,
2005). The computational reason why the ventral visual stream
does not compute translation invariant representations over the
whole visual field as well as view, size and rotation invariance,
is that the computation is too complex. Indeed, it is a problem
that has not been fully solved in computer vision systems when
they try to perform invariant object recognition over a large nat-
ural scene. The brain takes a different approach, of simplifying the
problem by fixating on one part of the scene at a time, and solving
the somewhat easier problem of invariant representations within
a region of approximately 9◦.

For this scenario to operate, the ventral visual stream needs
then to implement view invariant recognition, but to combine
it with some translation invariance, as the fixation position pro-
duced by bottom up saliency will not be at the center of an
object, and indeed may be considerably displaced from the center
of an object. In the model of invariant visual object recogni-
tion that we have developed, VisNet, which models the hierarchy
of visual areas in the ventral visual stream by using competi-
tive learning to develop feature conjunctions supplemented by
a temporal trace or by spatial continuity or both, all previous
investigations have explored either view or translation invari-
ance learning, but not both (Rolls, 2012). Combining translation
and view invariance learning is a considerable challenge, for the
number of transforms becomes the product of the numbers of
each transform type, and it is not known how VisNet (or any
other biologically plausible approach to invariant object recog-
nition) will perform with the large number, and with the two
types of transform combined. Indeed, an important part of the
research described here was to investigate how well architectures
of the VisNet type generalize between both trained locations
and trained views. This is important for setting the numbers
of different views and translations of each object that must be
trained.

The specific goals of the research and simulations described
here were as follows. (1) To demonstrate with a biologically plau-
sible model of the ventral visual system how it could operate
to implement view invariant object/person identity recognition
with a generic model of the dorsal visual system that produced
fixations on parts of scenes that were salient. How would the
combined cortical visual areas operate with the dorsal visual
system not encoding object identity but only saliency; and the
ventral visual system being unable to find objects efficiently in
large natural scenes, but able to perform view invariant object
recognition once fixation was close to an object? (2) How closely
and effectively would a simple, generic, bottom-up saliency sys-
tem modeling part of the functions of the dorsal visual system
find objects in a complex scene, and how accurately would the
center of the object be fixated? The accuracy with which the
center of the object is fixated is crucial to understand, for this
defines how much translation invariance must be incorporated
into the ventral visual system for the whole system to work.
(3) Can VisNet be trained for both view and translation invari-
ance? This has not been attempted previously with VisNet, and
for that matter view invariant object recognition is not a prop-
erty of most computer vision models (see Discussion). (4) If
VisNet can be trained on both view and translation invariant
object identification, can it be trained with sufficient translation
invariance to cover the visual angle needed given the inaccu-
racies of the saliency-based fixation mechanism in finding the
center of an object, and yet be trained with sufficient views to
provide for view-invariant object identification? (5) How well
does VisNet generalize from trained views to untrained views of
an object? This is important, for it influences how much train-
ing of different views is required, which could have an impact
on the capacity of the system, that is on the number of objects
or people that it can correctly identify with the required trans-
lation invariance. (6) How well does VisNet perform in object
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identification when the objects appear in natural scenes with fix-
ation not necessarily at the trained location, and when views
intermediate to those at which VisNet has been trained are pre-
sented? That is, how well under the natural scene conditions
can VisNet ignore the background and identify a trained object
despite it being presented in a view and position that were not
trained?

2. METHODS
2.1. SALIENCY
We chose a bottom up saliency algorithm that is one of the stan-
dard ones that has been developed, which adopts the Itti and Koch
(2000) approach to visual saliency, and implements it by graph-
based visual saliency (GBVS) algorithms (Harel et al., 2006a,b).
This system performs well, that is similarly to humans, in many
bottom-up saliency tasks. The particular algorithm used for the
bottom-up saliency was not crucial to the present research, so
we chose a generically representative algorithm1. We used static
images, so motion was not used to detect saliency. Of course in
the human brain, and in a computer application, performance
could be made better than described here by using many different
cues that can influence saliency, including also color which was
disabled in the current algorithm, as VisNet works with grayscale
images to help ensure that object shape is being processed, and
not a simple feature such as color (Rolls, 2012).

2.2. ARCHITECTURE OF THE VENTRAL VISUAL STREAM MODEL, VisNet
The architecture of VisNet has been described previously (Rolls,
2008, 2012), and is summarized briefly next, with a full descrip-
tion provided in the Appendix. Extensions important for the
present research included training in both view and translation
invariance, together with careful specification of the learning rate
during the presentation of each transform, as there were typically
100 or more transforms of every object to be learned.

1GBVS was used with its default parameters, except as follows: channels =
CIO; gaborangles 0, 30, 60, 90, 120, 150; onCenterBias = 1; levels 2 3;
sigma_frac_act = 0.35; sigma_frac_norm = 0.26.

Fundamental elements of Rolls’ 1992 theory for how cor-
tical networks might implement invariant object recognition
are described in detail elsewhere (Rolls, 2008, 2012). They
provide the basis for the design of VisNet, which can be
summarized as:

• A series of competitive networks, organized in hierarchical lay-
ers, exhibiting mutual inhibition over a short range within each
layer. These networks allow combinations of features or inputs
occurring in a given spatial arrangement to be learned by neu-
rons using competitive learning (Rolls, 2008), ensuring that
higher order spatial properties of the input stimuli are repre-
sented in the network. In VisNet, layer 1 corresponds to V2,
layer 2 to V4, layer 3 to posterior inferior temporal visual cor-
tex, and layer 4 to anterior inferior temporal cortex. Layer one
is preceded by a simulation of the Gabor-like receptive fields
of V1 neurons produced by each image presented to VisNet
(Rolls, 2012).

• A convergent series of connections from a localized popula-
tion of neurons in the preceding layer to each neuron of the
following layer, thus allowing the receptive field size of neu-
rons to increase through the visual processing areas or layers,
as illustrated in Figure 1.

• A modified associative (Hebb-like) learning rule incorpo-
rating a temporal trace of each neuron’s previous activity,
which, it has been shown (Földiák, 1991; Rolls, 1992; Wallis
et al., 1993; Wallis and Rolls, 1997; Rolls and Milward,
2000; Rolls, 2012), enables the neurons to learn transform
invariances.

The learning rates for each of the four layers were 0.05, 0.03, 0.005,
and 0.005, as these rates were shown to produce convergence
of the synaptic weights after 15–50 training epochs. 50 training
epochs were run.

The developments to VisNet that facilitated this principled
approach to the learning rate, combined view and translation
invariance learning, etc, and the parameters used, are described
in the Appendix.

FIGURE 1 | Convergence in the visual system. Right: As it occurs in
the brain. V1, visual cortex area V1; TEO, posterior inferior temporal
cortex; TE, inferior temporal cortex (IT). Left: As implemented in

VisNet. Convergence through the network is designed to provide
fourth layer neurons with information from across the entire input
retina.
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2.3. INFORMATION MEASURES OF PERFORMANCE
The performance of VisNet was measured by Shannon
information-theoretic measures that are essentially identical
to those used to quantify the specificity and selectiveness of the
representations provided by neurons in the brain (Rolls and
Milward, 2000; Rolls and Treves, 2011; Rolls, 2012). A single
cell information measure indicated how much information was
conveyed by a single neuron about the most effective stimulus.
A multiple cell information measure indicated how much infor-
mation about every stimulus was conveyed by small populations
of neurons, and was used to ensure that all stimuli had some
neurons conveying information about them. Details are provided
in the Appendix.

2.4. TRAINING
VisNet was trained on four views spaced 45◦ apart of each of the
4 objects as illustrated in Figure 2. The images of each object
were generated from a 3D model using Blender (The Blender
Foundation, www.blender.org) so that lighting could be carefully
controlled. Each grayscale image of an object was 256 × 256 pix-
els, with the intensity scaled to be in the range 0–255, and the
background approximately 127. The object images were pasted
into a 512 × 512 gray image to prevent wrap-around effects,
prior to the spatial frequency filtering to produce neurons with
Gabor-like receptive fields in an emulation of V1 neurons that
provided the input to the first layer of VisNet (see Appendix). [We
have previously shown that the training need not be on a blank
background, provided that the background is not constant across

transforms and objects, as will be the case in the natural world
(Stringer et al., 2007; Stringer and Rolls, 2008)]

Each training image was trained in 25 locations set out in a
5 ×5 rectangular grid with these locations separated by 8 pix-
els in the training image. To provide an indication of the range
of this translation invariance training, the grid extended between
the centers of the headlights in the front view of the jeep shown
in Figure 2. This resulted in 100 transforms of each object to be
learned. To enable VisNet to learn invariant representations with
the trace synaptic learning rule, all the transforms of one object
were shown in a random permuted sequence, the trace was reset,
and the procedure was repeated with each of the other objects.
50 training epochs were run, as this was sufficient to produce
gradual convergence of the synaptic weights over 15–50 epochs,
as described in the Appendix.

2.5. TESTING INVARIANT OBJECT RECOGNITION IN NATURAL SCENES
Eight of the 12 test scenes are illustrated in Figure 3A. Each scene
had each of the objects in one of the four poses. The aim of
the combined visual processing was for the dorsal visual stream
to detect the salient regions in these 12 scenes, and then for
the salient regions to be passed to VisNet to perform the view
(and translation) invariant object recognition for every object
in the scene. VisNet had been trained on the 4 objects in each
of the 4 views, but not on the background scenes, and it was
part of the task of VisNet to identify each of the four objects in
every scene without being affected by the background clutter of
each scene (Stringer and Rolls, 2000). The objects used in this

FIGURE 2 | Training images: 4 views of each of 4 objects. Each image was 256 × 256 pixels.
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FIGURE 3 | (A) Eight of the 12 test scenes. Each scene has 4 objects,
each in one of its four views. (B) The bottom up saliency map generated
by the GBVS code for one of the scenes. The highest levels in the

saliency map are red, and the lowest blue. (C) Rectangles (384 × 384
pixels) placed around each peak in the scene for which the bottom-up
saliency map is illustrated in (B).

investigation were common types of object with which the human
visual system performs good view invariant identification, people
and vehicles. Two people and two vehicles were chosen to provide
evidence on how the system might operate with typical stimuli for
which view-invariant identification is necessary and is performed
by the human visual system.

3. RESULTS
3.1. THE OPERATION OF THE SALIENCY PROCESSING
The bottom up saliency map generated by the GBVS code (acting
as a surrogate for the dorsal visual system) for one of the scenes is
illustrated in Figure 3B. The saliency map has of course no indi-
cation of which peak is a trained object, nor of which object it
might be.

The saliency maps generated by GBVS correspond closely to
the saccades and resulting fixations of humans (Itti and Koch,
2000; Harel et al., 2006a,b). We therefore extracted images from
the scene that were at the center of each peak of the saliency map.
A weighted centroid was used, as implemented in MATLAB. Each
extracted image centered on a peak in the saliency map was 384 ×
384 pixels (not the originally trained 256 × 256 size of a training
image), because sometimes a saliency peak was not well centered
on an object, and we wished to be sure that the whole object

was in the image presented to VisNet. Figure 3C shows rectan-
gles produced in this way round the 6 most salient regions in
the test scene for which the saliency map is shown in Figure 3B.
Four of the saliency peaks and therefore the rectangles contained
trained objects, and two extracted images just salient parts of the
background scene in which the trained objects appeared.

The extracted (“foveated”) images of the objects to be pre-
sented to VisNet based on saliency are not always well-centered
in the 384 × 384 extracted image, and this is clear for one of the
objects, the man, as shown in Figure 3C.

To provide evidence on the degree of translation invariance
that would be required of VisNet given that the center of each
image was not always at the peak of the saliency map, so that the
extracted image would be offset from a central trained location,
the offsets of the saliency peaks from the center of each object
image are shown in Figure 4. While it is clear that the majority of
the offsets of the saliency peak from the center of the object were
in the range 0–32 pixels, some were beyond this. For this reason,
we do not necessarily expect that VisNet, trained on a grid with
an offset up to 32 would achieve 100% correct object recognition.
The evidence shown in Figure 4 does provide though the useful
indication that training to allow for offsets up to 64 for a 256 ×
256 image might improve performance.
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FIGURE 4 | Distribution of the offsets of the saliency peaks from the

center of each object. The data were obtained for 48 images (different
views of the different objects) presented in 3 backgrounds. An example of
one of the backgrounds containing one view of each of four objects is
illustrated in Figure 3C.

3.2. TESTS OF VisNet ON VIEW AND TRANSLATION INVARIANCE
Although VisNet had been trained on a 25-location grid with size
64 × 64 with spacing of 16 pixels, and with 4 different views of
each object, we did not know how well VisNet would perform on
this task as this has never been tested before, nor whether perfor-
mance would generalize to intermediate locations in the 64 × 64
grid, given that there were only 25 training locations spaced 16
pixels apart. An analysis is shown in Figure 5A which covers the
4096 locations in the 64 × 64 grid. This indicates that the per-
formance (on the view invariant object recognition) peaks at the
trained locations (0, 16, and 32 in this Figure), but also that there
is reasonable performance at intermediate locations between the
training locations. (The chance performance with 4 objects is
25% correct.) This is an important new result, which adds to
previous evidence that smaller versions of VisNet with 32 × 32
neurons in each of 4 layers can generalize reasonably across inter-
mediate untrained locations in scenes with blank backgrounds
(Wallis and Rolls, 1997). The performance was measured with
a pattern associator trained on layer 4 of VisNet, with four out-
put neurons (one for each object), and the 25 most selective cells
for each object identified using the single cell information mea-
sure (see Appendix). The best cells were quite selective for one
of the objects, and quite invariant in their response over the 100
transforms (4 views and 25 locations), as illustrated in Figure 5B.

3.3. TESTS OF THE WHOLE SALIENCY PLUS VIEW INVARIANCE
SYSTEM

With 48 images extracted from the the 12 test scenes (8 illustrated
in Figure 3A), performance was 90% correct (43 correct/48),
where chance with the four objects is 25% (Fisher test p �
0.0001).

It is important that this good performance on this identifica-
tion task was found when the images extracted for presentation

FIGURE 5 | (A) The performance on the view invariant object recognition
tested with images at the 15 trained locations on the 64 × 64 training grid,
and at intermediate locations. The ordinate shows the distance from the
central line in the training grid, and trained locations thus correspond to
offsets of 0, 16, and 32. The mean and standard deviation are shown for
each data point. The standard deviation was measured by performing the
training ten times each with a different random seed to generate the
connectivity of VisNet. Performance decreases beyond an offset of 32,
because there was no translation invariant training beyond this. (B) A
neuron in layer 4 of VisNet that responded to almost all transforms of one
object (4), and to no transform of any other object (1–3). There were 25
location transforms on a grid of size 64 with a spacing of 16, and 4 views of
each object at each location. The stimulus-specific information or surprise
was 2 bits, as there were 4 objects.

to VisNet had background parts of the scene included (e.g.,
Figure 3C). These background features did not produce large
decreases in the performance of VisNet, given that VisNet had
been trained on the objects but not on the backgrounds (Stringer
and Rolls, 2000). This is important for the processes of invari-
ant visual object identification in novel complex natural scenes
described here. Further, if there was a low amplitude saliency peak
containing only part of the background scene and not an object,
then VisNet did not respond to this as a trained object. When
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FIGURE 6 | Performance of VisNet at views intermediate to the trained

views of 270, 315, 0, and 45 ◦, which are indicated by T. Performance
was tested at 6 intermediate views between each trained view, and then
for illustrative purposes the results for the 6 intermediate views were
averaged using adjacent views. Each data point shown is the average of 12
observations. The chance level of performance, 25%, is indicated.

errors were made by VisNet on the object identification, the con-
fusions were as frequent between the classes of people and vehicle
as within these classes.

3.4. TESTS OF VIEW PLUS TRANSLATION INVARIANCE AT
INTERMEDIATE VIEWS

The training images had four views of each object separated by
45◦ as illustrated in Figure 2. To assess whether these views were
sufficiently close to allow for generalization between the trained
views, we tested VisNet with 6 intermediate views (presented
on plain backgrounds) between each trained view. As shown in
Figure 6, performance is reasonable at the untrained intermedi-
ate views. The important implication is that VisNet does not need
to be trained on a large set of closely spaced views, and this helps
the rapid learning of new objects, and also may help to increase
the capacity of VisNet, as only few views of each new object need
to be learned.

4. DISCUSSION
By combining in a simulation the operation of the dorsal and
ventral visual systems in the identification of objects in complex
natural scenes, we believe that important progress has been made,
in a biologically inspired approach not attempted in other includ-
ing computer-based approaches. The models simulated show how
the brain may solve this major computational problem by moving
the eyes to fixate close to objects in a natural scene using bottom-
up saliency implemented in the dorsal visual system, and then
performs objects recognition successively for each of the fixated
regions using the ventral visual system. The research described
here emphasizes that because the eyes do not locate the center of
objects based on saliency, then translation invariance as well as
view, size etc invariance needs to be implemented in the ventral

visual system. We show how a model of invariant object recogni-
tion in the ventral visual system, VisNet, can perform the required
combination of translation and view invariant recognition, and
moreover can generalize between views of objects that are 45◦
apart during training, and can also generalize to intermediate
locations when trained in a coarse training grid with the spacing
between trained locations equivalent to 1–3◦.

We emphasize that the model is closely linked to neurophysio-
logical research on visual object recognition in natural scenes, and
explicitly models how the system could operate computationally
to achieve the degree of translation invariance shown in complex
natural scenes by inferior temporal cortex neurons (Rolls et al.,
2003; Aggelopoulos and Rolls, 2005) as well as the view invari-
ance that is combined with this (Hasselmo et al., 1989; Booth
and Rolls, 1998). Moreover, the deformation or pose invariance
that can be shown by inferior temporal cortex neurons is also
a property that can be learned by this functional architectural
computational model of object recognition in the ventral visual
system, VisNet (Webb and Rolls, 2014).

We note that in the underlying neurophysiological experi-
ments, the objects were small and were presented in an unstruc-
tured scene, which was the leaves of trees (Rolls et al., 2003). In
this type of scene, objects can only be found by repeated sac-
cades round the scene until the eyes become sufficiently close
for the object to fall within the inferior temporal visual cor-
tex neuronal receptive fields which become dynamically reduced
to a few degrees in such scenes (Rolls et al., 2003). The recep-
tive fields of inferior temporal cortex neurons are thus small,
a few degrees, in complex natural scenes (Rolls et al., 2003;
Aggelopoulos and Rolls, 2005). In previous research, sometimes
large receptive fields have been reported (Gross et al., 1969),
and sometimes small, a few degrees (Op de Beeck and Vogels,
2000; DiCarlo and Maunsell, 2003). We showed that an impor-
tant factor in the receptive field size is the background. If the
receptive fields are measured as in traditional visual neurophysi-
ology against a blank background, then the receptive fields can be
as large as 70◦, whereas in a complex cluttered natural scene the
receptive fields can be as small as a few degrees (Rolls et al., 2003).
Moreover, we went on to show that the underlying dynamical
mechanism for receptive field size adjustment is probably com-
petition between neurons operating with neurons that have more
input from objects close to the fovea (Trappenberg et al., 2002). If
objects can be recognized by humans rapidly without the need for
multiple fixations round the scene (Thorpe, 2009), then one has
to assume that the scene has properties including probably some
structure or contrast or color or other low-level feature (Crouzet
and Thorpe, 2011), that enables the object to pop out using lower-
level processing that does not engage the invariant representations
provided by inferior temporal cortex neurons (Rolls, 2012).

The operation of VisNet coupled with the saliency model
of the dorsal visual system described here for the identifica-
tion of multiple objects at different positions in a natural scene
with view invariance is now compared with that of other sys-
tems and approaches. First, VisNet provides a theory and model
of how object identification with view (Stringer and Rolls,
2002), size (Wallis and Rolls, 1997), isomorphic rotation, trans-
lation (Stringer and Rolls, 2000; Perry et al., 2010), contrast,
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illumination (Rolls and Stringer, 2006), and spatial frequency
invariance is performed in the cerebral cortex (Rolls, 2012). The
approach is addressing fundamental issues about how the cerebral
cortex functions. VisNet models four stages of visual processing
beyond V1, and simulates V1; it uses local, biologically plausible,
synaptic learning rules; it produces neurons in its layer 4 that are
comparable to neurons recorded in the inferior temporal visual
cortex (IT) (Rolls and Treves, 2011; Rolls, 2012) in terms of their
receptive fields and how they are influenced by multiple items in a
scene and by top-down attention (Trappenberg et al., 2002; Rolls
et al., 2003); in terms of the neuronal tuning to different objects
(though VisNet has somewhat more binary neurons that IT neu-
rons) (Rolls, 2008, 2012; Rolls and Treves, 2011); and in terms of
size, view, translation, spatial frequency, and contrast invariance
(Rolls, 2012). We know of no other biologically plausible model
that performs view invariant as well as other types of transform
invariant object identification, and that can do this with multiple
different objects in complex natural scenes, as demonstrated here.

We provide now (following a suggestion) an account of how
VisNet is able to solve the type of invariant object recognition
problem described here when an image is presented to it, with
more detailed accounts available elsewhere (Wallis and Rolls,
1997; Rolls, 2008, 2012). VisNet is a 4-layer network with feed-
forward convergence from stage to stage that enables the small
receptive fields present in its V1-like Gabor filter inputs of approx-
imately 1◦ to increase in size so that by the fourth layer a single
neuron can potentially receive input from all parts of the input
space (Figure 1). The feedforward connections between layers are
trained by competitive learning, which is an unsupervised form of
learning (Rolls, 2008), that allows neurons to learn to respond to
feature combinations. As one proceeds up though the hierarchy,
the feature combinations become combinations of feature com-
binations (see Rolls, 2008 Figure 4.20 and Elliffe et al., 2002).
Local lateral inhibition within each layer allows each local area
within a layer to respond to and learn whatever is present in that
local region independently of how much information and con-
trast there may be in other parts of a layer, and this, together with
the non-linear activation function of the neurons, enables a sparse
distributed representation to be produced. In the sparse dis-
tributed representation, a small proportion of neurons is active at
a high rate for the input being presented, and most of the neurons
are close to their spontaneous rate, and this makes the neurons of
VisNet (Rolls, 2008, 2012) very similar to those recorded in the
visual system (Rolls, 2008; Rolls and Treves, 2011). A key prop-
erty of VisNet is the way that it learns whatever can be learned at
every stage of the network that is invariant as an image transforms
in the natural world, using the temporal trace learning rule. This
learning rule enables the firing from the preceding few items to
be maintained, and given the temporal statistics of visual inputs,
these inputs are likely to be from the same object. (Typically pri-
mates including humans look at one object for a short period
during which it may transform by translation, size, isomorphic
rotation, and/or view, and all these types of transform can there-
fore be learned by VisNet.) Effectively, VisNet uses as a teacher
the temporal and spatial continuity of objects as they transform
in the world to learn invariant representations. (An interesting
example is that representations of individual people or objects

invariant with respect to pose (e.g., standing, sitting, walking)
can be learned by VisNet, or representations of pose invariant
with respect to the individual person or object can be learned
by VisNet depending on the order in which the identical images
are presented during training Webb and Rolls, 2014.) Indeed,
we developed these hypotheses (Rolls, 1992, 1995, 2012; Wallis
et al., 1993) into a model of the ventral visual system that can
account for translation, size, view, lighting, and rotation invari-
ance (Wallis and Rolls, 1997; Rolls and Milward, 2000; Stringer
and Rolls, 2000, 2002, 2008; Rolls and Stringer, 2001, 2006, 2007;
Elliffe et al., 2002; Perry et al., 2006, 2010; Stringer et al., 2006,
2007; Rolls, 2008, 2012). Consistent with the hypothesis, we have
demonstrated these types of invariance (and spatial frequency
invariance) in the responses of neurons in the macaque inferior
temporal visual cortex (Rolls et al., 1985, 1987, 2003; Rolls and
Baylis, 1986; Hasselmo et al., 1989; Tovee et al., 1994; Booth and
Rolls, 1998). Moreover, we have tested the hypothesis by plac-
ing small 3D objects in the macaque’s home environment, and
showing that in the absence of any specific rewards being deliv-
ered, this type of visual experience in which objects can be seen
from different views as they transform continuously in time to
reveal different views leads to single neurons in the inferior tem-
poral visual cortex that respond to individual objects from any
one of several different views, demonstrating the development
of view-invariance learning (Booth and Rolls, 1998). (In control
experiments, view invariant representations were not found for
objects that had not been viewed in this way.) The learning shown
by neurons in the inferior temporal visual cortex can take just a
small number of trials (Rolls et al., 1989). The finding that tempo-
ral contiguity in the absence of reward is sufficient to lead to view
invariant object representations in the inferior temporal visual
cortex has been confirmed (Li and DiCarlo, 2008, 2010, 2012).
The importance of temporal continuity in learning invariant rep-
resentations has also been demonstrated in human psychophysics
experiments (Perry et al., 2006; Wallis, 2013). Some other sim-
ulation models are also adopting the use of temporal continuity
as a guiding principle for developing invariant representations by
learning (Wiskott and Sejnowski, 2002; Wiskott, 2003; Wyss et al.,
2006; Franzius et al., 2007), and the temporal trace learning prin-
ciple has also been applied recently (Isik et al., 2012) to HMAX
(Riesenhuber and Poggio, 2000; Serre et al., 2007c).

We now compare this VisNet approach to invariant object
recognition to some other approaches that seek to be biologically
plausible. One such approach is HMAX (Riesenhuber and Poggio,
2000; Serre et al., 2007a,b,c; Mutch and Lowe, 2008), which is a
hierarchical feedforward network with alternating simple cell-like
(S) and complex cell-like (C) layers. The simple cell-like layers
respond to a similarity function of the firing rates of the input
neuron to the synaptic weights of the receiving neuron (used as
an alternative to the more usual dot product), and the complex
cells to the maximum input that they receive from a particular
class of simple cell in the preceding layer. The classes of simple
cell are set to respond maximally to a random patch of a training
image (by presenting the image, and setting the synaptic weights
of the S cells to be the firing rates of the cells from it receives), and
are propagated laterally, that is there are exact copies through-
out a layer, which is of course a non-local operation and not
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biologically plausible. The hierarchy receives inputs from Gabor-
like filters (which is like VisNet). The result of this in HMAX is
that in the hierarchy there is no learning of invariant representa-
tions of objects; and that the output firing in the final C layer (for
example the second C layer in a four-layer S1-C1-S2-C2 hierar-
chy) is high for almost all neurons to most stimuli, with almost
no invariance represented in the output layer of the hierarchy, in
that two different views of the same object may be as different
as a view of another object, measured using the responses of a
single neuron or of all the neurons (Robinson and Rolls, 2014).
The neurons in the output C layer are thus quite unlike those in
VisNet or in the inferior temporal cortex, where there is a sparse
distributed representation, and where single cells convey much
information in their firing rates, and populations of single cells
convey much information that can be decoded by biologically
plausible dot product decoding such as might be performed by
a pattern association network in the areas that receive from the
inferior temporal visual cortex, such as the orbitofrontal cortex
and amygdala (Rolls, 2008, 2012; Rolls and Treves, 2011). HMAX
therefore must resort to a very powerful classification algorithm,
in practice typically a Support Vector Machine (SVM), which is
not biologically plausible, to learn to classify all the outputs of
the final layer that are produced by the different transforms of
one object to be of the same object, and different to those of
other objects. Thus HMAX does not learn invariant representa-
tions by its output layer of the S–C hierarchy, but instead uses a
SVM to perform the classification that the SVM is taught. This is
completely unlike the output of VisNet and of inferior temporal
cortex neuron firing, which by responding very similarly in terms
of firing rate to the different transforms of an object show that the
invariance has been learned in the hierarchy (Rolls, 2008, 2012).
Another way that the output of HMAX may be assessed is by the
use of View-Tuned Units (VTUs), each of which is set to respond
to one view of a class or object by setting its synaptic weights from
each C unit to the value of the firing of the C unit to one view
or exemplar of the object or class (Serre et al., 2007b). Because
there is little invariance in the C units, many different VTUs are
needed, with one for each training view or exemplar. Because the
VTUs are different to each other for the different views of the
same object or class, a further stage of training is then needed
to classify the VTUs into object classes, and the type of learning is
least squares error minimization (Serre et al., 2007b), equivalent
to a delta-rule one-layer perceptron which again is not biologi-
cally plausible for neocortex (Rolls, 2008). Thus HMAX does not
generate invariant representations in its S–C hierarchy, and in the
VTU approach uses two layers of learning after the S–C hierarchy,
the second involving least squares learning, to produce classifica-
tion. This is unlike VisNet, which learns invariant representations
in its hierarchy, and produces view invariant neurons (similar to
those for faces (Hasselmo et al., 1989) and objects (Booth and
Rolls, 1998) in the inferior temporal visual cortex) that can be
read by a biologically plausible pattern associator (Rolls, 2008,
2012).

Another difference of HMAX from VisNet is in the way that
VisNet is trained, which is a fundamental aspect of the VisNet
approach. HMAX has traditionally been tested with benchmark-
ing databases such as the CalTech-101 and CalTech-256 (Griffin

et al., 2007) in which sets of images from different categories are to
be classified. The Caltech-256 dataset is comprised of 256 object
classes made up of images that have many aspect ratios, sizes and
differ quite significantly in quality (having being manually col-
lated from web searches). The objects within the images show
significant intra-class variation and have a variety of poses, illu-
mination, scale and occlusion as expected from natural images.
A network is supposed to classify these correctly into classes such
as hats and bears (Rolls, 2012; Robinson and Rolls, 2014). The
problem is that examples of each class of object transforming
continuously though different positions on the retina, size, iso-
morphic rotation, and view are not provided to help the system
learn about how a given type of object transforms in the world.
The system just has to try to classify based on a set of often quite
different exemplars that are not transforms of each other. Thus a
system trained in this way is greatly hindered in generating trans-
form invariant representations by the end of the hierarchy, and
such a system has to rely on a powerful classifier such as a SVM
to perform a classification that is not based on transform invari-
ance learned in the hierarchical network. In contrast, VisNet is
provided during training with systematic transforms of objects of
the type that would be seen as objects transform in the world, and
has a well-posed basis for learning invariant representations. It is
important that with VisNet, the early layers may learn what types
of transform can be produced in small parts of the visual field by
different classes of object, so that when a new class of object is
introduced, rapid learning in the last layer and generalization to
untrained views can occur without the need for further training
of the early layers (Stringer and Rolls, 2002).

Some other approaches to biologically plausible invariant
object recognition are being developed with hierarchies that may
be allowed unsupervised learning (Pinto et al., 2009; DiCarlo
et al., 2012; Yamins et al., 2014). For example, a hierarchical
network has been trained with unsupervised learning, and with
many transforms of each object to help the system to learn invari-
ant representations in an analogous way to that in which VisNet
is trained, but the details of the network architecture are selected
by finding parameter values for the specification of the network
structure that produce good results on a benchmark classification
task (Pinto et al., 2009). However, formally these are convolu-
tional networks, so that the neuronal filters for one local region
are replicated over the whole of visual space, which is computa-
tionally efficient but biologically implausible. Further, a general
linear model is used to decode the firing in the output level of the
model to assess performance, so it is not clear whether the firing
rate representations of objects in the output layer of the model
are very similar to that of the inferior temporal visual cortex. In
contrast, with VisNet (Rolls and Milward, 2000; Rolls, 2012) the
information measurement procedures that we use (Rolls et al.,
1997a,b) are the same as those used to measure the representa-
tion that is present in the inferior temporal visual cortex (Tovee
et al., 1993; Rolls and Tovee, 1995; Tovee and Rolls, 1995; Abbott
et al., 1996; Baddeley et al., 1997; Rolls et al., 1997a,b, 2004, 2006;
Panzeri et al., 1999; Treves et al., 1999; Franco et al., 2004, 2007;
Aggelopoulos et al., 2005; Rolls and Treves, 2011).

We turn next to compare the operation of VisNet, as a
model of cerebral cortical mechanisms involved in view-invariant
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object identification, with artificial, computer vision, approaches
to object identification. However, we do emphasize that our
aim in the present research is to investigate how the cerebral
cortex operates in vision, not how computer vision attempts
to solve similar problems. Within computer vision, we note
that many approaches start with using independent compo-
nent analysis (ICA) (Kanan, 2013), sparse coding (Kanan and
Cottrell, 2010), and other mathematical approaches (Larochelle
and Hinton, 2010) to derive what may be suitable “feature ana-
lyzers,” which are frequently compared to the responses of V1
neurons. Computer vision approaches to object identification
then may take combinations of these feature analyzers, and per-
form statistical analyses using computer-based algorithms that are
not biologically plausible such as Restricted Boltzmann Machines
(RBMs) on these primitives to statistically discriminate differ-
ent objects (Larochelle and Hinton, 2010). Such a system does
not learn view invariant object recognition, for the different
views of an object may have completely different statistics of the
visual primitives, yet are the different views of the same object.
(Examples might include frontal and profile views of faces, which
are well tolerated for individual recognition by some inferior tem-
poral cortex neurons (Hasselmo et al., 1989); very different views
of 3D object which are identified correctly as the same object
by IT neurons after visual experience with the objects to allow
for view-invariant learning (Booth and Rolls, 1998); and many
man-made tools and objects which may appear quite different
in 2D image properties from different views.) Part of the diffi-
culty of computer vision lay in attempts to parse a whole scene
at one time (Marr, 1982). However, the biological approach is
to place the fovea on one part of a scene, perform image anal-
ysis/object identification there, and then move the eyes to fixate
a different location in a scene (Trappenberg et al., 2002; Rolls
et al., 2003). This is a divide-and-conquer strategy used by the
real visual system, to simplify the computational problem into
smaller parts performed successively, to simplify the representa-
tion of multiple objects in a scene, and to facilitate passing the
coordinates of a target object for action by using the coordi-
nates of the object being fixated (Ballard, 1990; Rolls and Deco,
2002; Rolls et al., 2003; Aggelopoulos and Rolls, 2005; Rolls, 2008,
2012). This approach has now been adopted by some computer
vision approaches (Denil et al., 2012).

Important issues are raised for future research.
First, how well does this approach scale up? At present there

are 128 × 128 neurons in each of 4 layers of VisNet, that is 65,536
neurons. This is small compared to the number of neurons in the
ventral visual stream, which number tens of millions of neurons
(Rolls, 2008). If this is indeed a good model of the processing in
the ventral visual system, as we hypothesize and on which VisNet
is based (Rolls, 2012), then the system should scale up appropri-
ately, that is, probably linearly. There are a number of different
aspects that need to scale up. One is the number of objects that
can be trained. A second is the number of views that can be
trained. A third is the number of locations in which the system
is trained, both because saliency mechanisms are not as accurate
as the range of 32 pixels from the fovea over which we trained here
(Figure 4), and because it may be advantageous to train at inter-
mediate locations (Figure 5). We propose to scale up VisNet by

16 times, from 128 × 128 neurons per layer to 512 × 512 neurons
per layer, and to simultaneously address all these issues.

Second, we have used a generically sound and well-known
approach to bottom-up saliency, an approach developed by Koch,
Itti, Harel and colleagues (Itti and Koch, 2000; Harel et al.,
2006a,b). However, it is possible to tune saliency algorithms so
that they are more likely to detect objects of certain classes, such
as faces or cars. This may greatly increase the capability of the
approach described here, and we plan to test how much improve-
ment in performance for the detection and then identification
of certain classes of objects can be obtained by incorporating
more specialized saliency algorithms. Many saliency approaches
and algorithms that are of interest for future research are avail-
able (Bruce and Tsotsos, 2006; Achanta et al., 2008; Zhang et al.,
2008; Kootstra et al., 2010; Goferman et al., 2012; Riche et al.,
2012; Jia et al., 2013; Li et al., 2013). For example, contextual
information may be useful, such as the fact that sofas are not
usually found in the sky, and that people are usually tall, skinny
objects on the ground (though see Webb and Rolls, 2014), and
contextual guidance models have been combined with bottom-up
saliency models (Oliva and Torralba, 2006; Torralba et al., 2006;
Ehinger et al., 2009; Kanan et al., 2009). We emphasize that in
the system described here, only one fixation is assumed for each
object in a scene, consistent with the fact that single neurons in
the inferior temporal visual cortex provide sufficient informa-
tion for object and face identification during a single fixation and
in only 20–50 ms of neuronal firing, as shown by information
theoretic analyses of neuronal activity and by backward masking
(Rolls et al., 1994; Rolls and Tovee, 1994; Tovee and Rolls, 1995).
[More detailed information may become available with repeated
fixations on different parts of an object, and this has been inves-
tigated in computer vision (Barrington et al., 2008; Kanan and
Cottrell, 2010; Larochelle and Hinton, 2010).]

Third, we have not utilized top-down attention in the develop-
ments described here. Top-down attention, whereby an object or
set of objects is held active in a short term memory which biases
the competitive networks in VisNet, can in principle improve per-
formance considerably (Rolls and Deco, 2002; Deco and Rolls,
2005b; Rolls, 2008). Indeed, we have developed and successfully
tested a reduced version of VisNet in which top-down atten-
tion does facilitate processing (Deco and Rolls, 2004), and this
approach has also been used in computer vision (Walther et al.,
2002). Another type of top-down effect is that task requirements
can influence fixations in a scene (Hayhoe and Ballard, 2005).
We plan in future to incorporate top-down attention into the
full, current, version of VisNet, to investigate how this is likely
to improve performance, especially for certain selected classes of
object.

Fourth, it will be useful to investigate in future the incorpora-
tion of more powerful synaptic learning rules when training with
the large number of transforms needed when learning invari-
ance for both view and translation transforms of objects. With
VisNet, we have so far used an associative (Hebbian) synaptic
modification rule (with a trace of previous firing in the postsy-
naptic term), for biological plausibility (Rolls, 2012). However,
to explore further the potential of the overall architecture of
VisNet, it will be of interest to investigate how much performance
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improves when error correction of the post-synaptic firing with
respect to the trace of previous neuronal activity is incorporated
to implement gradient descent. Gradient descent (Einhauser
et al., 2005; Wyss et al., 2006) or optimized slow learning (Wiskott
and Sejnowski, 2002; Wiskott, 2003) have been found useful with
different architectures.

Fifth, if a strong saliency peak occurs due to something in the
background scene that is close to an object, or due to another
trained object, how will the system respond? We suggest that the
general answer is that the asymmetry that is present in the recep-
tive fields of inferior temporal cortex neurons in cluttered scenes
(Aggelopoulos and Rolls, 2005) that is related to the asymmetries
caused by the sparse probabilistic forward connections of each
neuron (Rolls et al., 2008) and that enables two instances of the
same object close together to be correctly identified in terms of
both object and position (Rolls et al., 2008) provides the solution,
but it will be of interest to investigate this in detail.

Part of the value of the research described here is that it tests,
and investigates the operation of, a theory of how view invariant
object identification could be implemented by the cerebral cortex.
Some predictions of the simulations are (1) that learning will need
to be part of the process involved in view-invariant object iden-
tification, as the views of an object can be very different; (2) that
for at least views of people, a few well-spaced views (we used 45◦)
should suffice; (3) that translation invariance in complex unstruc-
tured crowded scenes may need to be over just a few degrees, for
fixation guided by bottom-up saliency has precision of that order
at least for the types of object considered here, and repeated sac-
cades are necessary to reach sufficiently close to an object in a
large scene for the invariance available to be able to operate in
object identification (Rolls et al., 2003; Aggelopoulos and Rolls,
2005); and (4) that just a single fixation of each object will in gen-
eral suffice for object/person identification, because of the speed
of cortical processing (Rolls and Treves, 2011; Rolls, 2012).
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A. APPENDIX: THE ARCHITECTURE OF VISNET
This Appendix describes the functional architecture, operation,
and testing of VisNet as used in this paper. VisNet is a hierarchical
feedforward 4-layer network that models properties of the ven-
tral visual system involved in invariant visual object recognition
(Rolls, 2008, 2012).

A.1 THE TRACE RULE
The learning rule implemented in the VisNet simulations uti-
lizes the spatio-temporal constraints placed upon the behavior
of “real-world” objects to learn about natural object transforma-
tions. By presenting consistent sequences of transforming objects
the cells in the network can learn to respond to the same object
through all of its naturally transformed states, as described by
Földiák (1991), Rolls (1992), Wallis et al. (1993), Wallis and
Rolls (1997), and Rolls (2012). The learning rule incorporates a
decaying trace of previous cell activity and is henceforth referred
to simply as the “trace” learning rule. The learning paradigm
we describe here is intended in principle to enable learning of
any of the transforms tolerated by inferior temporal cortex neu-
rons, including position, size, view, lighting, and spatial frequency
(Rolls, 1992, 2000; Rolls and Deco, 2002; Rolls, 2008, 2012).

Various biological bases for this temporal trace have been
advanced as follows: [The precise mechanisms involved may
alter the precise form of the trace rule which should be used.
Földiák (1992) describes an alternative trace rule which mod-
els individual NMDA channels. Equally, a trace implemented by
temporally extended cell firing in a local cortical attractor could
implement a short-term memory of previous neuronal firing
(Rolls, 2008).]

• The persistent firing of neurons for as long as 100–400 ms
observed after presentations of stimuli for 16 ms (Rolls and
Tovee, 1994) could provide a time window within which to
associate subsequent images. Maintained activity may poten-
tially be implemented by recurrent connections between as well
as within cortical areas (Rolls and Treves, 1998; Rolls and Deco,
2002; Rolls, 2008). [The prolonged firing of inferior temporal
cortex neurons during memory delay periods of several sec-
onds, and associative links reported to develop between stimuli
presented several seconds apart (Miyashita, 1988) are on too
long a time scale to be immediately relevant to the present
theory. In fact, associations between visual events occurring
several seconds apart would, under normal environmental con-
ditions, be detrimental to the operation of a network of the
type described here, because they would probably arise from
different objects. In contrast, the system described benefits
from associations between visual events which occur close in
time (typically within 1 s), as they are likely to be from the same
object.]

• The binding period of glutamate in the NMDA channels, which
may last for 100 ms or more, may implement a trace rule by
producing a narrow time window over which the average activ-
ity at each presynaptic site affects learning (Földiák, 1992; Rolls,
1992; Rhodes, 1992; Spruston et al., 1995; Hestrin et al., 1990).

• Chemicals such as nitric oxide may be released during high
neural activity and gradually decay in concentration over a

short time window during which learning could be enhanced
(Földiák, 1992; Montague et al., 1991; Garthwaite, 2008).

The trace update rule used in the baseline simulations of VisNet
(Wallis and Rolls, 1997) is equivalent to both Földiák’s used in the
context of translation invariance (Wallis et al., 1993) and to the
earlier rule of Sutton and Barto (1981) explored in the context of
modeling the temporal properties of classical conditioning, and
can be summarized as follows:

δwj = αyτ xj (A1)

where
yτ = (1 − η)yτ + ηyτ−1 (A2)

and

xj: jth input to the neuron. y: Output from the neuron.
yτ : Trace value of the output

of the neuron at time
step τ .

α: Learning rate.

wj: Synaptic weight between
jth input and the neuron.

η: Trace value. The optimal
value varies with presen-
tation sequence length.

At the start of a series of investigations of different forms of the
trace learning rule, Rolls and Milward (2000) demonstrated that
VisNet’s performance could be greatly enhanced with a modified
Hebbian trace learning rule (Equation A3) that incorporated a
trace of activity from the preceding time steps, with no contri-
bution from the activity being produced by the stimulus at the
current time step. This rule took the form

δwj = αyτ−1xτ
j . (A3)

The trace shown in Equation (A3) is in the postsynaptic term. The
crucial difference from the earlier rule (see Equation A1) was that
the trace should be calculated up to only the preceding timestep,
with no contribution to the trace from the firing on the cur-
rent trial to the current stimulus. This has the effect of updating
the weights based on the preceding activity of the neuron, which
is likely given the spatio-temporal statistics of the visual world
to be from previous transforms of the same object (Rolls and
Milward, 2000; Rolls and Stringer, 2001). This is biologically not
at all implausible, as considered in more detail elsewhere (Rolls,
2008, 2012), and this version of the trace rule was used in this
investigation.

The optimal value of η in the trace rule is likely to be different
for different layers of VisNet. For early layers with small recep-
tive fields, few successive transforms are likely to contain similar
information within the receptive field, so the value for η might be
low to produce a short trace. In later layers of VisNet, successive
transforms may be in the receptive field for longer, and invari-
ance may be developing in earlier layers, so a longer trace may be
beneficial. In practice, after exploration we used η values of 0.6
for layer 2, and 0.8 for layers 3 and 4. In addition, it is important
to form feature combinations with high spatial precision before
invariance learning supported by a temporal trace starts, in order
that the feature combinations and not the individual features
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have invariant representations (Rolls, 2008, 2012). For this rea-
son, purely associative learning with no temporal trace was used
in layer 1 of VisNet (Rolls and Milward, 2000).

The following principled method was introduced to choose
the value of the learning rate α for each layer. The mean weight
change from all the neurons in that layer for each epoch of
training was measured, and was set so that with slow learning
over 15–50 trials, the weight changes per epoch would gradually
decrease and asymptote with that number of epochs, reflecting
convergence. Slow learning rates are useful in competitive nets,
for if the learning rates are too high, previous learning in the
synaptic weights will be overwritten by large weight changes later
within the same epoch produced if a neuron starts to respond to
another stimulus (Rolls, 2008). If the learning rates are too low,
then no useful learning or convergence will occur. It was found
that the following learning rates enabled good operation with the
100 transforms of each of 4 stimuli used in each epoch in the
present investigation: Layer 1 α = 0.05; Layer 2 α = 0.03 (this is
relatively high to allow for the sparse representations in layer 1);
Layer 3 α = 0.005; Layer 4 α = 0.005.

To bound the growth of each neuron’s synaptic weight vector,
wi for the ith neuron, its length is explicitly normalized [a method
similarly employed by Malsburg (1973) which is commonly used
in competitive networks (Rolls, 2008)]. An alternative, more
biologically relevant implementation, using a local weight bound-
ing operation which utilizes a form of heterosynaptic long-term
depression (Rolls, 2008), has in part been explored using a version
of the (Oja, 1982) rule (see Wallis and Rolls, 1997).

A.2 THE NETWORK IMPLEMENTED IN VISNET
The network itself is designed as a series of hierarchical, conver-
gent, competitive networks, in accordance with the hypotheses
advanced above. The actual network consists of a series of four
layers, constructed such that the convergence of information from
the most disparate parts of the network’s input layer can poten-
tially influence firing in a single neuron in the final layer—see
Figure 1. This corresponds to the scheme described by many
researchers (Van Essen et al., 1992; Rolls, 1992, 2008, for exam-
ple) as present in the primate visual system—see Figure 1. The
forward connections to a cell in one layer are derived from a
topologically related and confined region of the preceding layer.
The choice of whether a connection between neurons in adjacent
layers exists or not is based upon a Gaussian distribution of con-
nection probabilities which roll off radially from the focal point
of connections for each neuron. (A minor extra constraint pre-
cludes the repeated connection of any pair of cells.) In particular,
the forward connections to a cell in one layer come from a

Table A1 | VisNet dimensions.

Dimensions # Connections Radius

Layer 4 128 × 128 400 48

Layer 3 128 × 128 400 36

Layer 2 128 × 128 400 24

Layer 1 128 × 128 100 24

Input layer 256 × 256 × 16 – –

small region of the preceding layer defined by the radius in
Table A1 which will contain approximately 67% of the connec-
tions from the preceding layer. Table A1 shows the dimensions for
the research described here, a (16×) larger version than the ver-
sion of VisNet used in most of our previous investigations, which
utilized 32 × 32 neurons per layer. For the research on view and
translation invariance learning described here, we decreased the
number of connections to layer 1 neurons to 100 (from 272), in
order to increase the selectivity of the network between objects.
We increased the number of connections to each neuron in lay-
ers 2–4 to 400 (from 100), because this helped layer 4 neurons to
reflect evidence from neurons in previous layers about the large
number of transforms (typically 100 transforms, from 4 views of
each object and 25 locations) each of which corresponded to a
particular object.

Figure 1 shows the general convergent network architecture
used. Localization and limitation of connectivity in the network
is intended to mimic cortical connectivity, partially because of the
clear retention of retinal topology through regions of visual cor-
tex. This architecture also encourages the gradual combination of
features from layer to layer which has relevance to the binding
problem, as described elsewhere (Rolls, 2008, 2012).

A.3 COMPETITION AND LATERAL INHIBITION
In order to act as a competitive network some form of mutual
inhibition is required within each layer, which should help to
ensure that all stimuli presented are evenly represented by the
neurons in each layer. This is implemented in VisNet by a form
of lateral inhibition. The idea behind the lateral inhibition, apart
from this being a property of cortical architecture in the brain,
was to prevent too many neurons that received inputs from a
similar part of the preceding layer responding to the same activ-
ity patterns. The purpose of the lateral inhibition was to ensure
that different receiving neurons coded for different inputs. This is
important in reducing redundancy (Rolls, 2008). The lateral inhi-
bition is conceived as operating within a radius that was similar
to that of the region within which a neuron received converg-
ing inputs from the preceding layer (because activity in one zone
of topologically organized processing within a layer should not
inhibit processing in another zone in the same layer, concerned
perhaps with another part of the image). The lateral inhibition
used in this investigation used the parameters for σ shown in
Table A3.

The lateral inhibition and contrast enhancement just described
are actually implemented in VisNet2 (Rolls and Milward, 2000)
and VisNetL (Perry et al., 2010) in two stages, to produce filtering
of the type illustrated elsewhere (Rolls, 2008, 2012). The lateral
inhibition was implemented by convolving the activation of the
neurons in a layer with a spatial filter, I, where δ controls the con-
trast and σ controls the width, and a and b index the distance
away from the center of the filter

Ia,b =
⎧⎨
⎩

−δe
− a2+b2

σ2 if a �= 0 or b �= 0,

1 − ∑
a�=0,b �=0

Ia,b if a = 0 and b = 0.
(A4)

This is a filter that leaves the average activity unchanged.
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The second stage involves contrast enhancement. A sigmoid
activation function was used in the way described previously
(Rolls and Milward, 2000):

y = fsigmoid(r) = 1

1 + e−2β(r−α)
(A5)

where r is the activation (or firing rate) of the neuron after the
lateral inhibition, y is the firing rate after the contrast enhance-
ment produced by the activation function, and β is the slope
or gain and α is the threshold or bias of the activation func-
tion. The sigmoid bounds the firing rate between 0 and 1 so
global normalization is not required. The slope and threshold are
held constant within each layer. The slope is constant throughout
training, whereas the threshold is used to control the sparseness
of firing rates within each layer. The (population) sparseness of
the firing within a layer is defined (Rolls and Treves, 1998; Franco
et al., 2007; Rolls, 2008; Rolls and Treves, 2011) as:

a = (
∑

i yi/n)2

∑
i y2

i /n
(A6)

where n is the number of neurons in the layer. To set the sparse-
ness to a given value, e.g., 5%, the threshold is set to the value of
the 95th percentile point of the activations within the layer.

The sigmoid activation function was used with parameters
(selected after a number of optimization runs) as shown in
Table A2.

In addition, the lateral inhibition parameters are as shown in
Table A3.

A.4 THE INPUT TO VISNET
VisNet is provided with a set of input filters which can be applied
to an image to produce inputs to the network which correspond
to those provided by simple cells in visual cortical area 1 (V1). The
purpose of this is to enable within VisNet the more complicated
response properties of cells between V1 and the inferior tempo-
ral cortex (IT) to be investigated, using as inputs natural stimuli
such as those that could be applied to the retina of the real visual
system. This is to facilitate comparisons between the activity of
neurons in VisNet and those in the real visual system, to the same
stimuli. In VisNet no attempt is made to train the response prop-
erties of simple cells, but instead we start with a defined series

Table A2 | Sigmoid parameters for the runs with 25 locations by Rolls

and Milward (2000).

Layer 1 2 3 4

Percentile 99.2 98 88 95

Slope β 190 40 75 26

Table A3 | Lateral inhibition parameters for the 25-location runs.

Layer 1 2 3 4

Radius, σ 1.38 2.7 4.0 6.0

Contrast, δ 1.5 1.5 1.6 1.4

of filters to perform fixed feature extraction to a level equiva-
lent to that of simple cells in V1, as have other researchers in
the field (Hummel and Biederman, 1992; Buhmann et al., 1991;
Fukushima, 1980), because we wish to simulate the more com-
plicated response properties of cells between V1 and the inferior
temporal cortex (IT). The elongated orientation-tuned input fil-
ters used accord with the general tuning profiles of simple cells
in V1 (Hawken and Parker, 1987) and were computed by Gabor
filters. Each individual filter is tuned to spatial frequency (0.0626
to 0.5 cycles / pixel over four octaves); orientation (0◦ to 135◦ in
steps of 45◦); and sign (±1). Of the 100 layer 1 connections, the
number to each group in VisNetL is as shown in Table A4. Any
zero D.C. filter can of course produce a negative as well as pos-
itive output, which would mean that this simulation of a simple
cell would permit negative as well as positive firing. The response
of each filter is zero thresholded and the negative results used to
form a separate anti-phase input to the network. The filter out-
puts are also normalized across scales to compensate for the low
frequency bias in the images of natural objects.

The Gabor filters used were similar to those used previously
(Deco and Rolls, 2004). Following Daugman (1988) the receptive
fields of the simple cell-like input neurons are modeled by 2D-
Gabor functions. The Gabor receptive fields have five degrees of
freedom given essentially by the product of an elliptical Gaussian
and a complex plane wave. The first two degrees of freedom are
the 2D-locations of the receptive field’s center; the third is the size
of the receptive field; the fourth is the orientation of the bound-
aries separating excitatory and inhibitory regions; and the fifth is
the symmetry. This fifth degree of freedom is given in the stan-
dard Gabor transform by the real and imaginary part, i.e., by the
phase of the complex function representing it, whereas in a bio-
logical context this can be done by combining pairs of neurons
with even and odd receptive fields. This design is supported by the
experimental work of Pollen and Ronner (1981), who found sim-
ple cells in quadrature-phase pairs. Even more, Daugman (1988)
proposed that an ensemble of simple cells is best modeled as a
family of 2D-Gabor wavelets sampling the frequency domain in
a log-polar manner as a function of eccentricity. Experimental
neurophysiological evidence constrains the relation between the
free parameters that define a 2D-Gabor receptive field (De Valois
and De Valois, 1988). There are three constraints fixing the rela-
tion between the width, height, orientation, and spatial frequency
(Lee, 1996). The first constraint posits that the aspect ratio of the
elliptical Gaussian envelope is 2:1. The second constraint postu-
lates that the plane wave tends to have its propagating direction
along the short axis of the elliptical Gaussian. The third constraint
assumes that the half-amplitude bandwidth of the frequency
response is about 1 to 1.5 octaves along the optimal orientation.
Further, we assume that the mean is zero in order to have an
admissible wavelet basis (Lee, 1996).

Table A4 | VisNet Layer 1 Connectivity.

Frequency 0.5 0.25 0.125 0.0625

# Connections 74 19 5 2

The frequency is in cycles per pixel.
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In more detail, the Gabor filters are constructed as follows
(Deco and Rolls, 2004). We consider a pixelized grey-scale image

given by a N × N matrix �
orig
ij . The subindices ij denote the spa-

tial position of the pixel. Each pixel value is given a grey level
brightness value coded in a scale between 0 (black) and 255
(white). The first step in the preprocessing consists of remov-
ing the DC component of the image (i.e., the mean value of
the grey-scale intensity of the pixels). (The equivalent in the
brain is the low-pass filtering performed by the retinal ganglion
cells and lateral geniculate cells. The visual representation in the
LGN is essentially a contrast invariant pixel representation of the
image, i.e., each neuron encodes the relative brightness value at
one location in visual space referred to the mean value of the
image brightness.) We denote this contrast-invariant LGN rep-
resentation by the N × N matrix �ij defined by the equation

�ij = �
orig
ij − 1

N2

N∑
i=1

N∑
j=1

�
orig
ij . (A7)

Feedforward connections to a layer of V1 neurons perform the
extraction of simple features like bars at different locations, ori-
entations and sizes. Realistic receptive fields for V1 neurons that
extract these simple features can be represented by 2D-Gabor
wavelets. Lee (1996) derived a family of discretized 2D-Gabor
wavelets that satisfy the wavelet theory and the neurophysiolog-
ical constraints for simple cells mentioned above. They are given
by an expression of the form

Gpqkl(x, y) = a−k	
l (a−k(x − 2p), a−k(y − 2q)) (A8)

where

	
l = 	(x cos (l
0) + y sin (l
0),−x sin (l
0) + y cos (l
0)),
(A9)

and the mother wavelet is given by

	(x, y) = 1√
2π

e− 1
8 (4x2+y2)[eiκx − e− κ2

2 ]. (A10)

In the above equations 
0 = π/L denotes the step size of each
angular rotation; l the index of rotation corresponding to the
preferred orientation 
l = lπ/L; k denotes the octave; and the
indices pq the position of the receptive field center at cx = p and
cy = q. In this form, the receptive fields at all levels cover the
spatial domain in the same way, i.e., by always overlapping the
receptive fields in the same fashion. In the model we use a = 2,
b = 1 and κ = π corresponding to a spatial frequency bandwidth
of one octave. We used symmetric filters with the angular spacing
between the different orientations set to 45 degrees; and with 4
filter frequencies spaced one octave apart starting with 0.5 cycles
per pixel, and with the sampling from the spatial frequencies set
as shown in Table A4.

Cells of layer 1 receive a topologically consistent, localized, ran-
dom selection of the filter responses in the input layer, under the
constraint that each cell samples every filter spatial frequency and
receives a constant number of inputs.

A.5 MEASURES FOR NETWORK PERFORMANCE
A.5.1 Information theory measures
A neuron can be said to have learnt an invariant representation
if it discriminates one set of stimuli from another set, across
all transforms. For example, a neuron’s response is translation
invariant if its response to one set of stimuli irrespective of
presentation is consistently higher than for all other stimuli irre-
spective of presentation location. Note that we state ‘set of stimuli’
since neurons in the inferior temporal cortex are not generally
selective for a single stimulus but rather a subpopulation of stim-
uli (Baylis et al., 1985; Abbott et al., 1996; Rolls et al., 1997a; Rolls
and Treves, 1998; Rolls and Deco, 2002; Franco et al., 2007; Rolls,
2007, 2008; Rolls and Treves, 2011). We used measures of network
performance (Rolls and Milward, 2000) based on information
theory and similar to those used in the analysis of the firing of
real neurons in the brain (Rolls, 2008; Rolls and Treves, 2011). A
single cell information measure was introduced which is the max-
imum amount of information the cell has about any one object
independently of which transform (here position on the retina
and view) is shown. Because the competitive algorithm used in
VisNet tends to produce local representations (in which single
cells become tuned to one stimulus or object), this information
measure can approach log2 NS bits, where NS is the number of
different stimuli. Indeed, it is an advantage of this measure that
it has a defined maximal value, which enables how well the net-
work is performing to be quantified. Rolls and Milward (2000)
also introduced a multiple cell information measure used here,
which has the advantage that it provides a measure of whether all
stimuli are encoded by different neurons in the network. Again, a
high value of this measure indicates good performance.

For completeness, we provide further specification of the two
information theoretic measures, which are described in detail by
Rolls and Milward (2000) (see Rolls, 2008 and Rolls and Treves,
2011 for an introduction to the concepts). The measures assess
the extent to which either a single cell, or a population of cells,
responds to the same stimulus invariantly with respect to its loca-
tion, yet responds differently to different stimuli. The measures
effectively show what one learns about which stimulus was pre-
sented from a single presentation of the stimulus at any randomly
chosen location. Results for top (4th) layer cells are shown. High
information measures thus show that cells fire similarly to the dif-
ferent transforms of a given stimulus (object), and differently to
the other stimuli. The single cell stimulus-specific information,
I(s, R), is the amount of information the set of responses, R, has
about a specific stimulus, s (see Rolls et al., 1997b and Rolls and
Milward, 2000). I(s, R) is given by

I(s, R) =
∑
r∈R

P(r|s) log2
P(r|s)
P(r)

(A11)

where r is an individual response from the set of responses R
of the neuron. For each cell the performance measure used was
the maximum amount of information a cell conveyed about
any one stimulus. This (rather than the mutual information,
I(S, R) where S is the whole set of stimuli s), is appropriate
for a competitive network in which the cells tend to become
tuned to one stimulus. (I(s, R) has more recently been called
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the stimulus-specific surprise (DeWeese and Meister, 1999; Rolls
and Treves, 2011). Its average across stimuli is the mutual
information I(S, R).)

If all the output cells of VisNet learned to respond to the
same stimulus, then the information about the set of stimuli
S would be very poor, and would not reach its maximal value
of log2 of the number of stimuli (in bits). The second mea-
sure that is used here is the information provided by a set of
cells about the stimulus set, using the procedures described by
Rolls et al. (1997a) and Rolls and Milward (2000). The multiple
cell information is the mutual information between the whole
set of stimuli S and of responses R calculated using a decod-
ing procedure in which the stimulus s′ that gave rise to the
particular firing rate response vector on each trial is estimated.
[The decoding step is needed because the high dimensionality of
the response space would lead to an inaccurate estimate of the
information if the responses were used directly, as described by
Rolls et al. (1997a) and Rolls and Treves (1998).] A probability
table is then constructed of the real stimuli s and the decoded
stimuli s′. From this probability table, the mutual information
between the set of actual stimuli S and the decoded estimates S′ is
calculated as

I(S, S′) =
∑
s,s′

P(s, s′) log2
P(s, s′)

P(s)P(s′)
(A12)

This was calculated for the subset of cells which had as single cells
the most information about which stimulus was shown. In par-
ticular, in Rolls and Milward (2000) and subsequent papers, the
multiple cell information was calculated from the first five cells for
each stimulus that had maximal single cell information about that
stimulus, that is from a population of 35 cells if there were seven
stimuli (each of which might have been shown in for example 9
or 25 positions on the retina).

A.5.2 Pattern association decoding
The output of the inferior temporal visual cortex reaches struc-
tures such as the orbitofrontal cortex and amygdala, where asso-
ciations to other stimuli are learned by a pattern association
network with an associative (Hebbian) learning rule (Rolls, 2008,
2014). We therefore used a one-layer pattern association network
(Rolls, 2008) to measure how well the output of VisNet could be
classified into one of the objects. The pattern association network

had four output neurons, one for each object. The inputs were
the ten neurons from layer 4 of VisNet for each of the four objects
with the best single cell information, making 40 inputs to each
neuron. The network was trained with the Hebb rule:

δwij = αyixj (A13)

where δwij is the change of the synaptic weight wij that results
from the simultaneous (or conjunctive) presence of presynaptic
firing xj and postsynaptic firing or activation yi, and α is a learn-
ing rate constant that specifies how much the synapses alter on
any one pairing. The pattern associator was trained for one trial
on the output of VisNet produced by every transform of each
object.

Performance on the test images extracted from the scenes was
tested by presenting an image to VisNet, and then measuring
the classification produced by the pattern associator. Performance
was measured by the percentage of the correct classifications of an
image as the correct object.

This approach to measuring the performance is very biolog-
ically appropriate, for it models the type of learning thought to
be implemented in structures that receive information from the
inferior temporal visual cortex such as the orbitofrontal cortex
and amygdala (Rolls, 2008, 2014). The small number of neurons
selected from layer 4 of VisNet might correspond to the most
selective for this stimulus set in a sparse distributed representa-
tion (Rolls, 2008; Rolls and Treves, 2011). The method would
measure whether neurons of the type recorded in the inferior
temporal visual cortex with good view and position invariance
are developed in VisNet. In fact, an appropriate neuron for an
input to such a decoding mechanism might have high firing rates
to all or most of the view and position transforms of one of the
stimuli, and smaller or no responses to any of the transforms of
other objects, as found in the inferior temporal cortex for some
neurons (Hasselmo et al., 1989; Perrett et al., 1991; Booth and
Rolls, 1998), and as illustrated for VisNet layer 4 neuron in this
investigation in Figure 5B. Moreover, it would be inappropriate
to train a device such as a support vector machine or even an
error correction perceptron on the outputs of all the neurons in
layer 4 of VisNet to produce 4 classifications, for such learning
procedures, not biologically plausible (Rolls, 2008), could map
the responses produced by a multilayer network with untrained
random weights to obtain good classifications.
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