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Without synaptic input, Purkinje neurons can spontaneously fire in a repeating trimodal
pattern that consists of tonic spiking, bursting and quiescence. Climbing fiber input (CF)
switches Purkinje neurons out of the trimodal firing pattern and toggles them between
a tonic firing and a quiescent state, while setting the gain of their response to Parallel
Fiber (PF) input. The basis to this transition is unclear. We investigate it using a biophysical
Purkinje cell model under conditions of CF and PF input. The model can replicate these
toggle and gain functions, dependent upon a novel account of intracellular calcium
dynamics that we hypothesize to be applicable in real Purkinje cells.
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INTRODUCTION
In contrast to the complexity of other brain regions, the cerebel-
lar cortex has a single repeating connectivity motif (Ito, 1984).
This motif consists of parallel, climbing, basket and stellate inputs
feeding into a central Purkinje cell, which transforms them into
an output. The relative simplicity of the motif makes it a good
focal point for trying to understand how a brain circuit actually
computes. Ultimately its computation collapses to one question,
what does the Purkinje cell compute? In particular, how does its
morphology and conductances transform/encode its inputs into
an output? This paper addresses the issue. Forrest et al. (2012)
researched the intrinsic activity of a Purkinje cell model, and how
it is modulated by stellate cell input. In this study we modify this
model and investigate how its intrinsic activity is modulated by
climbing and parallel fiber inputs. We show that our Purkinje cell
model can perform computations with these inputs, to generate
an output. This is timely because there is an intense interest in the
computational repertoire and power available to individual neu-
rons (Sejnowski et al., 1988; Koch, 1999; Zador, 2000; London and
Häusser, 2005; Herz et al., 2006; Mel, 2006).

In vitro, within cerebellar slices, Purkinje neurons can sponta-
neously fire action potentials in a repeating trimodal pattern that
consists of tonic spiking, bursting and quiescence (Womack and
Khodakhah, 2002, 2003, 2004; Womack et al., 2004; McKay and
Turner, 2005; McKay et al., 2007; Forrest et al., 2012). This is upon
the condition that synaptic inputs to the Purkinje cell are compro-
mised, either by pharmacological block or the cut of the slicing
plane. The repeat length of the trimodal pattern is reportedly fixed
for a single Purkinje cell but has been observed to vary among dif-
ferent Purkinje cells, in a range from 20 s to 20 min (Womack and
Khodakhah, 2002). In vitro, Climbing Fiber (CF) input (1 Hz) can
switch a Purkinje cell out of the trimodal firing pattern and into a
tonic firing pattern interrupted, at the frequency of CF input, by
a complex spike and its short evoked after-pause (∼20 ms long)

(McKay et al., 2007). Alternatively, CF input (1 Hz) can toggle the
Purkinje cell between a tonic firing and a quiescent state, referred
to as the up and down states respectively. This toggling behavior
has also been observed in vivo (Loewenstein et al., 2005). When
the Purkinje cell is in the up state, CF input toggles it to the down
state. When the Purkinje cell is in the down state, CF input tog-
gles it to the up state. So, state transitions occur at the frequency of
CF input (∼1 Hz) and tonic firing periods of ∼1 s alternate with
quiescent periods of ∼1 s [in vitro (McKay et al., 2007); in vivo
(Loewenstein et al., 2005)]. How does an identical, stereotypi-
cal CF input produce opposite transitions, toggling the Purkinje
cell from [down → up] and [up → down]? This is an unresolved
question.

In vitro, Parallel Fiber (PF) input increases tonic firing fre-
quency; CF input decreases it. In fact, CF input decreases the
mean frequency of firing to a range where PF input can greatly
increase it, setting the gain of the PF response (McKay et al.,
2007).

Our Purkinje cell model intrinsically fires in the trimodal pat-
tern (Forrest et al., 2012) and can replicate all the aforementioned
responses to CF and PF input. It captures the toggle and gain com-
putations with a novel account of intracellular Ca2+ dynamics,
which we hypothesize to be applicable in real Purkinje cells. The
model suggests how an identical CF input can produce oppo-
site transitions, toggling the Purkinje cell from [down → up] and
[up → down]. The model’s up state responds differently to CF
input than its down state, because it has a higher intracellular
Ca2+ concentration in its dendrites. During tonic firing, intra-
cellular Ca2+ accumulates as a function of voltage-gated Ca2+
entry. During quiescence it recedes as Ca2+ extrusion exceeds
any remaining Ca2+ entry. A CF input event opens voltage-
gated Ca2+ channels that pass a depolarising Ca2+ influx into
the dendrites, which activates hyperpolarising Ca2+-gated SK
K+ channels in the dendrites. So, CF input is both depolarising

Frontiers in Computational Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 86 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/journal/10.3389/fncom.2014.00086/abstract
http://community.frontiersin.org/people/u/105940
mailto:mikeforrest@hotmail.com
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Forrest Purkinje neuron computation

and hyperpolarising in parallel and which process is domi-
nant dictates as to whether the CF input is net depolarising or
hyperpolarising.

During the firing state, the CF conferred rise in the intracellu-
lar Ca2+ concentration,[Ca2+]i—added to the firing state’s higher
basal [Ca2+]i value—stimulates sufficient hyperpolarising cur-
rent flow (through Ca2+-gated SK K+ channels) to produce a net
hyperpolarisation and the cell is toggled to quiescence. During
the quiescent state, the CF conferred rise in [Ca2+]i—added to
the quiescent state’s lower basal [Ca2+]i level—cannot confer suf-
ficient hyperpolarising current flow (through Ca2+-gated SK K+
channels) to outweigh the depolarising effect of the Ca2+ entry;
there is a net depolarisation and the cell is toggled to firing.

These model mechanisms are founded upon experimental
findings: [A] In Purkinje cells, a CF input results in a marked
rise in intracellular Ca2+ levels, which remain elevated between
1 Hz CF stimuli (Miyakawa et al., 1992; Maeda et al., 1999); [B]
In Purkinje cells with high concentrations of EGTA (Ca2+ buffer),
or with SK blocked by apamin, CF discharges are unable to block
trimodal output (McKay et al., 2007).

In vitro, as aforementioned, repetitive CF input (1 Hz) switches
a Purkinje cell out of the trimodal firing pattern and into a tonic
firing pattern interrupted by either quiescent periods (∼1 s long)
or short pauses (∼20 ms) (McKay et al., 2007). No bursting mode
is observed. In both these patterns, there are very long quiescent
periods (>>1 s) that seem distinct from the quiescent periods
toggled by CF input (Figure 1D of McKay et al., 2007). They
are punctuated by CF driven spike events at the frequency of CF
input, which fail to evoke a state transition into the firing state.
The cause of these long quiescent periods is not known. However,
interestingly, our model can replicate them by a mechanism that
we shall now explain.

The Na+/K+ pump uses the energy of one ATP molecule
to exchange three intracellular Na+ ions for two extracellular
K+ ions (Glitsch, 2001). Thus the pump is electrogenic, extrud-
ing one net charge per cycle to hyperpolarize the membrane
potential. In our model, the quiescent mode of the trimodal pat-
tern is produced by the electrogenic action of Na+/K+ pumping
(described in detail in Forrest et al., 2012). We hypothesize that
this is how real Purkinje cells produce the quiescent period of
their trimodal firing pattern. Relevantly, in rat cerebellar slices, an
ouabain block of Na+/K+ pumps eradicates the quiescent mode
in the trimodal pattern of Purkinje cell activity, which might sug-
gest that Na+/K+ pumping is its generative mechanism (Forrest
et al., 2012).

In the model, repetitive CF input (1 Hz) blocks the bursting
mode of the model’s trimodal firing pattern but not its quiescent
mode, generated by electrogenic Na+/K+ pumping. This endur-
ing quiescent mode produces long quiescent periods (>>1 s)
that have the same characteristics as the long quiescent periods
(>>1 s) in the experimental data. Principally, they are punctu-
ated by CF driven spike events that fail to evoke a state transition
into the firing state. Extrapolating from this similarity, we suggest
that the long quiescent periods in the experimental data are, as
in the model, the enduring quiescent mode of the trimodal firing
pattern. Furthermore, we propose that they too are generated by
the electrogenic action of Na+/K+ pumping.

So, although CF input blocks the burst mode of the trimodal
pattern, we suggest that Na+/K+ pump generated silences can still
occur under conditions of synaptic input and we tentatively sug-
gest that Na+/K+ pump generated silences occur physiologically.
Indeed, a sizable fraction of the quiescent periods observed in
Purkinje cell firing, in vivo, have an onset and termination that is
not co-incidental or driven by CF input events (Loewenstein et al.,
2005). We propose that at least some of these are Na+/K+ pump
generated silences. We speculate that they have a coding function.
Hence, we suggest that the Na+/K+ pump is directly involved in
information processing.

MATERIALS AND METHODS
Numerical simulations were performed with the NEURON 5.7
simulator (Hines and Carnevale, 1997), using its backward Euler
integration method and 25 µs time steps.

Our starting point was the Purkinje cell model of Forrest
et al. (2012). We took their reduced model version, a deriva-
tive of their morphologically realistic model. They produced this
reduced model with a reduction algorithm (Bush and Sejnowski,
1993; Destexhe et al., 1998) that collapsed the dendritic arbor
of the full model into fewer compartments, while conserving
axial resistance (Ra). This reduced model has 41 compartments
as compared to 1089 in the full model. It runs significantly faster
than the full model and yet faithfully reproduces its intrinsic
electrical behavior (Figures 11, 12 in Forrest et al., 2012). The
reduced model is made up of one soma compartment and 40
dendrite compartments: 20 of these “smooth” and 20 “spiny”
(Forrest et al., 2012). The reduction algorithm used does not con-
serve membrane surface area. To correct for this the dendrite’s
membrane capacitance (Cm) and maximal conductance values
are multiplied by a correction factor, Cd = 3.80 (Forrest et al.,
2012). For smooth compartments, Cm = 0.8 ∗ Cd µF/cm2. For
spiny compartments, Cm = 1.5 ∗ Cd µF/cm2. This higher Cm in
the spiny compartments is to represent the presence of dendritic
spines.

A single EPSP/IPSP on an equivalent dendrite of the reduced
model is equivalent to dividing this EPSP/IPSP and applying one
fraction of it to each of the real dendrites represented by the
equivalent dendrite. So, the reduced model is not appropriate for
studying the effect of single synaptic inputs on single dendritic
branches of Purkinje cells (e.g., studies of local dendritic pro-
cessing). However, it is useful for studying the effect of multiple
synaptic inputs that are diffuse over the dendritic tree. Indeed,
the reduction algorithm employed (Ra conservation) has been
shown to produce reduced, surrogate models that capture the
synaptic integration properties of their full, parent models i.e.,
reduced models produced by this algorithm have been shown to
perform the same non-linear integration of dendritic EPSPs and
IPSPs (to have the same input-output function) as their parent
models (Bush and Sejnowski, 1993).

The equations detailing our Purkinje cell model are shown
later in this section. Equation 11 shows the conductances incor-
porated at the soma. Equation 55 shows those incorporated for
the Smooth dendrite compartments. The membrane equation
for a Spiny dendrite compartment (not shown) is equivalent to
Equation 55, except that it is without ISK.
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Forrest Purkinje neuron computation

The Purkinje cell model used is nearly identical to that of
Forrest et al. (2012) and like that model it intrinsically fires
in the trimodal pattern of tonic spiking, bursting and quies-
cence. However, there are some differences. The soma compart-
ment in the model of Forrest et al. (2012) has two, different
Na+/K+ pump descriptions—one of which is highly simpli-
fied and that electrically counterbalances a highly simplified
Na+/Ca2+ exchanger mechanism. Our model here only has one
Na+/K+ pump description at the soma as it dispenses with the
simplified Na+/K+ and Na+/Ca2+ exchanger mechanisms. It
retains a realistic Na+/K+ pump description at the soma. The sec-
ond disparity is that the model here, unlike that of Forrest et al.
(2012), does not include an SK channel at its soma. As regards
the model dendrites, here—unlike in Forrest et al. (2012)—
they do not have the Kv1.2 K+ current, Na+/Ca2+ exchanger,
Na+/K+ pump and extracellular K+ accumulation descriptions.
Extracellular [K+] is fixed at 2.5 mM. The D-type K+ current
(ID) description in the dendrites is modified to slow its inactiva-
tion, and the smooth dendrites’ description of intracellular Ca2+
dynamics is reworked. A SK type Ca2+-activated K+ conductance
is added to the smooth dendrites, sourced from Moczydlowski
and Latorre (1983). These modifications will be explained.

In the model of Forrest et al. (2012), the tonic mode is pro-
duced by Na+ spiking at the soma. The burst mode is produced
by the generation of Ca2+ spikes in the dendrites, which travel to
the soma and sculpt its firing to the burst waveform. The tonic
to burst transition is controlled by the Kv1.2 K+ current in the
dendrites. This current is hyperpolarizing. It clamps dendritic
excitability and prevents Ca2+ spike generation, which permits
the tonic mode of firing. However, the power of this excitabil-
ity clamp diminishes with time because K+ accumulates outside
the dendrites and this reduces the electrochemical driving force
for further K+ flow. Eventually the hyperpolarizing current pro-
duced by Kv1.2 channel activity is insufficient to prevent dendritic
spiking and the model is switched from the tonic to the burst
mode.

Kv1.2 is low-voltage gated. In addition to Kv1.2, the model
has other K+ currents in its dendrites. However, these are largely
uninvolved in the clamping of dendritic excitation as, unlike
Kv1.2, they are high-voltage gated and not open at the relevant
potentials. The D-type and A-type K+ currents are low-voltage
gated but their involvement is limited because they inactivate
quickly. By contrast, the Kv1.2 current is non-inactivating, which
is why its current persists long enough to be tempered by slow
ion relaxation processes. Indeed, experiment has shown the Kv1.2
current to be non-inactivating in the Purkinje cell (McKay et al.,
2005).

During the quiescent mode of the trimodal pattern, Na+/K+
pump activity in the dendrites pumps K+ into the cell, reduc-
ing the extracellular K+ accumulation, and resets [K+]o. So, the
Na+/K+ pump resets the Kv1.2 clamp to dendritic excitability and
when firing resumes it is in the tonic form, not bursting.

With the stoichiometry of the Na+/K+ ATPase, for it to
pump K+ into the dendrites it needs to simultaneously pump
Na+ out of the dendrites (in a 2:3 ratio). The dendrites do not
have voltage-dependent Na+ conductances (in concordance with
experimental findings; Llinas and Sugimori, 1980). To permit the

stereotypical operation of its Na+/K+ pumps, Na+ enters the
dendrites through the Na+/Ca2+ exchanger.

So, in the model of Forrest et al. (2012), the tonic to burst tran-
sition is controlled by a {Kv1.2, [K+]o accumulation, Na+/K+
pump, Na+/Ca2+ exchanger} system in the dendrites. In the
model of this study, this system is absent. Its tonic to burst tran-
sition is instead controlled by the D-type K+ current (ID), which
has been modified to inactivate very slowly (over seconds rather
than milliseconds). This current is hyperpolarizing. It clamps
dendritic excitability and prevents Ca2+ spike generation, which
permits the tonic mode of firing. However, when this current
inactivates, this excitability clamp is lost, it no longer prevents
dendritic spiking and the model is switched from the tonic to the
burst mode.

In this model, ID is a simulacrum of the absent {Kv1.2, [K+]o

accumulation, Na+/K+ pump, Na+/Ca2+ exchanger} system in
the dendrites. There is some evidence that Kv1.2 is actually the
channel correlate to the ID current (Shen et al., 2004). We pos-
tulate that ID, like Kv1.2, is non-inactivating in Purkinje cells.
We confer it with slow inactivation; over the course of seconds
rather than milliseconds. We do this, not to represent an inacti-
vation per se, but as an abstract capture of ion relaxation. So, the
same concept drives the tonic to burst transition in both mod-
els. They simply differ in their degree of abstraction of it. The
additional abstraction of this model is a limitation of the study.
It was introduced to make the model simpler, run faster and eas-
ier to tune. In particular, the omission of the Na+/Ca2+ exchanger
from the dendrites, with its bearing on intracellular Ca2+ dynam-
ics, made the manual tuning of the model’s free parameters,
which are principally related to intracellular Ca2+ dynamics,
simpler.

So, the model’s ID current is modified from its form in Forrest
et al. (2012), with an added parameter (k = 0.1) that slows its
inactivation (refer to Equation 96 and 97). The rate of ID inac-
tivation, modulated by this k parameter, sets the duration of the
model’s tonic mode in the trimodal pattern of firing.

As aforementioned, the Purkinje cell model of this paper
differs from the original model of Forrest et al. (2012) in its
implementation of the [tonic → burst] transition in the trimodal
pattern. However, these models do not differ in their imple-
mentation of the [burst → quiescent] and [quiescent → tonic]
transitions in the trimodal pattern. In both models, the quiescent
periods are generated by the electrogenic action of the Na+/K+
pump at the soma (Forrest et al., 2012). The Na+/K+ pump
hyperpolarizes the membrane potential with a stoichiometry of
three internal Na+ ions exchanged for every two external K+
ions. The Na+ concentration in a “fuzzy space” underneath the
pump ([Na+]i) rises during the tonic and burst firing modes,
as a function of voltage-gated Na+ entry. This increased intra-
cellular Na+ enzymatically increases pump activity. Eventually,
during the bursting mode, the pump generates such a hyperpo-
larizing current that firing stops and the model cell is driven to
quiescence. In this case, without any spike associated Na+ entry,
[Na+]i would be expected to stop rising. However, [Na+]i contin-
ues to increase as the Na+ influx is lagged by a parameter τ , which
phenomenologically encodes the long duration of Na+ diffusion
from the Na+ channel to Na+/K+ pump (Forrest et al., 2012).
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When τ expires, Na+ influx stops whilst the pump maintains
Na+ efflux. This decreases [Na+]i, which reduces hyperpolarizing
pump activity and eventually permits the model’s spontaneous
firing to resume. Firing resumes in the tonic spiking mode, rather
than in the bursting mode which preceded the quiescence. Thus,
the trimodal pattern is reset for another cycle.

In some model simulations, climbing fiber (CF) inputs were
introduced. CF inputs make 17 excitatory synaptic contacts upon
17 of the model’s proximal smooth dendrites (De Schutter and
Bower, 1994). They fire synchronously at a frequency of 1 Hz. The
CF to Purkinje synapses have a reversal potential of 0 mV, a con-
ductance of 1 µS and their amplitude upon activation follows a
dual exponential alpha function (τ1 = 0.5 ms; τ2 = 1.2 ms) (De
Schutter and Bower, 1994).

In other model simulations, parallel fiber (PF) inputs were
introduced. PF inputs make one excitatory synaptic contact upon
each of the model’s spiny dendrites (De Schutter and Bower,
1994). They fire asynchronously around a mean frequency of
input (100 Hz). The PF to Purkinje synapses have a reversal
potential of 0 mV, a conductance of 0.0005 µS and their ampli-
tude upon activation follows a dual exponential alpha function
(τ1 = 0.5 ms; τ2 = 1.2 ms). The Purkinje cell is known to receive
∼200,000 parallel fiber synaptic contacts (Rapp et al., 1992) but
our model has just 20 parallel fiber synaptic contacts (one on
each spiny dendrite compartment)—0.01% of the real value.
Under the conditions of random, asynchronous inputs simulated
here, this missing input is compensated for by an increased fir-
ing rate of each parallel fiber synapse. A similar approach has
been taken by other Purkinje cell modelers (Rapp et al., 1992; De
Schutter and Bower, 1994). Assuming a linear scaling, our sim-
ulation of 0.01% of the inputs, with an asynchronous firing rate
of 100 Hz, corresponds to the realistic average parallel fiber firing
rate of ∼0.01 Hz.

In some model simulations, both CF and PF inputs were
introduced.

The intracellular Ca2+ dynamics in the spiny dendrites are as
in Forrest et al. (2012). They are presented in Equations 121–123.
However, the system used in the smooth dendrites is modified
to be:

d[Ca2+]i

dt
= chan +

(−kt ∗ [Ca2+]i

[Ca2+]i + kd

)
+

(
y − [Ca2+]i

τr

)
(1)

chan =
(−(10000) ∗ ICa2+

2 ∗ F ∗ depth

)
(2)

if (chan < 0){chan = 0} (3)

ICa2+ = ICaT + ICaE + ICaP (4)

Here [Ca2+]i is the intracellular Ca2+ concentration in a supra-
membrane shell of depth = 0.1 µm, F is the Faraday constant,
kt = 1 ∗ 10−4 mM/ms, kd = 1 ∗ 10−4 mM, τr = 2 ms and ICa2+
is the Ca2+ membrane current which is the sum of the T-
type (ICaT), E-type (ICaE) and P-type (ICaP) voltage-gated Ca2+
currents. Parameter y is the set point Ca2+ concentration that
the system strives to return the Ca2+ concentration to after
a perturbation. The equation form and all of the aforemen-
tioned parameters are as in Forrest et al. (2012). However,

whereas Forrest et al. (2012) has y specified as a constant
(2.4 ∗ 10−4 mM), in this model y is dictated by the following
relationship:

dy

dt
=

⎛
⎝ ICa2+

/
[d · F]/4

g

⎞
⎠ +

(
z − y

τm

)
(5)

Here ICa2+ is the Ca2+ membrane current, F is the Faraday
constant, d is the compartment diameter, z = 2.4 ∗ 10−4 mM,
g = 1.105 and τm = 100 ms. Constant z is the set point value
for variable y. Its value is equal to that of constant y in Forrest
et al. (2012). On the right hand side (RHS) of the equation, the
first block is an intracellular Ca2+ accumulation term that is a
modification of the intracellular Na+ accumulation equation in
Forrest et al. (2012) (originally sourced from Canavier, 1999),
with the ion changed to be Ca2+ and with an added parameter
g, whose role is described later. The second block on the RHS has
the same first order decay form as the third block on the RHS of
Equation 1.

Equation 5 dictates that y increases with Ca2+ influx into the
cell. Through Equation 1, this increase in y then drives increased
[Ca2+]i. Studying Equations 1 and 5, it should be clear that y is in
essence a floating equilibrium point for [Ca2+]i that adheres to a
fixed set point: z = 2.4 ∗ 10−4 mM.

In these equations dictating [Ca2+]i: accumulation is applied
to [Ca2+]i both directly in the equation for [Ca2+]i (first block
on the RHS of Equation 1, called “chan” and given in Equation
2) and indirectly in the equation for y (first block on the RHS of
Equation 5). The former captures [Ca2+]i accumulation on the
scale of milliseconds, during Ca2+/[Ca2+]i spiking for instance,
and the latter captures more gradual accumulation over seconds
and minutes. So, with this layered system that uses an intermedi-
ary parameter y, it is possible to have [Ca2+]i accumulation over
longer time scales without disrupting the fast spiking in [Ca2+]i,
This fast dendritic spiking is crucial to the Purkinje cell model
because it drives somatic bursting. Anyhow, we believe that a
“creeping” Ca2+ set point is a realistic proposition, as Ca2+ efflux
and buffering systems are sub-linearly dependent on [Ca2+]i

because they rely on enzymes that have saturation kinetics (Stryer
et al., 2002).

The g and τm parameters control the rate of increase (and
decrease) in the Ca2+ set point concentration (y). Their value is
controlled by the value of a parameter w:

Initial condition, w = 0

if
(
ICa2+ > 0.06 mA/cm2) {w = 1}

dw

dt
=

(−w

f

)
f = 100 ms

if (w > 0.1)
{

g = 1 ∗ 104, τm = 1000
}

if (w < 0.1)
{

g = 1 ∗ 105, τm = 100
}

(6)

The default value of w is 0 and so the default values of g and
τm are 1 ∗ 105 and 100 respectively. However, if ICa2+ surpasses
0.06 mA/cm2, as it does when there is a climbing fiber (CF) input,
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w is set to 1 and the g and τm parameters are updated to 1 ∗ 104

and 1000 respectively. The rational for these parameter changes
are that the dramatic CF associated Ca2+ influx floods the nonlin-
ear Ca2+ regulatory systems. They cannot increase their activity
fast enough to match the increasing [Ca2+]i, leading to a rise in
the rate of increase of [Ca2+]i. The parameter f sets the lifespan
of the changed g and τm values by controlling the rate at which
w attenuates. When w declines below 0.1, g and τm revert to their
default small values. However, if there is another CF input event
before w falls to below 0.1, w is reset to 1, which prolongs the
lifespan of g and τm at their larger values for another cycle of w
attenuation.

A CF input produces a Ca2+ spike event in the dendrites,
which produces a burst event at the soma (called a complex spike
in the literature; Kandel et al., 2000). Comparing a CF induced
complex spike to a single burst from the trimodal firing pattern
reveals much similarity; in experimental and model data. Why
then can a complex spike toggle the Purkinje cell to quiescence
and a burst of the trimodal pattern cannot? Selective coupling of
calcium-activated potassium channels to specific classes of cal-
cium channels has been experimentally observed in a number
of cell types (Davies et al., 1996; Marrion and Tavalin, 1998;
Smith et al., 2002; Wolfart and Roeper, 2002), including the cere-
bellar Purkinje cell—in two different contexts (Womack et al.,
2004; Engber et al., 2012). The mechanism to this coupling
is largely unknown. We extrapolate from this phenomenon to
hypothesize that the dendrites have an SK type Ca2+-activated
K+ conductance which is activated only by CF generated Ca2+
influx. The SK channel reads the Ca2+ concentration in a micro
or nano domain that CF input feeds Ca2+ ions into. Ca2+ ions
leave this domain, to the bulk intracellular Ca2+ pool, at a rate
dependent on the bulk Ca2+ concentration. So, the CF driven
accumulation of Ca2+ within this domain is dependent on the
bulk Ca2+ concentration. This SK channel is not activated by
the large Ca2+ entries that occur during the trimodal bursting
mode, as this entry is not directly into its domain. It is selec-
tively coupled to the CF input. In our model’s smooth dendrites
this system is realized, in an abstract manner, by the inclu-
sion of an SK type conductance (sourced from Moczydlowski
and Latorre, 1983) with a maximal conductance of gsk. gsk is
close to zero (1∗10−7) at default but is assigned a higher value
upon CF input. The value of gsk is controlled by the value of
parameter r:

Initial condition : r = 0

if
(
Isyn > 3nA

) {r = 1}
dr

dt
=

(−r

s

)
s = 1000 ms

if (r > 0.1)
{

gsk = 0.72S/cm2}
if (r < 0.1)

{
gsk = 1 ∗ 10−7S/cm2} (7)

The default value of r is 0 and so gsk at default is 1 ∗ 10−7 S/cm2.
However, if there is CF input, the synaptic current Isyn across
the CF synapses exceeds 3 nA and r is set to 1, updating

gsk to 0.72 S/cm2. The parameter s sets the lifespan of the
changed gsk value by controlling the rate at which r attenuates.
When r declines below 0.1, gsk reverts to its default value of
1 ∗ 10−7 S/cm2. However, if there is another CF input event before
r falls to below 0.1, r is reset to 1, which prolongs the lifespan of
gsk at its higher value for another cycle of r attenuation.

This system of intracellular Ca2+ dynamics permits CF input
to toggle the Purkinje cell model between a firing and a quiescent
state (refer to Results). It is an extremely abstract description, but
it is founded upon good rationale in the absence of conclusive
experimental data—our present understanding of intracellular
Ca2+ dynamics is extremely limited and so there is not much
to guide its modeling. Available data does not constrain the
free parameters of the model: g, τm, f, w, z, gsk, r, s. These
were tuned manually (Prinz, 2006) by iteratively running the
model with different free parameter values and observing which
combination of these gave the best fit between real and model
Purkinje cell output. Aside from these parameters, the Purkinje
cell model’s current, synapse and pump equations were predom-
inantly parameterized to experimental data as detailed in Forrest
et al. (2012). Although our model has a reduced morphology,
and can run faster than the full model of Forrest et al. (2012),
it is still quite computationally expensive in absolute terms.
With CF input, 51 s of CPU time is required for 1 s of Purkinje
cell simulation on an Intel Pentium PC (I5). A typical simula-
tion would observe Purkinje cell behavior over 40 s and would
require ∼34 min of CPU time. This cost hindered model tun-
ing as it adversely delimited the number of model runs per unit
time. It was another factor that constrained the complexity of our
implemented intracellular Ca2+ dynamics. The abstract nature of
the model’s intracellular Ca2+ system is a limitation of this study.
In time, as experiments parse more detail, and desktop com-
puters become more powerful, we hope that our model can be
improved.

THE EQUATIONS OF THE PURKINJE CELL MODEL
Cm is the membrane capacitance, I is current, V is the membrane
potential in mV as a dimensionless quantity, t is time, T is tem-
perature (36◦C), Ra is the specific axial resistivity (35.4 � cm),
F is the Faraday constant, R is the gas constant and gmax is the
maximal conductance. gmax values, for the different currents, are
shown in Table 1.

m, h and z are Hodgkin-Huxley “particles”/gates (Hille, 2001);
for example, for the m Hodgkin-Huxley gate:

dm

dt
= m∞ − m

τm
(8)

The voltage (and/or intracellular Ca2+) dependence of a
Hodgkin–Huxley (H–H) current (Hille, 2001) can be expressed
by stating, for each H–H gate (e.g., for the m gate), either
[m∞,τm] OR [αm,βm]. These entities are voltage (and/or intra-
cellular Ca2+) dependent. The latter set can give the former set
through the relations:

m∞ = αm
/
(αm + βm) (9)

τm = 1
/
(αm + βm) (10)
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Table 1 | Maximal conductances (gmax; mS/cm2).

Current Soma Dendrite

Resurgent Na+ 156 0

P-type Ca2+ 0.52 6.1

T-type Ca2+ 0 2.28

E-type Ca2+ 0 12.16

A-type K+ 0 121.6

D-type K+ 0 136.8

M-type K+ 0 0.0152

Delayed rectifier K+ 0 0.912

Bk K+ 72.8 228

K2 K+ 0 0.608

Highly TEA sensitive K+ 41.6 0

Moderately TEA sensitive K+ 20.8 0

TEA insenstitive K+ 41.6 0

Hyperpolarization activated cation, Ih 1.04 1.4

Leak 0.1 0.38

The smooth dendrite compartments do not have a SK-type K+ conductance but

the Spiny dendrite compartments can express such a conductance (gmax = 0.72

or 0.62 S/cm 2) on the condition of CF-input, as explained in Methods.

SOMA
The soma is a cylinder (length = 22 µm, diameter = 22 µm).
Cm = 0.8 µF/cm2. The soma has highly TEA sensitive (IK_fast),
moderately TEA sensitive (IK_mid) and TEA insensitive (IK_slow)
voltage-gated K+ currents, a BK voltage-and-Ca2+-gated K+ cur-
rent (IBK), a resurgent Na+ current (INa−R), a P-type Ca2+
current (ICaP), a hyperpolarization activated cation current (IH),
a leak current (IL), a Na+/K+ pump (ispump), an intracellular

Ca2+ dynamics description and an account of intracellular Na+
accumulation. It receives a current from, or sends a current to,
its connecting, adjacent dendrite compartment (Itransfer_DS). The
membrane equation for the soma:

Cm · dV

dt
= − (

IK_fast + IK_mid + IK_slow + IBK + ICaP

+ IH + IL + INaR + ispump + Itransfer_DS

)
(11)

EK is the reversal potential for K+ (initiated at −88 mV), ENa

is the reversal potential for Na+(initiated at +70 mV), ECa is
the reversal potential for Ca2+(initiated by the NEURON default
value; +132 mV), EL is the reversal potential for the Leak cur-
rent (−70 mV), Eh is the reversal potential for the hyperpolar-
isation activated cation current (−30 mV), Intracellular Ca2+
concentration is initiated at the NEURON default of 5e−5 mM;
Extracellular Ca2+ concentration is initiated at the NEURON
default of 2 mM. The somatic membrane voltage (V) is initiated
at the NEURON default of −65 mV.

DENDRITE—SOMA ELECTROTONIC CURRENT (Carnevale and Hines,
2006)

Itransfer_DS = (VD − VS)

RDS
(12)

RDS = Ra · (LS/2)

π · r2
S

+ Ra · (LD/2)

π · r2
D

(13)

VD is the membrane voltage at the center of the dendrite com-
partment, VS is the membrane voltage at the center of the soma
compartment and RDS is the axial Resistance between the two. Ra
is the specific axial Resistivity, LS and rS are the length and radius
of the soma respectively; LD and rD are the length and radius of
the dendrite compartment respectively.

HIGHLY TEA SENSITIVE K+ CURRENT (Khaliq et al., 2003)

IK_fast = gmax · m3 · h · (V − EK ) (14)

m∞ = 1

exp
(−V − −24

15.4

) (15)

τm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.000103 + 0.0149 ∗ exp (0.035 ∗ V).......
[V < −35mV]

0.000129 + 1/
[

exp
(V + 100.7

12.9

) + exp
(

V − 56
−23.1

)]
......

[V ≥ −35mV]
(16)

h∞ = 0.31 + 1 − 0.31

exp
(
−V − −5.8

−11.2

) (17)

τh =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.22 ∗ 10−5 + 0.012 ∗ exp
[
− (V + 56.3

49.6

)2
]
........

[V ≤ 0mV]
0.0012 + 0.0023 ∗ exp ( − 0.141 ∗ V).........

[V > 0mV]
(18)

MODERATELY TEA SENSITIVE K+ CURRENT (Khaliq et al., 2003)

IK_mid = gmax · m4 · (V − EK ) (19)

m∞ = 1

exp
(−V − −24

20.4

) (20)

τm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.000688 + 1/
[

exp
(V + 64.2

6.5

) + exp
(

V − 141.5
−34.8

)]
.....

[V < −20mV]
0.00016 + 0.0008 ∗ exp ( − 0.0267 ∗ V)........

[V ≥ −20mV]
(21)

TEA INSENSITIVE K+ CURRENT (Khaliq et al., 2003)

IK_slow = gmax · m4 · (V − EK ) (22)

m∞ = 1

exp
(−V−−16.5

18.4

) (23)

τm = 0.000796 + 1/[
exp

(
V + 73.2

11.7

)
+ exp

(
V − 306.7

−74.2

)]
(24)

P-TYPE Ca2+ CURRENT (Khaliq et al., 2003)

ICaP = gmax ∗ m ∗ ghk (25)
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Goldman–Hodgkin–Katz (ghk) equation:

ghk = (
4 ∗ PCa2+

) ∗ V · F2

R · T

∗
[
Ca2+]

i − [
Ca2+]

o ∗ exp
(−2 · F · V

R · T

)
1 − exp

(−2 · F · V
R · T

) (26)

P2+
Ca is 5 ∗ 10−5 cm/sec, [Ca2+]i = 100 nM, [Ca2+]o = 2 mM,

T = 295 K, F is the Faraday constant and R is the gas con-
stant. [Ca2+]i and [Ca2+]o are fixed constants, as seen by this
equation—it does not access the changing value of [Ca2+]i as set
by the intracellular Ca2+ equations (given later).

m∞ = 1

exp
(−V − −19

5.5

) (27)

τm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.000264 + 0.128 ∗ exp (0.103 ∗ V)...............
[V ≤ −50mV]

0.000191 + 0.00376 ∗ exp
[
− (V + 11.9

27.8

)2
]
.......

[V > −50mV]
(28)

HYPERPOLARISATION ACTIVATED CATION CURRENT (Khaliq et al.,
2003)

IH = gmax · m · (V − Eh) (29)

m∞ = 1

exp
(
−V − −90.1

−9.9

) (30)

τm = 0.19 + 0.72 ∗ exp

[
−

(
V + 81.5

11.9

)2
]

(31)

BK TYPE K+ CURRENT (Khaliq et al., 2003)

IBK = gmax · m3 · z2 · h · (V − EK ) (32)

m∞ = 1

exp
(−V − −28.9

6.2

) (33)

h∞ = 0.085 + 1 − 0.085

exp
(
−V − −32

−5.8

) (34)

τm = 0.000505

+ 1/

[
exp

(
V + 86.4

10.1

)
+ exp

(
V − 33.3

−10

)]
(35)

τh = 0.0019

+ 1/

[
exp

(
V + 48.5

5.2

)
+ exp

(
V − 54.2

−12.9

)]
(36)

z∞ = 1

1 + 0.001
[Ca2+]

(37)

τz = 1 (38)

LEAK CURRENT (Khaliq et al., 2003)

IL = gmax ∗ (V − EL) (39)

INTRACELLULAR Ca2+ CONCENTRATION (Khaliq et al., 2003)
[Ca2+] is calculated for the intracellular space within 100 nm of
the membrane. [Ca2+] changes as I2+

Ca (negative by convention;
inward currents are negative) brings Ca2+ into this space and as
Ca2+ leaves by diffusion to the bulk cytoplasm. The diffusion rate
constant,β, is set to 1/ms.

d[Ca2+]
dt

= β ∗ [Ca2+] (40)

[Ca2+] at time step, t:

[Ca2+]t = [Ca2+]t − 1

+�t ∗
( −(100) ∗ ICa2+

(2 · F) ∗ (depth · Area)
− β ∗ [Ca2+]t − 1

)
(41)

F is the Faraday constant, depth = 0.1 µm and membrane sur-
face Area = 1521µm2. [Ca2+] was constrained to not fall below
100 nM by coding of the form:

if ([Ca2+] < 100)
{[Ca2+] = 100

}
(42)

RESURGENT Na+ CURRENT (Khaliq et al., 2003)

INaR = g
max

∗O ∗ (V − ENa)

O is the occupancy of the Open state. (43)

This current is described by a Markov scheme, shown in Figure 1.
The rate constants, labeled in Figure 1, are (ms−1):

α = 150 ∗ exp

(
V

20

)
(44)

β = 3 ∗ exp

(
2 · V

20

)
(45)

γ = 150; δ = 40; Con = 0.005; Coff = 0.5; Oon = 0.75;
Ooff = 0.005

a =
(

Oon

Con

)1/4

(46)

b =
(

Ooff

Coff

)1/4

(47)

FIGURE 1 | The Resurgent Na+ current is described by a Markov

scheme (Raman and Bean, 2001; Khaliq et al., 2003). (C1–C5) denote
sequential Closed states; O denotes the Open state. (I1–I6) denote
Inactivated states. OB denotes the state entered by a second mechanism
of inactivation, which is hypothesized to be equivalent to Open Channel
Block. The rate constants between states are given in Equation [44–49].
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ε = 1.75 (48)

ζ = 0.03 ∗ exp

(
2 · V

25

)
(49)

Na+/K+ PUMP (Forrest et al., 2012)
The somatic Na+/K+ pump (density = ds

pump, 0.04 mA/cm2)

transports 3 Na+ out (ispump_Na) for every 2 K+ in (ispump_K). It

has an exponential relation to intracellular Na+ concentration
([Na+]i).

⎧⎪⎪⎨
⎪⎪⎩

ispump = ds
pump /

(
1 + exp

[
40 − [Na+]i

1

])
ispump_Na = 3ispump

ispump_K = −2ispump

(50)

INTRACELLULAR Na+ CONCENTRATION (Forrest et al., 2012)
[Na+]i is initiated at 10 mM and then changes in time,

∂[Na+]i

∂t
= INa_net

[d · F · (10000)]/4
+ D∂2[Na+]i

(∂x)2
(51)

(
INa_net

)
[t] = (

INa_R − ipump_Na
)
[t − τ ] , τ = 5 s (52)

F is the Faraday constant, d is the somatic diameter and D is
the diffusivity constant (0.6 µm2/ms). The second term on the
RHS of Equation 51 accounts for longitudinal diffusion of Na+
out of the soma compartment, along the longitudinal distance
(x). The effects of this term are fairly negligible and it can be
dropped to quicken simulation speeds. INa_net is the difference
between Na+ current flowing into the soma (through INa−R) and
Na+ current pumped out of the soma by the Na+/K+ pump
(ipump_Na), lagged by parameter τ = 5 s. Intracellular Na+ stim-
ulates the Na+/K+ pump and this lag τ accounts for the duration
of sodium’s diffusion from channels to pumps. “Catch coding” is
applied:

if ([Na+]i < 10)
[[Na+]i = 10

]
(53)

if (ENa < 70)[ENa = 70] (54)

DENDRITE
The model’s dendrite projection is split into 40 compartments;
20 of these “smooth” and 20 “spiny” (Forrest et al., 2012). The
model’s dendrite correction factor: Cd = 3.80 (Forrest et al.,
2012). For smooth compartments, Cm = 0.8 ∗ Cd µF/cm2. For
spiny compartments, Cm = 1.5 ∗ Cd µF/cm2.

All the mechanisms in the dendrite are distinct from those in
the soma. The dendrite has hyperpolarization activated cation
current (IH); T-type (ICaT), Class-E (ICaE) and P-type (ICaP)
voltage-gated Ca2+ currents; a leak current (IL); A-type (IKA),
D-type (IKD), M-type (IKM) and Delayed Rectifier (IDR) voltage-
gated K+ currents; BK (IBK) and K2 (IK2) type voltage-and-
Ca2+-gated K+ currents and an intracellular Ca2+ dynamics
description.

In addition to the aforementioned, Smooth compartments
have an SK-type K+conductance (ISK) and a different intracellu-
lar Ca2+ dynamics description than that incorporated in Spiny

compartments. Aside from these disparities, and their differ-
ing Cm value, Smooth and Spiny compartments are intrinsically
equivalent. They receive different synaptic inputs: CF inputs
project to Smooth, PF inputs project to Spiny. These inputs
were described earlier. The membrane equation for a Smooth
compartment, with its additional ISK conductance:

Cm · dV

dt
= −

⎛
⎝ ICaT + ICaE + ICaP + IH + IKA + IKM

+ IKD + IDR + IBK + IK2 + IL + ISK

+ Itrans_one + Itrans_two

⎞
⎠ (55)

Itrans_one is the current from a neighboring compartment. Itrans_two

is the current from the other neighboring compartment. These
currents follow the same form as that described for the transfer
between the soma and its adjacent 1st dendrite compartment in
Equation 12.

EK is the reversal potential for K+ (initiated by the NEURON
default value; −77 mV), ENa is the reversal potential for Na+
(initiated by the NEURON default value; +50 mV), ECa is the
reversal potential for Ca2+ (initiated by the NEURON default
value; +132 mV), EL is the reversal potential for the Leak current
(−80 mV), Eh is the reversal potential for the hyperpolarisation
activated cation current (−32.9 mV). Intracellular Ca2+ concen-
tration is initiated at 4e−5 mM; Extracellular Ca2+ concentration
is initiated at 2.4 mM.

T-TYPE Ca2+ CURRENT (Miyasho et al., 2001)

ICaT = gmax · m · h · (V − ECa);
ECa is fixed at +135 mV for this current. (56)

αm = 2.6

1 + exp
(

V + 21
−8

) (57)

βm = 0.18

1 + exp
(V + 40

4

) (58)

αh = 0.0025

1 + exp
(V + 40

8

) (59)

βh = 0.19

1 + exp
(

V + 50
−10

) (60)

mt = 3
T − 37

10 ; T is temperature in degrees centigrade (36).

τm = 1

(αm + βm) · mt
(61)

τh = 1

(αh + βh) · mt
(62)

E-TYPE Ca2+ CURRENT (Miyasho et al., 2001)

ICaE = gmax · m · h · (V − ECa);
ECa is fixed at +135 mV for this current. (63)

αm = 2.6

1 + exp [(V + 7) / − 8]
(64)
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βm = 0.18

1 + exp [(V + 26) /4]
(65)

αh = 0.0025

1 + exp [(V + 32) /8]
(66)

βh = 0.19

1 + exp [(V + 42) / − 10]
(67)

mt = 3
T − 37

10 ; T is temperature in degrees centigrade (36).

mexp = 1 − exp

( [−dt ∗ mt] · [αm + βm]
4

)
(68)

hexp = 1 − exp

( [−dt ∗ mt] · [αh + βh]
10

)
(69)

P-TYPE Ca2+ CURRENT (Miyasho et al., 2001)

ICaP = gmax · m · (V − ECa);
ECa is fixed at +135 mV for this current. (70)

αm = 8.5

1 + exp ([V + −8] / − 12.5)
(71)

βm = 35

1 + exp ([V + 74] /14.5)
(72)

mt = 3
T − 37

10 ; T is temperature in degrees centigrade (36).

τm = 1

(αm + βm) · mt
(73)

HYPERPOLARISATION ACTIVATED CATION CURRENT (Saraga et al.,
2003)

Ih = gmax · m · (V − Eh); Eh = −32.9 mV (74)

τm = 1

exp ( − 17.9 − 0.116 · V)
+ exp ( − 1.84 + 0.09 · V)

+ 100 (75)

m∞ = 1

1 + exp[(V + 84.1)/10.2] (76)

mexp = 1 − exp

(−dt

τm

)
(77)

A-TYPE K+ CURRENT (Miyasho et al., 2001)

IKA = gmax · m4 · h · (V − EK ) (78)

αm = 1.4

1 + exp ([V + 27]/ − 12)
(79)

βm = 0.49

1 + exp ([V + 30/4)
(80)

αh = 0.00175

1 + exp ([V + 50/8)
(81)

βh = 0.49

1 + exp ([V + 13/ − 10)
(82)

mt = 3
T − 37

10 ; T is temperature in degrees centigrade (36).

τm = 1

(αm + βm) · mt
(83)

τh = 1

(αh + βh) · mt
(84)

M-TYPE K+ CURRENT (Miyasho et al., 2001)

IKM = gmax · m · (V − EK ) (85)

ft = 2.3
T − 36

10 ; T is temperature in degrees centigrade (36).

τm = 1000/ft

3.3 · (
e+(V + 35)/40 + e−(V + 35)/20

) (86)

m∞ = 1

1 + e−(V + 35)/10
(87)

D-TYPE K+ CURRENT (Miyasho et al., 2001)

IKD = gmax · m · h · (V − EK ) (88)

αm = 8.5

1 + exp ([V + 17]/ − 12.5)
(89)

βm = 35

1 + exp ([V + 99]/14.5)
(90)

αh = 0.0015

1 + exp ([V + 89]/8)
(91)

βh = 0.0055

1 + exp ([V + 83]/ − 8)
(92)

m∞ = αm / (αm + βm) (93)

h∞ = αh / (αh + βh) (94)

mt = 3
T − 37

10 ; T is temperature in degrees centigrade (36).

mexp = 1 − exp

( [−dt ∗ mt] · [αm + βm]
10

)
(95)

hexp = 1 − exp ([−dt ∗ mt] · [αh + βh] · k) (96)

k = 0.1 (97)

DELAYED RECTIFIER TYPE K+ CURRENT (Miyasho et al., 2001)

IDR = gmax · m4 · (V − EK ) (98)

αm = 0.1 · vtrap (99)

catch = fabs

(−(V + 55)

10

)
(100)

Where fabs(x) returns the absolute value of a floating point
number; the absolute value of its argument (|x|).
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vtrap =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

10 ·
(

1 − −(V + 55)
10 / 2

)
....................

[catch < 1e−6]
−(V + 55)

exp
( −(V + 55)

10

)
−1

.......................

[catch ≥ 1e−6]

(101)

βm = 0.125 · exp

(−(V + 65)

80

)
(102)

mt = 3
T − 37

10 ; T is temperature in degrees centigrade (36).

mexp = 1 − exp (−dt · mt · [αm + βm]) (103)

BK-TYPE K+ CURRENT (Miyasho et al., 2001)

IBK = gmax · m · z2 · (V − EK ) (104)

αm = 7.5 (105)

βm = 0.11

exp ([V + −35] /14.9)
(106)

mexp = 1 − exp (−dt · [αm + βm]) (107)

αz = 1 (108)

βz = 400

[Ca2+] ∗ 1000
(109)

τz = 10 (110)

zexp = 1 − exp

(−dt

τz

)
(111)

K2-TYPE K+ CURRENT (Miyasho et al., 2001)

IK2 = gmax · m · z2 · (V − EK ) (112)

αm = 25 (113)

βm = 0.075

exp ([V + 5] /10)
(114)

mexp = 1 − exp (−dt · [αm + βm]) (115)

αz = 1 (116)

βz = 20

[Ca2+] ∗ 1000
(117)

τz = 10 (118)

zexp = 1 − exp

(−dt

τz

)
(119)

LEAK CURRENT (Miyasho et al., 2001)

IL = gmax ∗ (V − EL);
EL is − 80 mV for this current in the dendrite. (120)

INTRACELLULAR Ca2+ DYNAMICS IN A SPINY DENDRITE
COMPARTMENT (Miyasho et al., 2001)

d[Ca2+]i

dt
= chan +

(−kt ∗ [Ca2+]i

[Ca2+]i + kd

)

+
(

y − [Ca2+]i

taur

)
(121)

chan =
(−(10000) ∗ ICa2+

2 ∗ F ∗ depth

)
(122)

if (chan < 0) {chan = 0} (123)

Where [Ca2+]i is the intracellular Ca2+ concentration in a
supra-membrane shell of depth = 0.1 µm, F is the Faraday
constant, ICa2+ is the Ca2+ membrane current (negative by
convention; inward currents are negative), kt = 4e−5 mM/ms,
kd = 4e−5 mM, taur = 2 ms and y = 4e−5 mM.

INTRACELLULAR Ca2+ DYNAMICS IN A SMOOTH DENDRITE
COMPARTMENT
This was described earlier with Equations 1–6.

SK-TYPE K+ CURRENT (INCORPORATED IN SMOOTH AND NOT SPINY
DENDRITE COMPARTMENTS) (Moczydlowski and Latorre, 1983)

ISK = gmax · m · (V − EK ) (124)

αm = 0.48

1 +
(

0.18 · exp
(−2 · 0.84 · F · V/R

T + 273.15

))
/ [Ca2+]

(125)

βm = 0.28

1 + [Ca2+] /
(

0.011 · exp
[−2 · 1 · F · V/R

T+273.15

]) (126)

τm = 1

αm + βm
(127)

m∞ = αm

αm + βm
(128)

gmax for this current is not a fixed constant but is varied as
described with Equation 7.

RESULTS
PARALLEL FIBER (PF) INPUT CHANGES THE MEAN FREQUENCY, BUT
NOT THE PATTERN, OF PURKINJE CELL FIRING IN THE MODEL
With no synaptic innervation, the Purkinje cell model intrin-
sically fires in a repeating trimodal pattern of tonic spiking,
bursting and quiescence (Figure 2). Without high-threshold
Ca2+ spikes in the dendrites (Figure 2D), firing is tonic at the
soma (Figure 2C). With high-threshold dendritic Ca2+ spikes
(Figure 2F), bursting occurs at the soma (Figure 2E). The tonic
to burst transition is controlled by the hyperpolarizing D-type
K+ current (ID) in the dendrites. This current is hyperpolarizing.
It clamps dendritic excitability and prevents Ca2+ spike gener-
ation, which permits the tonic mode of firing. However, when
this current inactivates, this excitability clamp is lost, it no longer
prevents dendritic spiking and the model is switched from the
tonic to the burst mode. The k model parameter controls the
rate of ID inactivation (refer to Methods) and the timing of the
tonic to burst transition. If k is larger, the tonic to burst tran-
sition occurs earlier (Figures 2G,H). ID slowly inactivates in the
model, over the course of seconds rather than milliseconds, to
represent our hypothesis that ID is non-inactivating in Purkinje
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FIGURE 2 | Without synaptic innervation, the Purkinje cell model

intrinsically fires in a repeating trimodal pattern of tonic spiking,

bursting and quiescence. (A), Single trimodal repeat, recorded at the
soma, with the constituent tonic, burst and quiescent modes labeled. The
firing length (tonic+burst) is also labeled. The trimodal repeat length is
∼20 s, which is within the experimentally reported range (Womack and
Khodakhah, 2002). (B) The same trimodal repeat as (A) but recorded from
a point within the dendritic tree. One can compare panels (A,B) and
observe that with no high-threshold spikes in the dendrites, firing is tonic
at the soma. With high-threshold dendritic spikes, bursting occurs at the
soma. (C) Tonic firing at the soma, shown at high resolution. (D) The
same timeframe as (C), but recorded from a point within the dendritic

tree. (E) Burst firing at the soma, shown at high resolution; it has a very
stereotypical waveform. F, The same timeframe as (E), but recorded from
a point within the dendritic tree. (G) Single trimodal repeat, recorded at
the soma, when the model parameter k is 0.2, instead of the model’s
default value of 0.1. k is a parameter controlling the rate of inactivation to
the ID K+ current, and this rate controls the timing of the tonic to burst
transition (refer to Methods). With this modified k value, the tonic length
is shorter than in (A); a greater proportion of the firing length is occupied
by bursting. (H) The same trimodal repeat as panel (G) but recorded from
a point within the dendritic tree. (A,B) Are scaled by the first scale bar
(30 mV, 5 s); (C–F) are scaled by the second scale bar (30 mV, 100 ms);
(G,H) are scaled by the third scale bar (30 mV, 5 s).

neurons and that it reduces over time because of ion relaxation
(refer to Methods). The burst to quiescent transition is produced
by the hyperpolarising action of the Na+/K+ pump at the soma
(refer to Methods). So, Na+/K+ pump activity sets the firing length
(the length of the tonic & burst modes combined, labeled in
Figure 2A).

The introduction of excitatory PF inputs to the model den-
drites does not change its activity motif. It still fires in the
trimodal pattern (Figure 3). However, the mean frequency of
firing in the tonic mode changes from 99 to 132 Hz. A 33%
increase. This increased excitation causes the ID excitability clamp
to be overcome quicker and the tonic to burst transition to occur
earlier.

THE PURKINJE CELL MODEL’S INTRACELLULAR Ca2+ DYNAMICS
PERMIT IT TO REPLICATE TOGGLING
In vitro and in vivo, how does an identical, stereotypical CF
input produce opposite transitions, toggling a Purkinje cell
from [down → up] and [up → down] (Loewenstein et al., 2005;
McKay et al., 2007)? This is an unresolved question.

Our Purkinje cell model replicates toggling through mecha-
nisms that we hypothesize to be responsible for toggling in real
Purkinje cells (Figure 4). Every second a CF input to the model

produces a large Ca2+ spike in the dendrites (one is labeled with
a blue arrow in Figure 4B) that generates a complex spike at
the soma (distinguishable in the resolution of Figure 4C; one is
labeled with a brown arrow). These CF input events toggle the cell
between a tonic firing and a quiescent state at the frequency of CF
input, 1 Hz (Figure 4A). When the cell is firing, a CF input toggles
it to quiescence. When the cell is quiescent, a CF input toggles it
to firing. The significance of the longer quiescent period, labeled
with the red arrow (Figure 4A), will be explained later on.

To our Purkinje cell model, CF input is both depolarising
and hyperpolarising in parallel. It is depolarising because inward,
depolarising cation flow through AMPA ionotropic receptors
(AMPAR) opens voltage-gated Ca2+ channels that pass a depo-
larising Ca2+ influx into the dendrites. Yet, at the same time
it is hyperpolarising because this Ca2+ activates hyperpolarising
Ca2+-gated SK K+ channels in the dendrites. Which process is
dominant dictates as to whether the CF input is net depolarising
or hyperpolarising.

In the model, the tonic firing (up) state responds differently to
CF input than the quiescent (down) state because it has a differ-
ent intracellular Ca2+ concentration in its dendrites (Figure 5).
During tonic firing, intracellular Ca2+ accumulates as a function
of voltage-gated Ca2+ entry. During quiescence it recedes as Ca2+
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FIGURE 3 | With Parallel Fiber (PF) input, the Purkinje cell model still

fires in the trimodal activity pattern. (A) Without PF input: Single
trimodal repeat, recorded at the soma, with the constituent tonic, burst
and quiescent modes labeled. (B) The same trimodal repeat as (A) but
recorded from a point within the dendritic tree. (C) With PF input: Single
trimodal repeat, recorded at the soma, with the constituent tonic, burst

and quiescent modes labeled. Comparing with (A), the tonic mode is
shorter when PF inputs are present. This is a function of a higher mean
frequency of firing in the tonic mode, which produces an earlier tonic to
burst mode transition. (D) The same trimodal repeat as (C) but recorded
from a point within the dendritic tree. All panels are scaled by the same
scale bar (20 mV, 5 s).

FIGURE 4 | CF input (1 Hz) can toggle the Purkinje cell model between a

tonic firing (up) state and a quiescent (down) state. (A) Somatic
membrane potential (vs. Time). (B) Membrane potential at a dendritic
location, over the same window of time as (A). (C) Relates to the labeled part
of (A). (D) Relates to the labeled part of (B). The scaling of (A,B) is encoded
in the first scale bar (30 mV, 3 s). The scaling of (C,D) is encoded in the
second scale bar (30 mV, 0.5 s). Every second, a CF input produces a large
Ca2+ spike in the dendrites (one is labeled with a blue arrow in B) that
generates a complex spike at the soma [distinguishable in the resolution of

(C); one is labeled with a brown arrow]. These CF input events toggle the cell
between a tonic firing and a quiescent state at the frequency of CF input,
1 Hz (A). When the cell is firing, a CF input toggles it to quiescence. When
the cell is quiescent, a CF input toggles it to firing. A Na+/K+ pump
generated silence can be observed in (A), distinguishable from the other
quiescent periods because it is much longer (∼12 s as opposed to ∼1 s) and
is marked by a large red arrow. It is punctuated by CF driven spikes at the
frequency of CF input (1 Hz); these CF inputs cannot evoke a state transition
into the firing state over the course of this quiescence.
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FIGURE 5 | The Purkinje cell model’s capture of toggling behavior is made

possible by its novel account of intracellular Ca2+ dynamics. All panels
relate to the same window of time. (A) Somatic membrane potential. (B)

Model parameter y at a dendritic point. (C) Intracellular Ca2+ concentration,
[Ca2+]i, at the same dendritic point as (B). (D) Panel (C) at higher resolution.
The model cell is toggled up (tonic firing) and down (quiescence) by CF input at
a frequency of 1 Hz. Observe the cross-correlation between a Ca2+ spike
event in the dendrites (C) and a toggle of state at the soma (A). Model
parameter y is the set point for the intracellular Ca2+ concentration ([Ca2+]i)
i.e., the value that the system strives to return [Ca2+]i to after a perturbation

(refer to Methods). Parameter y rises during tonic firing; rises at a greater rate
of change during a CF induced Ca2+ spike and decreases during quiescence
(B). These changes in y drive corresponding changes in [Ca2+]i—it rises during
tonic firing, rises at a greater rate of change during a CF induced Ca2+ spike
and decreases during quiescence (C,D). The [Ca2+]i increase during tonic
firing, and decrease during quiescence, is clear in the high resolution of (D)

where it is highlighted by green and purple arrows respectively. During tonic
firing, one can see that the rise in [Ca2+]i is due to a rising set point value (y )
because the [Ca2+]i value that the system is returned to after a calcium spike
event increases over time (refer green line).

extrusion exceeds any remaining Ca2+ entry. The firing state has
a higher [Ca2+]i level in its dendrites than the quiescent state.

During the firing state, the CF conferred rise in [Ca2+]i—
added to the firing state’s higher basal [Ca2+]i level—stimulates
sufficient hyperpolarising current flow (through Ca2+-gated SK
K+ channels) to produce a net hyperpolarisation and the cell is
toggled to quiescence. During the quiescent state, the CF con-
ferred rise in [Ca2+]i—added to the quiescent state’s lower basal
[Ca2+]i level—cannot confer sufficient hyperpolarising current
flow (through Ca2+-gated SK K+ channels) to outweigh the
depolarising effect of the Ca2+ entry; there is a net depolarisation
and the cell is toggled to firing.

In this way, the same stereotypical CF input produces differ-
ent outcomes, depending on the prior state of the model cell i.e.,
the CF input acts as a toggle switch, toggling the model cell from
whichever of the two states it is in to the alternate state.

Note that with a CF conferred down to up transition, after
the CF conferred complex spike event and before the onset of
tonic firing, there is a short pause (Figure 4) which is a detail
observed in experimental data (McKay et al., 2007). The capture
of this pause is a function of, and provides some validation to, the
model’s intracellular Ca2+ dynamics.

CF INPUT CAN PRODUCE A TONIC FIRING PATTERN PUNCTUATED BY
COMPLEX SPIKES AND SHORT PAUSES IN THE PURKINJE CELL MODEL
In vitro, repetitive CF input (∼1 Hz) doesn’t always switch a
trimodal Purkinje cell to bimodal patterning. In some cases,

it switches the cell to a tonic firing pattern that is punctu-
ated, at the frequency of CF input, by a complex spike and its
short evoked after-pause (∼20 ms long) (McKay et al., 2007).
In our model, CF input generates this pattern (Figure 6), as
opposed to the CF driven bimodal patterning, when the SK max-
imal conductance (gsk) is 0.62 S/cm2 as opposed to 0.72 S/cm2.
The after-pause is a function of the model’s intracellular Ca2+
dynamics.

CF INPUT BLOCKS THE BURSTING MODE, BUT NOT THE QUIESCENT
MODE, OF THE TRIMODAL FIRING PATTERN
In vitro, repetitive CF input (1 Hz) blocks the trimodal firing pat-
tern and replaces it with a tonic firing pattern, interrupted either
by quiescent periods (∼1 s long) or short pauses (∼20 ms long)
(McKay et al., 2007). No bursting mode is observed. However, in
both these firing patterns there are very long quiescent periods
(>>1 s), where the only deflections in somatic membrane poten-
tial are attributable to CF driven spikes, at the frequency of CF
input, and in which CF input cannot evoke a state transition into
the firing state (Figure 1D of McKay et al., 2007). The cause of
these long quiescent periods is not known.

We hypothesize that they are the enduring quiescent mode of
the blocked trimodal firing pattern, which we propose is gen-
erated by electrogenic Na+/K+ pumping. So, we suggest that
although CF input blocks the trimodal pattern’s bursting mode,
it does not block its quiescent mode. Indeed, the incorpo-
rated Na+/K+ pump system enables the model to replicate these
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FIGURE 6 | CF input (1 Hz) can produce a tonic firing pattern

punctuated by complex spikes and short pauses. (A) Somatic
membrane potential (vs. Time). (B) Membrane potential at a dendritic
location; for the same window of time as (A). (C) Relates to the labeled
part of (A). (D) Relates to the labeled part of (B). The scaling of (A,B) is
encoded in the first scale bar (30 mV, 3 s). The scaling of (C,D) is encoded
in the second scale bar (30 mV, 0.5 s). Every second a CF input produces a
large Ca2+ spike in the dendrites [one is labeled with a blue arrow in (B)]

that generates a complex spike at the soma, followed by a short evoked
after-pause [distinguishable in the resolution of (C); one is labeled with a
brown arrow]. The model generates this pattern in response to CF input,
as opposed to the toggled pattern of Figure 4, when the model parameter
gsk (refer to Methods) is 0.62 S/cm2 as opposed to 0.72 S/cm2. A Na+/K+
pump generated silence can be observed in (A), marked by a large red
arrow. It is punctuated by CF driven spikes at the frequency of CF input
(1 Hz).

long quiescent periods in the CF produced tonic firing patterns
(Figures 4, 6, labeled with a red arrow).

So, we tentatively suggest that there are 2 different classes
of long quiescent period in Purkinje cell activity: (1) CF con-
ferred [∼1 s long]; (2) Na+/K+ pump conferred [>>1 s long].
The former is regulated by intracellular Ca2+ dynamics, the
latter by intracellular Na+ dynamics. In addition, there can
be short quiescent periods: short pauses after complex spikes
(∼20 ms long), which are a function of intracellular Ca2+
dynamics.

IN THE PURKINJE CELL MODEL, CF INPUT DECREASES THE MEAN
FREQUENCY OF FIRING TO A RANGE WHERE PF INPUT CAN GREATLY
INCREASE IT, SETTING THE GAIN OF THE PF RESPONSE
In vitro, PF input increases tonic firing frequency. CF input
decreases it. In fact, CF input decreases the mean frequency of
firing to a range where PF input can greatly increase it, setting the
gain of the PF response (McKay et al., 2007). Our model repli-
cates this gain computation. In the model, with the introduction
of just PF inputs, the mean frequency of tonic firing shifts from
99 to 132 Hz—a 33% increase. With the introduction of just CF
input (gsk = 0.62 S/cm2), the mean frequency of tonic firing shifts
from 99 to 54 Hz—a 55% decrease. With CF input already intro-
duced and then with the subsequent introduction of PF inputs,
the mean frequency of tonic firing shifts from 54 to 80 Hz—a 68%
increase. So, CF input confers a gain in the PF induced frequency
change.

Ih ACTIVITY CONTROLS PURKINJE CELL, AND PURKINJE MODEL,
ACTIVITY
Loewenstein et al. (2005) produced a Purkinje cell model that
places the hyperpolarisation activated cation current (Ih) as the
critical conductance to Purkinje cell bistability. This model is
heavily reduced, with no spiking dynamics and the bistability is
between two different rest states (hyperpolarized and depolar-
ized). The model cannot account for the fact that Ih block by ZD
7288, or Ih downregulation by serotonin, does not abolish bista-
bility (Williams et al., 2002; Fernandez et al., 2007). Indeed, Ih

block/downregulation has been observed to increase the obser-
vation of bistability (to “unmask” it; Williams et al., 2002). The
bistability of our Purkinje cell model is not Ih dependent and is
maintained when this conductance is removed, to simulate the
application of an Ih blocking drug (Figure 7A). So, the model
does not simply replicate the CF toggled bistable pattern, but can
replicate a pharmacological challenge to it.

When the maximal conductance of the Ih current, gih, is
increased in the model’s soma (from it’s default of 1.04 mS/cm2, a
value inherited from the model’s origin in Forrest et al., 2012, to
5 mS/cm2) then the CF toggled bistable pattern is “masked” by a
pattern of continuous tonic firing, punctuated by complex spike
events and their short after-pauses at the frequency of CF input
(Figure 7B). However, although CF toggled quiescent periods are
eradicated, Na+/K+ pump generated silences still occur. This is
the same activity pattern as reported in Figure 6. So, increased Ih

activity can block/mask Purkinje cell bistabilty. With a raised gih
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FIGURE 7 | Ih activity can mask Purkinje cell bistability. All panels
relate to the Purkinje cell model’s somatic membrane potential (vs.
Time). The model is innervated with CF input at a frequency of 1 Hz
(i.e., at 1 second intervals). The timing of two representative CF input
events is shown across the panels which are all scaled by the same
scale bar (20 mV, 1 s). (A) With Ih conductance density set to 0 (to
replicate a pharmacological block of Ih), CF input (1 Hz) can still toggle
the Purkinje cell model between a tonic firing (up) state and a
quiescent (down) state i.e., the model’s toggled, bistable behavior is
not conditional upon Ih activity. (B) Raising the model’s Ih conductance
density at the soma, from its default value of 1.04–5 mS/cm2, results in
CF input being unable to toggle the Purkinje cell state. Instead, CF
input produces a continuous tonic firing pattern, interrupted at the
frequency of CF input (1 Hz) by complex spikes and their short evoked
after pauses (i.e., the activity pattern of Figure 6) i.e., increased Ih
activity can block/mask Purkinje cell bistabilty. (C) With a raised Ih
conductance density blocking the bistable pattern, a compensatory raise
in the gsk model parameter (SK conductance density) can rescue and
reinstate the bistable pattern. In this panel, gsk is raised from
0.72–0.85 S/cm2 which is not quite enough and a mixed pattern of
continuous/bistable is expressed. (D) In this panel, gsk is raised higher
(0.88 S/cm2) and the bistable pattern is reinstated fully.

value blocking the bistable pattern, a compensatory raise in the
gsk model parameter (SK maximal conductance) can rescue and
reinstate the bistable pattern (Figures 7C,D).

So, in vitro, CF input can switch an intrinsically trimodal
Purkinje cell into two different, alternative activity patterns: [A]
toggled bistability, or [B] continuous tonic firing with punctu-
ations of complex spikes and after pauses (McKay et al., 2007).
In our model, which one is expressed can be set by the ratio of
somatic Ih activity to dendritic SK activity. Ih activity has been
shown to be regulated by serotonin in Purkinje cells and it may be
a molecular switch between these patterns (Williams et al., 2002).
In addition, SK has been shown to be under transmitter control in
many types of neurons (Nicoll, 1988). Interestingly, in vivo, elec-
trical stimulation of the Raphe complex releases serotonin and
induces long pauses in Purkinje cell output (Strahlendorf et al.,
1979; Weiss and Pellet, 1982), consistent with the ability for sero-
tonin to increase toggling behavior and affect locomotor activity
(Mendlin et al., 1996).

DISCUSSION
THE PURKINJE CELL MODEL RECONCILES IN VITRO AND IN VIVO
BEHAVIOR
The Purkinje cell’s trimodal firing pattern is observed in the
in vitro slice preparation when its synaptic inputs are compro-
mised (by the slicing plane or pharmacological block) (Womack
and Khodakhah, 2002, 2003, 2004; Womack et al., 2004; McKay
and Turner, 2005; McKay et al., 2007; Forrest et al., 2012). In our
modeling, we show a possible mechanistic relation between the
trimodal firing pattern and the CF toggled bimodal pattern. We
give an account of how, without synaptic input, Purkinje cells can
spontaneously fire in a trimodal pattern and how CF input, at a
physiological frequency, can switch them to a CF toggled bimodal
pattern. In this way we are reconciling how the trimodal pattern
might correspond to more physiological patterns of activity. This
is useful because a lot of research is, and has been, conducted
on the trimodal firing pattern (Womack and Khodakhah, 2002,
2003, 2004; Womack et al., 2004; McKay and Turner, 2005; McKay
et al., 2007; Forrest et al., 2012). This work can be served well
by showing how it relates to patterns that have been observed
in vivo. Whilst it is true that a trimodal-like oscillatory pattern
can emerge in vivo, this has only been reported when CF input is
silenced by a lesion of, or injection of lignocaine into, the inferior
olive (Cerminara and Rawson, 2004). So, the direct physiological
relevance of it is up for debate. However, its study can still add
insight so long as we understand how its activity relates to activity
patterns in the behaving animal.

THE PURKINJE CELL MODEL CAN PERFORM TOGGLE AND GAIN
COMPUTATIONS UPON ITS INPUTS
In the Purkinje cell model, toggle and gain computations hinge on
underlying Ca2+ dynamics. We hypothesize that this is the case
for real Purkinje neurons.

The model’s intracellular Ca2+ concentration—[Ca2+]i—
provides a short-term memory store. It records a history of firing
and inputs, to dictate how the model cell responds to future
inputs. For example, [Ca2+]i memorizes a CF input, which causes
the Purkinje cell model to then respond differently to a PF input
than it would otherwise (CF input increases the gain of the
response to PF input). This Ca2+ memory has a lifespan and
once it has expired the model cell responds by default. Unless
there is another CF input to renew and perpetuate the memory
setting.

So, we hypothesize that the membrane potential (V) is not
the Purkinje cell’s only coding variable. We hypothesize that
[Ca2+]i is a coding variable as well. These two interact, with the
Ca2+ memory being encoded and decoded by the membrane
potential. Encoding is by way of CF input causing membrane
depolarisation, which then opens voltage-gated Ca2+ channels
to raise [Ca2+]i. Decoding is by way of [Ca2+]i modulating the
membrane potential via Ca2+-activated K+ channels.

CF input, in interaction with the [Ca2+]i memory store, can
dictate the timing and duration of quiescent periods (toggling)
in the Purkinje cell model. This system might be modulated
in the physiological setting by signaling cascades, which have
been shown to regulate intracellular Ca2+ dynamics (Falcke and
Malchow, 2003).

Frontiers in Computational Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 86 | 15

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Forrest Purkinje neuron computation

NEURAL CODING
Spikes are frequently taken as the basic unit of neural coding.
However, silences in spiking may be just as meaningful for the
Purkinje cell as its firing output is inhibitory to the downstream
deep cerebellar nuclei (DCN). So a pause in its spiking would con-
vey disinhibition (Jaeger, 2007; Steuber et al., 2007). We speculate
that the timing and duration of quiescent periods might be salient
to how the Purkinje cell encodes information.

CF INPUT BLOCKS THE BURSTING MODE, BUT NOT THE QUIESCENT
MODE, OF THE TRIMODAL FIRING PATTERN
In vitro, a physiological frequency of CF input (∼1 Hz) switches
Purkinje cells out of the trimodal firing pattern and into a non-
bursting pattern of activity. On this basis it is probable that the
trimodal firing pattern is not applicable in vivo. However, in
these experiments, although CF input blocks the trimodal pat-
tern’s bursting mode, long (>>1 s) quiescent periods can still
be observed. We hypothesize that these are the enduring qui-
escent mode of the trimodal pattern, generated by electrogenic
Na+/K+ pumping. On this basis, we suggest that Na+/K+ pump
generated silences occur physiologically. Furthermore, we pro-
pose that the intracellular Na+ concentration ([Na+]i) acts as a
memory element in the Purkinje cell. It memorizes firing his-
tory and sets Na+/K+ pump activity to dictate the timing and
duration of quiescent periods. This action could be externally and
internally regulated: the Na+/K+ pump is a receptor for the endo-
ouabain signaling molecule (Xie and Cai, 2003) and Na+/K+
pump activity might be modulated by intracellular signaling cas-
cades (Therien and Blostein, 2000; Bagrov and Shapiro, 2008).
Relevantly, a mutation in the Na+/K+ pump causes rapid-onset
dystonia-parkinsonism (RDP), which has symptoms to indicate
that it is a pathology of cerebellar computation (Cannon, 2004;
de Carvalho et al., 2004). Indeed, there is a growing body of work
showing that Na+/K+ pumps might subserve information pro-
cessing roles in neurons (Arganda et al., 2007; Scuri et al., 2007;
Forrest, 2008; Forrest et al., 2009, 2012; Pulver and Griffith, 2010;
Zhang and Sillar, 2012). For cerebellar Purkinje cells, we speculate
that the Na+/K+ pump is not simply a homeostatic mechanism to
ionic gradients; we venture that it is a computational element. In
experimental support, an ouabain block of Na+/K+ pumps in the
cerebellum of a live mouse results in it displaying ataxia and dys-
tonic like postures (Calderon et al., 2011). If Na+/K+ pumps are
computational entities in the cerebellum, it will change present
estimates of the metabolic cost to neural information (where ionic
pumping is considered as purely cost) (Laughlin et al., 1998).

Alcohol consumption corrupts motor function and this is a
factor in a large number of accidental injuries and deaths every
year. Alcohol has been shown to modulate Na+/K+ pumping in
preparations from rodent brains (Foley and Rhoads, 1994; Ledig
et al., 1985; Syapin et al., 1985). It would be interesting to inves-
tigate if alcohol inhibits Na+/K+ pumping in cerebellar Purkinje
neurons, and whether this is a factor in the motor dysfunction
concordant with inebriation.

ION TO NETWORK COMPUTATION
We propose that the cerebellar Purkinje cell has two memory
stores in parallel: [Ca2+]i and [Na+]i. They both can regulate the

timing and duration of quiescent periods, via different mecha-
nisms, and we speculate that these silences have a function. These
two memory stores may cross-talk through the action of the
Na+/Ca2+ exchanger. Looking at the frequency of CF prompted
silences, via Ca2+ computation, and the lesser frequency (but
longer length) of Na+/K+ conferred silences, via Na+ computa-
tion, we could propose that these two systems are specialized for,
and operating on, different time scales.

Our view is that these slow processes (on the scale of seconds
and minutes) are relevant and computationally advantageous
because, by conferring an access to longer time scales, they permit
storage and short-term processing of sensory information in the
cerebellar cortex. To elaborate, they permit different dynamical
states to be sustained in the cerebellar cortex for extended peri-
ods. Each of these states is associated with a specific configuration
of up and down states in different Purkinje cells. These network
states could store information and perform computations. So,
these network computations sit upon the proposed intracellular
ion computations (Na+, Ca2+) that dictate the activity state of
individual Purkinje neurons.

PURKINJE CELL INPUTS CONVERGE UPON THE DEEP CEREBELLAR
NUCLEI (DCN)
Purkinje cells provide inhibitory input to the Deep Cerebellar
Nuclei (DCN). Long quiescent periods may be important in cere-
bellar functioning because numerous Purkinje neurons converge
upon—and inhibit—a single DCN neuron (∼40:1). If all these
Purkinje neurons are continually, simultaneously active then it
might be that the DCN neuron is unable to fire in any meaningful
way.

With a proportion of the Purkinje cells quiescent, only a
fraction of the population is active and relevant. The members
making up this relevant sub-set can be switched and changed in
a controlled fashion, which can be utilized as a computational
feature.

CONFUSION IN THE LITERATURE
The ability to detect Purkinje cell toggling, by CF input, has been
examined in vivo with anesthetized and awake animals. Toggling
is observable in anesthetized animals (Loewenstein et al., 2005;
Schonewille et al., 2006; Kitamura and Hausser, 2011). But some
have concluded that this toggling is an experimental artifact,
produced by the use of anesthetic, and that toggling cannot be
observed in awake animals (Schonewille et al., 2006). However,
the validity of this latter study has been challenged (Loewenstein
et al., 2006) and Purkinje cell toggling has since been reported in
awake cats (Yartsev et al., 2009). For a review of this issue refer
to Engbers et al. (2013). In our interpretation of the contempo-
rary literature, we think that Purkinje cell toggling is likely to be a
physiological phenomenon.

AN ALTERNATIVE MODEL OF PURKINJE CELL TOGGLING
Fernandez et al. have published a 5 equation model of Purkinje
cell toggling by CF input (Fernandez et al., 2007). This model is
heavily reduced as compared to the model of this study. It only
has four voltage-gated conductances, with a limited parameterisa-
tion to experimental data, and no synapses, pumps or exchangers.
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It cannot fire in the trimodal pattern with its repeating motif of
tonic, burst and quiescent phases. Indeed, it can only fire upon
an external input and does not capture the spontaneous foun-
dation to Purkinje cell electrical activity. It does not include the
resurgent Na+ current, which may be an important factor in the
down to up transition (Fernandez et al., 2007). Their model’s up
to down transition is dependent upon a slow K+ current in the
dendrite, which Fernandez et al. suggest could arise from an inter-
action between internal Ca2+ and Ca2+-activated K+ channels.
Our model represents this latter possibility much more explicitly.
Both models have an Ih current that acts against the observation
of bistability. This in contrast to the model of Loewenstein et al.
(2005), where Ih is the critical conductance to Purkinje cell bista-
bility. However, as discussed in our Results, this model cannot
reconcile with experiments where Ih block actually increases the
observation of bistability. Our model and that of Fernandez et al.
complement one another. We capture more of the physiology. But
their model, being simpler and less computationally intensive, is
much more tractable to analysis. In fact, in their paper, they go
on to report a 2 equation model of the Purkinje cell which is even
more tractable. But this, of course, is at a further cost to biological
fidelity.

THE FUTURE
The model should be modified to capture a wider range of
Purkinje cell activity, whilst ensuring that it retains the behaviors
detailed here. For example, our model can fire Ca2+ spikes in the
dendrites, which travel to the soma and drive a somatic bursting
pattern. Experimental (Swensen and Bean, 2003) and modeling
(Forrest, 2013) research suggests that, in addition to this den-
dritic mechanism to somatic bursting, the soma can intrinsically
burst of its own accord. At present our model cannot capture this
behavior. If it can be modified to do so, without any loss of present
functionality, this will be an improved model version. In this way,
we hope that the model will proceed through a series of iterations
each better than the last.

SUMMARY
In our model, we have identified different classes of Purkinje cell
quiescence. Firstly, short pauses after complex spikes (∼20 ms
long) and, secondly, CF toggled quiescent periods (∼1 s long);
both a function of intracellular Ca2+ dynamics. Ih activity (shown
to be regulated by serotonin; Williams et al., 2002) can dic-
tate which of these is expressed. In addition, there are more
infrequent, longer quiescent periods (>>1 s) produced by the
electrogenic action of the Na+/K+ pump, as a function of of intra-
cellular Na+ dynamics. We hypothesize that these quiescent forms
correspond to behavior in real Purkinje cells, and that they have
a coding role in the Purkinje cell relay to the DCN. We suggest
that the Na+/K+ pump is directly involved in the information
processing performed by the cerebellar Purkinje cell.
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