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Visual structures in the environment are segmented into image regions and those
combined to a representation of surfaces and prototypical objects. Such a perceptual
organization is performed by complex neural mechanisms in the visual cortex of primates.
Multiple mutually connected areas in the ventral cortical pathway receive visual input and
extract local form features that are subsequently grouped into increasingly complex, more
meaningful image elements. Such a distributed network of processing must be capable
to make accessible highly articulated changes in shape boundary as well as very subtle
curvature changes that contribute to the perception of an object. We propose a recurrent
computational network architecture that utilizes hierarchical distributed representations of
shape features to encode surface and object boundary over different scales of resolution.
Our model makes use of neural mechanisms that model the processing capabilities of
early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest
that multiple specialized component representations interact by feedforward hierarchical
processing that is combined with feedback signals driven by representations generated
at higher stages. Based on this, global configurational as well as local information is
made available to distinguish changes in the object’s contour. Once the outline of a
shape has been established, contextual contour configurations are used to assign border
ownership directions and thus achieve segregation of figure and ground. The model, thus,
proposes how separate mechanisms contribute to distributed hierarchical cortical shape
representation and combine with processes of figure-ground segregation. Our model is
probed with a selection of stimuli to illustrate processing results at different processing
stages. We especially highlight how modulatory feedback connections contribute to the
processing of visual input at various stages in the processing hierarchy.

Keywords: ventral pathway, distributed representation, figure-ground segregation, modulatory feedback,

computational model

1. INTRODUCTION
We visually perceive our environment as a stable and compre-
hensive combination of objects, where we can easily identify
objects and persons and we efficently analyse geometrical cues
that allow a precise navigation and interaction. This happens so
effortlessy and accurately that it is absolutely counterintuitive that
this is an extraordinary achievement of our brain. The visual
system of mammals achieves this result from input that is cap-
tured at the retinal level after light has been projected through
the eye and hits light-sensitive neurons. The perception of our
environment starts at this local level where our position, the
direction of our gaze, the current illumination, an object’s sur-
face properties and its location relative to others causes a set
of neurons in the retina to respond with increased activation
that is a function of received light intensity. How the visual sys-
tem transforms this concert of local visual inputs into a stable
and informative perception of surfaces and objects is subject to
intense research. Since the pioneering works on neural principles
by Hubel and Wiesel (1959) many insights into cortical process-
ing of visual input has been discovered. Neurophysiologists agree

that the processing in the mammalian brain is performed in a
hierarchical way and processing is organized into various spe-
cialized brain areas (Felleman and Van Essen, 1991). Those brain
areas receive connections from preceding processing stages, but
also from regions later in the processing stream (Markov et al.,
2013). Early areas in visual cortex are retinotopically arranged
(Hubel and Wiesel, 1962), which means that juxtaposed retinal
locations are mapped to juxtaposed locations in visual cortex,
with foveal positions being represented at a higher resolution.
Individual assemblies of neurons become activated when their
preferred stimulus is presented in their receptive field (Hubel
and Wiesel, 1962). With progression in the visual pathway, the
size of those RFs increase from sizes smaller than one degree
of visual angle to sizes covering a good part of the visual field.
In parallel, the tuning toward the preferred stimulus changes
from simple features like oriented contrasts (Hubel and Wiesel,
1962) to complex ones like image features, figure-ground-related
cues, object categories or faces. Processing along the visual path-
way is organized into two streams (Ungerleider and Haxby,
1994), the ventral stream that exhibits a tuning toward movement
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and position, whereas the dorsal stream processes shapes and
objects.

However, most of the achievements that the visual system
exhibits, like the abilities to generalize and its robustness and
adaptability, most probably stem from connections that con-
nect higher cortical areas with lower ones (Hupé et al., 1998;
Markov et al., 2013). Those feedback connections are believed
to play an important role in visual processing, as they enrich
local activations with contextual information that is represented
at higher visual areas. We propose that on the way from generaliz-
ing early local features to higher meaningful representations, the
role of object boundaries plays an essential part. Contrasts indi-
cate spatial changes in local illumination which might coincide
with object boundaries that allow segregation from background.
However, contrasts indicating a real transition from one object
to another or from the object to the background must be sep-
arated from those indicating an illumination change and those
caused by textured regions. This must be accomplished using con-
textual information. The region delimited by such a boundary is
a surface with locally constant parameters, and a set of surfaces
forms objects, scenes and eventually our complete visual envi-
ronment. We believe that the processing capabilities of early and
intermediate stages of visual cortex are used to transform local
representation into an intermediate, more meaningful represen-
tation of contours, shapes and surfaces. Following those ideas,
we propose that a stable representation of shape may be estab-
lished by interacting assemblies that are each devoted to specific
features properties. We thus propose a hierarchical model of 2-
dimensional shape representation that incorporates processing
at low and intermediate areas of visual cortex. Each model area
consists of a three-stage processing cascade of initial filtering,
application of modulatory feedback effects and center-surround
interactions leading to an activity normalization (Carandini and
Heeger, 1994; Carandini et al., 1999; Kouh and Poggio, 2008;
Carandini and Heeger, 2012). The functional effects of this
columnar cascade can roughly be mapped onto compartments of
cortical area subdivisions [as suggested in (Self et al., 2012)].

Our model combines the representation of visual shapes with
mechanisms for figure-ground segregation on the basis of assign-
ing border ownership and incorporates a distributed represen-
tation of local contour curvature over different cortical areas.
In our model we emphasize the computational role of feed-
forward and feedback mechanisms (Grossberg, 1980; Edelman,
1993) to generate a hierarchical distributed representation of
shape information. The feedback amplifies the sensory signal
such that the subsequent competition between neurons builds a
competitive advantage (Tsotsos, 1988; Girard and Bullier, 1989;
Desimone, 1998; Roelfsema et al., 2002; Reynolds and Heeger,
2009). Boundaries and their orientation are represented after
intial processing in model area V1 and a grouping stage in model
area V2. Contextual boundary configurations are also represented
at a coarser spatial level at model V2 and V4 to achieve selectivities
toward contour curvature. With the influence of feedback, those
cells are enhanced at lower stages that contribute to a matching
bottom-up signal.

The output of our model is a representation of shapes
and shape segments where contextually compatible boundary

information benefits from recurrent feedback connections. Such
a representation could provide input to subsequent processing
stages for e.g., object classification tasks, which would clearly
benefit from the enhanced representation.

This model extends previous own works (Neumann and
Mingolla, 2001; Hansen and Neumann, 2004; Weidenbacher and
Neumann, 2009) but introduces functional properties that have
been inspired by the works of other groups. A model of curva-
ture representation can also be found in Cadieu et al. (2007).
The authors modeled physiological findings of the same group
(Pasupathy and Connor, 1999; Connor et al., 2007) that has
focussed on the dynamics of contour processing (Yau et al., 2013).
Cell representations from early visual areas are combined to
intermediate-level shape descriptors are used in a computational
model by Rodríguez-Sánchez and Tsotsos (2012). Riesenhuber
and Poggio (1999, 2000); Mutch and Lowe (2008) released very
powerful models of object and object class categorization in a
hierarchical modeling approach. The physiological (Zhou et al.,
2000; O’Herron and von der Heydt, 2011) as well as the com-
putational (Layton et al., 2012) aspects of border ownership are
subject to intense research. Models of contour integration and
perceptual grouping also exist from Zhaoping (1998) and Jehee
et al. (2006); Roelfsema (2006). The role of feedback and physio-
logical investigations are elaborated in Hupé et al. (1998); Markov
et al. (2013) and very recently (De Pasquale and Murray Sherman,
2013) found evidence for the modulatory properties of feedback
in the visual cortices of mice.

2. MODEL DEFINITION
We propose a biologically inspired model of two-dimensional
shape representation that consists of a hierarchical structure of
interconnected model areas (see Figure 1). These model areas
resemble the mechanisms of early and intermediate stages of
visual processing in the ventral pathway of visual cortex. Each
of the model areas is represented by a staged columnar cas-
caded model (see Figure 1). This cascade consists of (i) ini-
tial filtering, (ii) activity modulation, and (iii) center-surround
interaction.

2.1. NOMENCLATURE
The following list familiarizes the reader with the nomenclature
that is used in our manuscript:

• Names of model areas are written in superscripts to indicate
the affiliation to parameters or responses. A response for cells
in area V1 thus would read RV1.

• Greek symbols (like α, β, σ )are used for parameters of
dynamic functions or shapes of receptive fields.

• N and M are constants indicated the number of orientations
and directions used in our model.

• An instance of an orientation is indicated using the step width θ̂

between discretely sampled orientations. The variable i is used
as index. A specific orientation in a population is indicatd with
iθ̂ with i ∈ 0..N − 1.

• N stands for a normal (Gaussian) distribution that can
be isotropic or anisotropic, rotated and spatially shifted, as
defined by subscripted parameters.
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FIGURE 1 | Overall model architecture. Visual input enters the model at the
bottom and is subsequently processed by interconnected functional areas with
increasingly large receptive field sizes. Solid arrows indicate feedforward,
dashed arrows indicate feedback, or modulatory, connections. Each area
implements a generic architecture of building blocks that consists of (i) filtering
(∗) of the input, (ii) modulation by feedback, and (iii) response normalization.
Model V1 consists of image filters that resemble properties of early processing
in LGN and V1, namely simple and complex cells that are tuned to circular or
elongated image contrasts. Model V2 integrates responses of model V1 with
long-range integration cells. A multiplicative combination of subcells responds
best to elongated contrasts of one dominant orientation. Also at V2, a population

of cells represents border ownership directions. At population of long-range
curved integration cells help represent different boundary curvatures. The
Models V2, V3 complex hosts representations of corners by integrating V1
responses from orthogonal configurations over a small spatial surround. Model
V4 consists of cells that asymmetrically integrate responses from V1 and V2 to
become curvature selective at an increased spatial scale. In Model IT, cells with
large receptive fields integrate responses from V1, V2 and V4 at local figure
convexities to achieve a contextual segregation into figure and ground. Area V4
allows a description of a shape by means of cues that are represented on
distributed areas in the model. Those cues exist at different spatial scales and
their mutual interaction generates dynamic processes in the model.

• Spatial positions are denoted in bold latin letters like x or p.
• To indicate an angle between two vectors we use �(v1, v2).
• The convolution operation is abbreviated using the asterix (∗).
• A rectification operation is indicated by �...�+.

2.2. PROCESSING CASCADE
In our model, neural activations or response levels are modeled
using a scalar representation of the neural firing rate. For ease of

writing, we will in the following refer to the response of a cell,
keeping in mind that this represents the activation level of a large
number of real cells. The first model stage of the cascade is the
initial filtering of available input I. To model the response for the
preferred stimulus in the visual field, we employ a 2-dimensional
convolution operation with the preferred stimulus as the convo-
lution kernel Kpref . The response of model cells R = I ∗ Kpref is
defined as

Frontiers in Computational Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 93 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Tschechne and Neumann From localized features to figural shape segregation

R(x, y) =
∞∑

u =−∞

∞∑
v =−∞

Kpref (u, v)I(x − u, y − v) ∀x, y ∈ DI (1)

A frequently used kernel in our model serves as elementary building
block and is a 2-dimensional Gaussian distribution that is elon-
gated along one axis and rotated around its center. We refer to this
distribution by N with parameters for orientation θ , deviation
along the axes σ1, σ2 and the center of the distribution μ.

Nθ,σ1,σ−2,μ(x, y) = 1

2πσ1σ2
exp

(
−
(

(x̂ − μx)2

2σ 2
1

+ (ŷ − μy)2

2σ 2
2

))

with (2)(
x̂

ŷ

)
=
(

x

y

)(
cos θ −sin θ

sin θ cos θ

)
(3)

If parameters are not specified they are considered having the
following default values: θ = 0, μ = (0, 0)T, σ1 = 1, σ2 = σ1. In
the following, functional filter kernels will often be designed as a
combination of multiple such elementary components.

The coefficients of the kernel that models the preferred stim-
ulus might incorporate negative weights to account for the
inhibitory connections a cell may receive. This could lead to
overall responses that are numerically negative. We thus use a rec-
tification operator after convolution and feedback stages to ensure
that numerically the response rate of a population is not negative:

�R�+ = max(0, R). (4)

At the second stage of the cascade, response levels are modu-
lated by recurring input from higher visual areas. We propose
a feedback mechanism that excerpts a purely modulatory gain
control on the input. That means that feedback alone cannot gen-
erate activities without activation by the initial filtering step (see
Figure 2). With R being the unmodulated driving signal and netFB

being the strength of the feedback, the modulated response is

RFB ∝ R · (1 + netFB). (5)

Using this approach, given R = 0 no signal is generated as output
irresponsible of the strength of the feedback netFB. On the other
hand, if no feedback signal is available, the right part of the equa-
tion leaves the input signal R unchanged (Salin and Bullier, 1995;
Hupé et al., 1998; Eckhorn, 1999; Gilbert and Li, 2013).

Before normalization at the final stage of the cascade, we apply
a non-linear transfer function to map the computed responses to
a cell activation level. In our model, we use a function of type

f (R) = Rk (6)

with k the non-linearity parameter. At the final stage, we incorpo-
rate a mechanism that keeps the response level limited by using a
shunting inhibition that leads to a non-linear compression of high
amplitude activities resembling the Weber-Fechner-Law of percep-
tual thresholds. In its dynamic formulation, the rate of change of

FIGURE 2 | Effects of feedback on the signal flow. The four table cells
illustrate the effects when a feedback signal and/or an input signal is
available. Please note that a feedback signal alone cannot elicit any cell
response in the modeled area. It only enhances the response level when
the filtering of the input signal generates some output.

the signal ∂tRnorm
θ depends on the current activation level as well

as the amount of input Inet :

∂tR
norm
iθ̂

= −αRnorm
iθ̂

+ βRiθ̂ − Rnorm
iθ̂

· Inet (7)

Inet = 1

N

N − 1∑
i = 0

Riθ̂ . (8)

With N the size of the used population, respective orientations.
When this equation is solved at equilibrium, i.e., when ∂tRiθ̂ = 0,
the activation becomes

Rnorm
iθ̂

= β
Riθ̂

α + Inet
(9)

The constants influence the steepness of the non-linearity (α)
and the scale of the normalized signal (β). This model archi-
tecture has previously been used in various approaches touching
different domains, such as the disambiguation of local motion
(Bayerl and Neumann, 2004; Beck and Neumann, 2011), the pro-
cessing of transparent motion (Raudies and Neumann, 2010)
the detection of texture boundaries (Thielscher and Neumann,
2003), the extraction of object boundaries using texture com-
pression (Weidenbacher and Neumann, 2009), and the analysis
and representation of biological motion sequences (Layher et al.,
2014).

In the following, we describe the forward sweep of our model,
from early toward intermediate processing stages. After all areas
have been described in detail, we will elaborate on the feedback
connections that build the recurrent model structure.

2.3. MODEL AREA V1
The processing starts at early stages of visual cortex where
we model the functionality of LGN and V1 cells where LGN
cell responses provide feedforward input to V1 cells. Here, the
visual input is intially processed to generate a representation of
local image contrasts and local contrast orientations (Hubel and
Wiesel, 1962).
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In general, model cell responses follow first-order dynamics
and represent the changes of membrane potentials. Such dynam-
ics are influenced by excitatory and inhibitory inputs and a passive
decay of activity. In order to simplify the computations in our
large-scale simulations we use steady-state equations in calcu-
lations of feedforward filtering stages. Others are numerically
integrated using a Euler one-step scheme. The response of LGN
cells is calculated using the following linear equation,

∂tR
LGN = −RLGN + (I ∗ Nσ ) − (I ∗ Nk) (10)

As pointed above, we assume that such linear feedforward filter-
ing operations quickly relax at their equilibrium state. Therefore,
we utilize the steady-state equation

RLGN = �I ∗ (Nσ − Nκ )�+ , (11)

with σ and κ denoting the width of center and surround kernel,
respectively. To model cells that are tuned to oriented contrasts,
we use elongated gaussian kernels that are combined into odd-
symmetric simple cell profiles using anisotropic σ1 and σ2 and
a radius ω1 for the spatial shift of the integration kernels. The
responses of such cells are denoted by the steady-state equation

RV1
iθ =

⌈
RLGN ∗ (Niθ̂ ,σ1,σ2,x+p − Nθ,σ1,σ2,x−p)

⌉+
(12)

with

p = ω1(cos(θ + π), sin(θ + π))T (13)

The filter kernel that is defined that way yields high response acti-
vations at positions with local luminance contrasts that match the
layout of the filter kernel. To achieve insensitivity against the sign
of contrast, pairs of equally oriented filters with opposite sen-
sitivity to contrast polarity are used. Such filters populate a set
with evenly distributed orientation tunings that represent possi-
ble contrast orientations. The locally dominant orientation can
be derived by selecting the orientation channel with maximum
response, imax = argmaxiR

V1
iθ̂

.

2.4. MODEL AREA V2/V3 COMPLEX
At the stage of V2 we model cells sensitive to contextual influences
of contour segments that are arranged in larger spatial extent
compared to V1 receptive fields. The integration of elongated
contours in V2 makes use of a mechanism that links cells of like
orientations over larger spatial distances. The filters are modeled
using elongated Gaussian kernels positioned at p with offset ωV2

ex
to the center of the cell. The parameters of the elongated Gaussian
kernels are set to build a combined kernel of an elongated inte-
gration field, which reflects the highly significant anisotropies of
long-range connections in visual cortex (Bosking et al., 1997).
The subfields sample the activations generated by V1 complex
cells (Grossberg and Mingolla, 1985; Neumann and Sepp, 1999).

The subfields are combined in a multiplicatively. This
resembles a logical and-operation for the individual subfield acti-
vations. Modeled V2 cells only become activated when both
subfields receive sufficient input. The response is thus able to
bridge local gaps in contours. This is in line with physiological

findings, as V2 neurons respond to elongated luminance contrasts
as well as to illusory contours (von der Heydt et al., 1984; Heitger
et al., 1998) like in the Kanisza square.

This integration mechanism is enhanced by local inhibitory
effects. Smaller and isotropic integration fields are positioned
along an orthogonal axis from the cell’s center with distance ωV2

inh,
building a cross-like zone of excitatory and inhibitory integra-
tion, compare (Piëch et al., 2013). At those positions p⊥, activity
from all orientations is integrated and has an inhibitory effect on
the total response. This has a strong suppressive effect on con-
tour fragments that are positioned within a cluttered surround,
while isolated boundary segments are not affected. The complete
response for an elongated V2 cell is calculated by the steady state
equation:

RV2
iθ̂

=
⌈

RV1 ∗ Niθ̂ ,σ1,σ2,x + p · RV1

∗ Niθ̂ ,σ1,σ2,x − p − γ · RV1

∗ Nσ3,x + p⊥ − γ · RV1 ∗ Nσ3,x − p⊥
⌉+

iθ̂ (14)

with

p = ωV2
ex (cos(iθ̂), sin(iθ̂))T (15)

p⊥ = ωV2
inh(cos(iθ̂ + π), sin(iθ̂ + π))T (16)

We also model V2 neurons that respond to more complex stimuli
like in curved or angular shape outlines. We propose a popu-
lation of V2 cells tuned to curved contour outlines that allows
integration of smooth and even fragmented boundary configu-
rations (Field et al., 1993). We propose a population of V2 cells
tuned to a curved contour outline, see Figure 4. They resemble
the functionality of elongated V2 cells but their integration fields
are designed such that they are curved. A curvature direction is
defined either to the left or the right of the tangent orientation
at the target location. the center of curvature defines an oscu-
lating circle with given curvature-radius. The integration weight
is modeled by a function wdist that decreases with distance from
the cell’s center. A second tuning function wori in the orientation
domain specifies the weights for the orientation population. Here,
the weight decreases with distance to the main tuning direction
which is perpendicular to the dominant orientation. Basically,
only those orientations are integrated with maximum that are
tangential to the curvature trace at their relative positions. This
yields a sharp tuning of the cell for a certain curvature level. The
complete response for an curved V2 cell is calculated by the steady
state equation:

RV2Curv
iθ̂

=
∑

x

w(ωC, x) · RV1
x,iθ̂

with (17)

w = wdist · wori (18)

wdist = exp( − (x − x0)2

σ 2
1

) (19)

wori = sin(�(−→x0x,
−→xc)) · exp

(
− (‖−→xc‖ − ωc)2

σ 2
2

)
(20)
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c = x0 + ωc
(

cos(iθ̂), sin(iθ̂)
)T

(21)

In this equation w denotes a weighting function for responses in
the currently integrated position x. The reference point of the
integrating cell is x0. The weighting functions depends of the
curvature radius being integrated wc. wdist produces a weight
depending on the distance from the curvature cell’s center x0.
wori returns a weight given the current angle between integrating
position and center of curvature xc, depending on the reference
position x0. In simple words, orientations orthogonal to the imag-
inary line between integration position and imaginary curvature
center c receive highest weight. wori is extended with a func-
tion that drops with increased distance of integrating position to
imaginary center of curvature.

Cells in visual cortex V2 also show selectivity to the figure-
ground arrangement of the scene in the visual field (Williford and
von der Heydt, 2013). So-called border ownership cell responses
are elicited when figure of arbitrary shape is presented on their
preferred side with respect to the center of their receptive field.
From the same group, O’Herron and von der Heydt (2013) have
also shown that during visual motion caused by eye motion or
object motion, these border ownership signals are remapped to
different neurons. The visual system uses this information to
resolve depth arrangements in the stimulus (Qiu and von der
Heydt, 2005). The pointing of border ownership cells indicates
the direction of the frontal surface at every image location. This
reflects to commonly known Gestalt rule that a boundary is
owned by the frontal figure.

We model border ownership cells by a retinotopically arranged
population representing four potential directions where the figure
can be positioned relative to the cell’s center. Border ownership
responses are initially isotropic and only occur together with local
contrast activations. Cells indicating opponent border owner-
ship direction are mutually rivaling in our model. The complete
response for an border ownership V2 cell is calculated by the
steady state equation:

RV2Bown
λ =

{
f (RV2

iθ̂
) when λ ⊥ iθ̂

0 when λ ‖ iθ̂
(22)

The mutual competition between activations indicating opposing
border ownership directions RBown

a and RBown
b is calculated by

∂tRBown
a = −α · RBown

a + A(1 − RBown
a ) − β · RBown

b (23)

∂tRBown
b = −α · RBown

b + A(1 − RBown
b ) − β · RBown

a (24)

Based on empirical evidence of neural representations gener-
ated by cells selective to multiple orientations (Felleman and
Van Essen, 1987; Ito and Komatsu, 2004; Anzai et al., 2007)
we incorporate model representations of corners in a dedicated
model area V2/V3 complex. We build upon the proposal devel-
oped in Weidenbacher and Neumann (2009) that corner and
junction configurations can be made explicit by specific read-
out mechanisms. Here, we employ a simplified version as of
Hansen and Neumann (2004) to generate corner representations

by grouping V1 responses of orthogonal orientation fields. In a
steady-state formalism the response reads

RV2/V3

iθ̂
=
⌈

RV1
iθ̂

· RV1
iθ̂+π

⌉+
(25)

2.5. MODEL AREA V4
Inspired by experimental evidence cells in model V4 integrate
responses of V1,V2, and V2/V3 to achieve a selectivity that con-
siders large-scale boundary fragments as well as local variations
in curvature and a selectivity for corners (Pasupathy and Connor,
1999; Yau et al., 2013). Curvature selective cells are modeled in
a two-stage cascade of mechanisms. The first level integrates V2
contour responses and is selective to curvature directions, left or
right (relative to the cell’s orientation preference). The second
level combines opposite curvature directions into one response,
like in V1 complex cells. This model mechanism differs from the
one proposed by Rodríguez-Sánchez and Tsotsos (2012). which
utilizes single stage filter computations. In this approach specific
subfield mechanisms sensitive to orientation, tangential contour
outline and scale are combined in a non-linear fashion to selec-
tively respond to contour fragments of different curvatures. We
develop a mechanism that is distributed over different stages to
first group responses to extended contour outlines in V1 and V2
suppressing non-contour clutter. In the case of sharply localized
corners and junctions the dedicated representations of localized
multi-orientation responses will be activated. Those responses of
grouping cells (or the junction representations) are integrated at
the subsequent stage. Here, curvature selectivity is made explicit
that distinguishes left and right curvatures. Different integration
scales generate selectivity to curvature. This distribution allows
to associate regions of high contour curvature at an intermedi-
ate scale with localized outline details at the finer scale which
enhances the selectivity of the model developed by Rodríguez-
Sánchez and Tsotsos (2012).

The model cell responses in our model are described by the
following equations:

∂tR
V4,left

iθ̂
= −α4R

V4,left

iθ̂
+
(

1 − R
V4,left

iθ̂

)
· Aiθ̂

−
(

1 + R
V4,left

iθ̂

)
· Biθ̂ (26)

∂tR
V4,right

iθ̂
= −α4R

V4,right

iθ̂
+
(

1 − R
V4,right

iθ̂

)
· Aiθ̂

−
(

1 + R
V4,right

iθ̂

)
· Biθ̂ (27)

with

Aiθ̂ = {
RV2 ∗ Nσ4,σ4b,x+p

}
iθ̂ (28)

Biθ̂ = {
RV2 ∗ Nσ4,σ4b,x−p

}
iθ̂ (29)

p = ωV4(cos(iθ̂), sin(iθ̂))T (30)

These responses are calculated at equilibrium and averaged
subsequently, leading to the model V4 filter response
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RV4
iθ̂

= 1

2

⌈
(Aiθ̂ − Biθ̂ )

⌉+ + ⌈
Biθ̂ − Aiθ̂

⌉+

α4 + Aiθ̂ + Biθ̂

(31)

This integration mechanism yields a response for locally curved
boundary segments at a larger spatial scale. For elongated contour
segments that show no curvature, the response of individual cells
will be equal and the combined response very low.

2.6. MODEL AREA IT
So far, we have described how our model integrated local features
from model V1 into elongated, potentially curved boundaries
at model V2–V4. Model area IT performs contextual integra-
tion that allows a segregation into figure and ground and a
representation of prototypical objects at a large spatial scale. As
discussed above, a population of V2 cells responds selectively to
the direction of figure-ground direction. The local representation
of border ownership at model V2 represents a set of available local
hypotheses that cannot locally be resolved, as this step requires
contextual influence from a larger spatial surround. Cells in IT
cortex have been shown to be shape selective with properties gen-
eralizing over contrast polarity and mirror reversal (Baylis and
Driver, 2001). The authors demonstrate that such cells do not,
however, generalize over the assignments of figure-ground direc-
tion. The investigation supports the view that the population of
probed IT cells is mainly driven by the sidedness of contours
and less so by the contour itself. Given the rapidness of own-
ership selectivity observed in V2, we propose that ownership
computation relies on a network of V2–V4–IT cell interaction.
Our model uses local shape configuration in the outline of an
object to collect confidence about the direction of figure and
ground. We adopt an approach of Zhou et al. (2000) and model
an integration cell at model IT that integrates border-ownership
hypotheses from a larger spatial extent from model V2 input.
For each location in the image, border ownership activations in
a local neighborhood that point toward the inside of the respec-
tive receptive field contribute to the activation of an IT cell.
This results in strong responses in model IT where local image
regions are surrounded by contour convexities. Local activities
of border ownership cells in model V2 then receive a positive
enhancement if they contributed to such an integration pro-
cess. This recurrent architecture resolves the initially ambiguous
assignment of border ownership. Taken together, this makes the
model belong to the class of feedback architectures according to
the categorization in Williford and von der Heydt (2013). The
response of cells and their interaction is denoted by the following
equations:

RIT
x0

=
N−1∑

i

∑
p

f (x0, p, iθ̂) · RV2
iθ̂ ,x0 + p

·exp

(
− (ωIT − ‖−−−−−−→

xo; x0 + p‖)2

σ 2
IT

)
(32)

with

f = cos
(
�
(−−−−−−→

x0; x0 + p, iθ̂
))

(33)

Such an IT cell at position x0 integrates responses of V2 cells in
its proximity p. The integration weight f depends on the angle
between x0 and x0 + p and the currently integrated orientation
iθ̂ . This grants orientations parallel to an imaginary line toward x0

high weights, while orthogonal orientations receive low weights.
This model area receives connections from the early as well as

from the intermediate functional stages V1 and V2 where cur-
vature is represented. This means that high-resolution local cues
as well as contextual cues like corners from a larger region are
available. A shape can thus be described as a set of contributing
prototypical elements that contribute to the local configuration
at every image location. Those elements are not solely generated
through integration of lower areas, but exist as a distributed repre-
sentation in all modeled areas and profit from mutual interaction
through feedback and exhibit dynamic processes when a stimulus
is presented.

2.7. FEEDBACK FOR CONTOUR ENHANCEMENT
The mechanisms so far presented contributed to the feedforward
sweep of the model. We stated earlier that in visual cortex (and in
neural processing in general), the input of cortical areas of higher
stages highly contribute to the performance of individual earlier
areas. By such recurring connections, contextual information is
introduced in lower regions. We are thus now going to focus on
the recurrent connections that are incorporated in our model.

Let’s briefly recall that we model feedback connections that
have a modulatory effect (Girard and Bullier, 1989) as outlined in
Section 2, Equation 5. In Figure 2 we illustrate how a feedback sig-
nal alone cannot elicit responses as long as no input activation is
present. On the other hand, feedback that matches input configu-
rations will increase those activations. We stick to this convention
throughout our following elaborations.

V2 long-range and curved cells represent continuous straight
or curved contours. Their multiplicative combination of receptive
field subcomponents caused the cells to elicit responses whenever
a contour of matching orientation was presented in their receptive
fields. Now, those cells in V1 that contributed to the integration
process will receive feedback and be thus increased in activity. The
following non-linear transformation stage increases the difference
in response strength with respect to other oriented contour cells
that did not receive feedback. At the subsequent normalization
stage, local response levels are now slightly increased by the recur-
rent input. Now, surrounding activations without feedback have
a competitive disadvantage and receive a higher divisive normal-
ization relative to their activation due to the increase response in
their neighborhood that contributed to the sum. The dynamics
of these interactions are denoted in formal terms. The enhance-
ment of filter responses (Equation 12) via modulating feedback is
defined by

∂tP
V1
iθ̂

= −α1PV1
iθ̂

+ β1RV1
iθ̂

· (1 + λ1 · {RV2 ∗ N FB
σ

}
iθ̂

)
− PV1

iθ̂
· QV1

iθ̂
(34)

The subsequent competition to accomplish activity
normalization is defined as

∂tQ
V1
iθ̂

= −QV1
iθ̂

+
{

PV1 ∗ N pool
σ

}
iθ̂

(35)
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with TODO parameters. Figure 3 shows an illustrated version of
the mechanism with a small numerical model.

2.8. FEEDBACK FOR CURVATURE REPRESENTATION
As stated earlier, the modeled V4 cell do not at all or only
marginally respond to straight elongated contours. Responses of
V2 cells to curved boundaries are integrated in model V4, where
integration cells sensitive to opposite sign of curvature mutually
compete for equal orientations. These cells respond at positions
with a local curved contour configuration, but are silent at elon-
gated straight contours. Feedback is generated for those V2 cells
that contribute to those curved boundary segments the corre-
sponding model V4 cells respond to maximally. Regions with
curved boundary segments thus elicit a strong response of V4
cells while regions with mostly straight contours do not elicit
such a strong response. This signal can thus be used to differenti-
ate regions of many straight contour segments from regions with
many curved contours.

In formal terms, the V2–V4 cell interactions are defined by

RV2curv = −αRV2curv
iθ̂

+ (1 − RV2curv
iθ̂

) · A(1 + Riθ̂ ) (36)

A = {RV2curv ∗ Nσ } (37)

2.9. FEEDBACK FOR FIGURE-GROUND SEGREGATION
The contribution of feedback to figure-ground segregation is
twofold in our model. First, local hypotheses of border ownership

are generated by intra-area recurrent connections from long-
range grouping cells. Contextual feedback from model IT resolves
the remaining ambiguities. Initially, all directions of border own-
ership are equally likely at boundaries. With increasing confidence
about local contrast orientations generated by V1 and V2, two
options for border ownership directions are discarded and only
two orthogonal border ownership directions remain. Activations
of long-range V2 cells that indicate elongated surface boundaries
and their orientation locally increase activities of those border
ownership cells that are directed perpendicularly to the orien-
tation of the boundary. Activity normalization for V2 border
ownership cells then leads to a suppression of activities for owner-
ship directions orthogonal to the boundary orientation. Formally,
this is accomplished by the dynamics

∂tR
BOwn
iφ̂

= −RBOwn
iφ̂

+ β(RV2
iθ̂

+ htonic)

− RBOwn
iφ̂

·
∑
γ

RBOwn
iφ̂

(38)

with

θ = φ + 1

2
mod π. (39)

Second, V2 border ownership cells receive feedback from cells in
model IT. Here, border ownership as well as figural cues, e.g.,
from local junctions, or curvature maxima, were integrated by

FIGURE 3 | Step-by-step illustration of how feedback modulation is

dynamically incorporated in the model. At t = 1, visual input is filtered and
elicits responses in Area 1. Initially, no feedback signal is available which
leaves the signal unchanged. Responses are finally normalized. Those
responses now become integrated at Area 2 to elongated contours and a

feedback signal is generated, which enters Area 1 at t = 2. Now, some
responses are accentuated, resulting in a higher cumulated response level
that is used for normalization (which is further intensified by a stage of
non-linear transformation). Unmodulated responses are damped in relation
to t = 0.
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FIGURE 4 | Illustration of how V2 long range and V2 curvature cells are

designed and where parameters are used. V2 cells integrate from two
larger excitatory and two smaller inhibitory regions. V2 curvature cells
integrate responses of oriented cell along a curvilinear path that forms
around an imaginary central point c. Integration weights additionally depend

on the distance from the cell’s reference point x0, angular difference to the
tangential trajectory and a function of local radius, indicated here by a
gaussian profile. Correctly aligned orientations that result in a large
integration weight are shown in the right side of the arc, while some that
result in weights close to zero are shown along the left arc in this illustration.

IT cells. For the correct inference of figure and ground, feed-
back from IT to V2 is essential. Figure-Ground cells at IT level
integrate border ownership activations from V2 in a circular fash-
ion to integrate the coherence of directions indicating a convex
pattern of figure outline. In the feedback sweep, this contextual
information is now fed back to these border ownership cells com-
patible with the configuration using recurrent connections. In
formal terms, this extends the dynamics presented in Equation 38
above by incorporating a modulating feedback signal from model
IT cells, namely

∂tR
BOwn
iθ̂

= −RBOwn
iθ̂

+ β(RV2
iθ̂

+ htonic) · (1 + λ2 · RIT
iθ̂

)

− RBOwn
iθ̂

·
∑
γ

RBOwn
iθ̂

(40)

This also concludes the feedback sweep of our recurrent model. In
the following section, we will show the performance of the model
and its individual areas in the Results Section.

3. RESULTS
In this section we illustrate the capabilities of our model in a
number of simulations. To demonstrate how the model pro-
cesses shapes, we use some artificial images to show working
principles of various subcomponents of our model. These simple
shapes were taken from the Webdings font freely available with a
Microsoft® Windows™ 8.1 operating system. We also include also
a depiction of a Kanisza square (Kanizsa, 1955). This is a special
stimulus because it elicits the perception of illusory contours at
the outline of the occluding square, a sensation our model is also
capable to represent.

To demonstrate the abilities of our model to process real
world images we acquires the dataset of Fowlkes et al. (2007)
and selected a few examples that we included in our Results
Sections. These images have a resolution of 321 × 481 pixels
in landscape or portrait orientation. They were converted to
grayscale images using the Mathworks® Matlab® rgb2gray

function which performs a perceptionally weighted combination
of the red, green and blue channel. We used 8–12 iteration steps
to allow recurrent feedback signals to build up. The angular reso-
lution of cell populations is defined by selecting eight π

8 steps to
encode orientation. Border ownership is represented by a popula-
tion representing 4 directions. Model V2 curvature cells also used
8 orientations for tangential orientations, but due to two possi-
ble curvature directions, our model contains a population of 16
curvature cells. A list of parameters used is given in Table 1.

3.1. EARLY PROCESSING STAGES
To begin with, we show how the processing at early stages achieves
a representation of the stimulus concerning contrasts and elon-
gated contours. Local contrasts are represented in the early stages
by model V1 and V2 cells. However, as can be seen in Figure 5
the responses rapidly change in the first few iteration steps.
The contained contour as well as the added noise signal both
elicit responses at the V1 level (second column) and cause the
shapes outline to be not clearly separated from the background.
However, those responses are grouped into elongated contour
representations in model V2 (4th column). Elongated contour
segments are clearly emphasized. From these V2 activations, a
recurrent feedback signal is generated that modulates V1 activa-
tions. After a few iterations, the representation at V1 dramatically
changed, with the outline of the figure now clearly visible.

The effect of the feedback signal is also measurable in a quan-
titative way, see Figure 5, right. Along the boundary of an object
we plotted the activation levels of the population of V1 neurons
that represent the orientation. Initially, the neuron with preferred
orientation responds best, but also those with orientation tunings
close to the real contour (first plot). The situation changes when
feedback is added (second plot). Now, representations of unde-
sired orientations are attenuated and the activation of the cell
representing the contextually valid orientation is highly increased.

Also in Figure 5, the representation of illusory contours at
V2 stage is depicted. This is illustrated using an input depicting
a Kanisza square (last row). A complete square is highly salient
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Table 1 | General model parameters used for simulations.

Description See equation Value

Number of orientations used 8

Number of feedback iterations 6

Number of BOwn directions 4

MODEL AREA V1

Network size 321 × 481

LGN σ 10 1.00

LGN κ 1.50

LGN normalization α (9 applied) 2.17e-03

LGN normalization β (9 applied) 2.17e-03

V1 contrast σ1 12 0.23

V1 contrast σ2 0.12

for p: Excentricity ω1 3.00

V1 normalization α (9 applied) 2.16e-06

Non-linearity of V1 responses (6 applied) 4.00

MODEL AREA V2/V3

V1:V2 subsampling 14 1: 3

Network size 107 × 161

Filter size of V2 complex 41.00

V2 complex cell σ1, σ2, σ3 0.21,0.02,0.10

in p: ωV 2
ex 3.70

in p: ωV 2
inh 2.50

V2 inhibition strength γ 0.10

V2 nonlinearity k (6 applied) 1.00

Strength of V2–V1 feedback 0.11

Non-linearity of BOwn 1.00

In c: curvature radius ωc 19 15.00

in wdist : σ1 40.00

in wori : σ2 2.00

Strength of RV 2Curv feedback 0.15

MODEL AREA V4

V1:V4 subsampling 1: 4

Network size 81 × 121

V4 filter size 31.00

α4 26 0.01

σ4,σ4b 28 0.43,1.35

ωV 4 28 −1.00

MODEL AREA IT

σIT 32 0.43

σ 29.00

ωIT 17.00

IT Non-linearity 3.00

α (9 applied) 5.49e-05

Strength of BOwn feedback 50.00

for human observers despite the fact that only a series of circles
with cut-out corners are depicted. This is reflected in the group-
ing responses of V2 neurons, they also show activity in the gap
between the real contour fragments. Figure 5 shows V2 responses
for the same parameter set and for a parameter set with changed
receptive field sizes, to illustrate the effect even stronger (framed
part). Figure 6 shows a result of the corner representation in the
model.

3.2. CURVATURE TUNING
Figure 7 illustrates the tuning functions we defined for model
V2 curved cells. A curved cell with distinct radius tuning was
selected and we presented arcs of different curvature to this cell
and simulated the response. We performed this for four cells
with curvature tuning to 10, 15, 20, and 25 pixels radius. This
curvature definition happens in V2, where the initial resolution
of the image had been subsampled. For this reason, the value
here correspond to values 40, 60, 80, and 100 in V1 resolu-
tion. In each plot, the peak response occured when the stimulus
with the matching radius was presented. In this simulation,
subsampling artifacts cause the first two plots to elicit some
discontinuities.

3.3. SHAPE REPRESENTATION
In the final setup, we show how our model independently rep-
resents different elements of a shape, and how this depends on
the recurrent feedback connections. Figure 8 illustrates the results
we achieved for an artifical image. Initially, we configured the
model to only use feedforward connections from V1 to V2. The
model only achieves an representation at model V1 and a repre-
sentation at V2 where the elongated boundaries are visible, but
surrounded by many spurious activations. When recurrent feed-
back from V2 is added, the representation at V1 improves in the
first few iterations before a steady representation is reached. In
parallel, elongated boundaries at V2 are integrated and noise is
highly reduced.

To represent prototypical objects at an intermediate level of
detail, we stated that the model needs to represent different con-
tour properties. In the second row of Figure 8 we show how the
model achieves to emphasize V1 responses when they contribute
to a certain contour fragment with desired properties. We delib-
erately exaggerated the effect and chose a very narrow tuning so
that all other responses become almost completely suppressed.
On the left side, we let the model emphasize contour parts that
are oriented almost vertical but in a curved context of a matching
radius. As can be seen, the model highlights that parts on the left
side of the stimulus that matches and leaves others suppressed,
even if their local orientation would match. On the right side of
Figure 8, we perform the same for a different part of the shape
outline.

In Figure 9 we perform the same selection for a realistic photo-
graph depicting an elephant. On the left side, we show interaction
of model V1–V2 causes an appealing representation of the ani-
mal at stages V1–V2. On the right side, we configured the model
using model area V4 to emphasize parts of the outline of the ani-
mal that match a certain context and configuration, here, a part
of the outline.

3.4. BORDER OWNERSHIP AND FIGURE-GROUND ASSIGNMENT
In the segregation of a scene into figure and ground the mod-
eled border ownership cells participate by indicating the direction
where the frontal surface is positioned at a boundary (Zhou
et al., 2000). Our model incorporates a mechanism using such
border-ownership cells to resolve the direction of a frontal sur-
face from local boundary cues (Zhou et al., 2000). We performed
such a assignment for our sample images, see Figure 10 for an
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FIGURE 5 | Results of early processing stages V1 and V2. Left column:
Initial input images. Second and Third column: Cumulated responses of
model V1 neurons at the initial processing iteration and a few iterations
steps, respectively. Fourth column: Responses of model V2 neurons.
Elongated edges formed by like-oriented contrasts are grouped as reflected
by responses at respective locations. This stage also shows activations for
illusory contours contours (third row) at the gaps between contrasts. Upper

right box: The two plots indicate time courses for V1 activations. Initially,
multiple V1 neurons are activated due to a broad tuning width (first plot).
Without feedback, this effect prevails through iterations. With feedback, the
correct orientation (blue) receives feedback and gradually reduces activations
of other orientations (second plot). Lower right box: Example how model V2
neurons show responses at positions formed by illusory contours (in green
circle) due to contextual integration.

illustration of the result. The output of model area V1 and of
V2 long-range integration cells are acquired to generate initial
hypotheses of border ownership direction at image regions where
local contrasts are situated. Initially, all four border ownership
directions show equal responses at a boundary location. After
stimulus onset, three dynamic effects occur and their contribu-
tion to the resolution of border ownership is reflected in the time
course of cell activation, see Figure 10 for an illustration.

First, local feedback from V2 cells enhances two hypotheses
of border ownership for the directions orthogonal to the local
boundary orientations.

A local normalization causes an attenuation of the other two
representations Figure 10, second row; Timestep 0 and 1). Second,
shape-level integration at model area IT contributes positive feed-
back to those border ownership cells that are directed toward the
inside of the figural depiction. Again, normalization leaves the
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FIGURE 6 | Corner representation in model V2/V3. For each group of
three pictures: Initially, responses of model V1 did not yet benefit from
contextual feedback of model V2 neurons. Corner representation is thus

distorted by noise (second row, middle). After a few iterations, when V1
responses have been modulated V2 feedback, the corner representation
is much clearer.

net response of the cells constant (timesteps 2–4). Finally, mutual
inhibition among border ownership cells with opposite direction
selectivity causes the dominant direction to gain all available net
energy (timestep 5–8). At this point, a stable point is reached and
the local ambiguity for border ownership direction is resolved
using feedback from higher cortical areas. The interpretation of
the final representation would be that the frontal surface is to the
inside of the curved boundary.

4. DISCUSSION
4.1. SUMMARY OF CONTRIBUTIONS
In this contribution we emphasized the role hierarchical repre-
sentations have in the organization of shape features and their
combinations into a coherent form. Like some previous model
developments (Cadieu et al., 2007; Hatori and Sakai, 2012;
Rodríguez-Sánchez and Tsotsos, 2012) our model is based on
low and intermediate representations of shape features. These
proposals are all based on a strictly hierarchical feedforward
processing sequence. We propose here that such shape encod-
ing mechanisms may be based on distributed representations
that are established by interacting assemblies each devoted to
specific feature properties. Such interactions in the model are
organized by recurrent interactions of feedforward and feedback
signals. The underlying structural principles are based on the
cortical architecture of the ventral pathway with mutual inter-
actions between such distributed representations (Markov et al.,
2013). The model architecture incorporates principles that have
been predicted to minimize the computational efforts of visual
systems to successfully deal with the complexity problem of per-
ception (Tsotsos, 1988) [compare also (Tsotsos, 2005)]. Among
those, the hierarchical organization of representations in model
areas, the specific receptive field properties of model columnar

mechanisms, hierarchical pooling of spatially separated input
representations, and top-down (modulatory) feedback are pro-
posed here to account for the functional properties of cortical
shape processing. We did not discuss complexity advantages in
this contribution. However, given the theoretical predictions by
such earlier work our proposal of a model architecture provides
a evidence how distributed intermediate-level mechanisms may
help to shape our understanding of modeling complex visual
machinery that captures key cortical principles.

The main contributions of the work presented in the
manuscript are twofold. First, we propose a computational net-
work architecture that utilizes a hierarchical distributed repre-
sentation of shape features. Contour features play a major role
to track moving shape in which their strength parametrically
change as a function of their saliency (Caplovitz and Tse, 2007).
This necessitates global configurational as well as local infor-
mation to distinguish rather tiny differences in the outline of
a 2-dimensional form [such as curved boundaries vs. localized
corners (Pasupathy and Connor, 1999; Ito and Komatsu, 2004)].
In order to generate a representation with sufficient spatial res-
olution combined with spatial context we suggest that multiple
specialized component representations interact by feedforward
hierarchical processing that is combined with feedback from rep-
resentations generated at higher stages in the hierarchy. Second,
we incorporate grouping mechanisms to integrate like-oriented
contour responses that are integrated if they form a smooth
outline fragment of a surface boundary (e.g., Grossberg and
Mingolla, 1985; Neumann and Sepp, 1999; Ben-Shahar and
Zucker, 2004). Such grouping mechanisms operate at the stage
of area V2 and are, thus, involved in the hierarchical processing
of shape. Given the hierarchical processing and representation of
boundary information in the ventral pathway (see the overview
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FIGURE 7 | Tunings of different curvature cells. The x-axis show the
curvature of the presented stimulus, the y-axis the response strength of a
curvature cell tuned for 10, 15, 20, and 25 pixels curvature radius in model V2,

which correlates for a curvature of 40, 60, 80, and 100 pixels in model V1. For
the smaller curvature radii, subsampling artifacts cause the tuning function to
be less smooth.

in Neumann et al., 2007) the shape processing observed in area
V4 is mainly driven by the output of grouping responses. It
may be supplemented by input from simple/complex cells in
V1, a principle of convergent signal streams also used in the
models described in Thielscher and Neumann (2003); Rodríguez-
Sánchez and Tsotsos (2012). In addition, we suggest that the
shape representation built at the stages of V4 and IT influ-
ences the assignment of border ownership in surface represen-
tation (Zhou et al., 2000) (see overview in Neumann et al.,
2007). Model IT cells send modulatory feedback to those V4
cells that provide relevant input (in V4 and V2) such that the
net sum of convex corners/curvatures determines the owner-
ship direction. The proposed model thus combines separate
findings about the generation of cortical shape representation
with figure-ground segregation mechanisms by assigning border
ownership.

4.2. RELATION TO PREVIOUS MODELS OF SHAPE REPRESENTATIONS
IN CORTEX

Visual shape recognition has already been investigated inten-
sively by considering the 3-dimensional (3D) surface appear-
ance for object recognition (Riesenhuber and Poggio, 1999;
Serre et al., 2007; Mutch and Lowe, 2008; Yamane et al., 2008;
Serre and Poggio, 2010) as well as 2-dimensional (2D) shape
recognition (Schwartz et al., 1983; Mokhtarian and Mackworth,
1986; Mokhtarian, 1995; Rodríguez-Sánchez and Tsotsos, 2012).

In the context of view-based models of object recognition sta-
ble views (Logothetis et al., 1995) are associated with 2D shapes
so that their analysis can be considered as an intermediate stage
of object processing (Cadieu et al., 2007). The computational
model approaches of 2D shape representation can be subdivided
into flat and hierarchical schemes. Examples of flat process-
ing schemes, e.g., utilize Fourier descriptors (Schwartz et al.,
1983), multi-scale representations of curvature features in the
shape outline (Mokhtarian and Mackworth, 1986; Mokhtarian,
1995), or global schemes for integrating oriented line features
(Wilson and Wilkinson, 1998). Hierarchical multi-layer process-
ing schemes are based on different stages to generate an increas-
ingly coarse-grained representation of shape features utilizing
repetitive application of local filtering operations (Riesenhuber
and Poggio, 1999; Cadieu et al., 2007; Rodríguez-Sánchez and
Tsotsos, 2012). In order to resemble the feature selectivity
of V4 cells in monkey cortex such cells build coarse-grained
orientation-curvature representation of the shape under inspec-
tion. The hierarchical organization of a sequence of process-
ing stages follows the idea of the Neocognitron (Fukushima,
1980, 1988) by developing low and intermediate representa-
tions of richer shape feature compositions (LeCun et al., 1998;
Riesenhuber and Poggio, 1999; Mutch and Lowe, 2008; Tabernik
et al., 2014). The orientation-curvature representation of V4 cells
reported by Pasupathy and Connor (1999); Connor et al. (2007)
has been investigated in the models reported in Cadieu et al.
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FIGURE 8 | Representation of curved boundary segments and effect of

feedback. Top left: Model setup without feedback connections. The initial
representation at model V1 and V2 undergo no change. Top right: Feedback
from V2 causes a refinement of elongated structure within a few iterations.
Bottom left: Feedback from V4 allows the accentuation of boundary

segments with distinct curvature strength and direction. Here, a curvature
segment as found on the left part of the shape is highly emphasized by
feedback. Bottom right: Same as left, but with selectivity for another segment
of the shape. Note that while boundaries with the same orientation are
present in the stimulus, only the one with matching curvature is emphasized.

(2007); Rodríguez-Sánchez and Tsotsos (2012); Hatori and Sakai
(2012). We share the principles of the hierarchical organization
of processing and the emergence of rich orientation-curvature
sensitivity in our proposal. Initial processing utilizes orienta-
tion sensitive filters to extract local oriented contrast. Unlike the
previous models we incorporate a stage of boundary grouping
at the interface between low and intermediate levels of repre-
sentation. Such grouping operations integrate oriented contrast
responses that are arranged in the local neighborhood of a tar-
get location. The local responses are enhanced by evaluating a
support function that measures feature compatibility [(Neumann
and Mingolla, 2001) for an overview and taxonomy of grouping
schemes]. The measure of compatibility, or relatability, depends
on the lateral integration that utilizes oriented weighting func-
tions for contrast features arranged along a model shape outline,
e.g., circular arcs with different radii (Parent and Zucker, 1989).
Such a scheme thus implicitly incorporates curvature as a local
contour feature. In order to make this explicit, different con-
tour radii and signs of curvature (for individual orientations)
have been considered in Rodríguez-Sánchez and Tsotsos (2012).
Rather then implementing this curvature selectivity in a hard-
wired scheme of local oriented filter conjunctions, we propose
that this selectivity is generated via bottom-up and top-down
filter mechanisms organized in a hierarchy. In this architecture

the responses from model V2 contour groupings (based on dif-
ferent radii) are integrated by model V4 curvature sensitive cells
with coarse bipartite odd-symmetric receptive fields (similar to
simple cell profiles, but at much larger spatial scale). The sign of
curvature is distinguished by cells of opposite polarity that mutu-
ally compete for each orientation. As a consequence responses
are generated preferentially in cases where a single dominant
curvature is present while responses are suppressed for straight
contours which feed curvature cells symmetrically. The curva-
ture radius is represented through a family of differently scaled
integration sizes of such model V4 cells. Each of these cells have
a specific peak selectivity. In the simulations we used three dif-
ferent sizes for each curvature sign. In order to make those cell
responses selective to the feature specificity but mainly invariant
to luminance contrast we suggested that each V4 cell response
competes against the responses of other curvature selective cells
in a local pool that interact via a mechanism of shunting inhibi-
tion. This leads to normalization of responses just like in those
mechanisms proposed to account for various non-linearities at
different stages in cortical processing, e.g., for context related con-
tour responses in V1 (Carandini and Heeger, 1994; Carandini
et al., 1999), attention selection (Carandini and Heeger, 2012),
and higher level cognitive functions (Louie et al., 2011). Since
the curvature sensitive model V4 cells, in turn, send feedback
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FIGURE 9 | Refinement and modulation of shape contours in a

real world example. Left: Within 5 iterations, the outline of the
animal is very well visible at V1 and at V2 stage. Right: With

modulatory feedback from model V4, various parts of the animal
like those contours with a certain curvature and orientation can be
emphasized.

to their input contour representations in model V2 and filter
response in model V1 those corresponding input activations will
be enhanced. The amplitude of responses in distributed bound-
ary representations will be amplified as an emergent net effect
such that local salient curvature features in a shape outline will be
amplified to yield distributed component feature representations
of figural shapes.

These local boundary and curvature representations also feed
mechanisms of border ownership assignment at the level of
the model V4/IT complex. Such mechanisms have been investi-
gated before in e.g., Zhou et al. (2000); O’Herron and von der
Heydt (2011). Our computational framework belongs to the
group of feedback models for border ownership encoding (see
the overview of the current state in Williford and von der Heydt,
2013, see discussion below). We adopted this generic scheme
by integrating responses from curvature selective cells with the
compatible sign of curvature. In such a way the ownership con-
figuration favors contributions from coarsely presented convex
components. If a shape with multiple convex and concave seg-
ments is present then the ownership cells with opponent direc-
tion selectivities compete in order to arrive at a disambiguated
assignment of surface belongingness. This makes the testable
prediction that bumpy outlines should lead to slightly longer
ownership disambiguation than for smooth convex shapes since
the disambiguation will take more time when initially opposite
assignment hypotheses coexist.

An additional investigation was argued to be of importance
in the work proposed here. Several experimental investigations
have reported that cells in extra-striate cortex selectively respond
to corner junctions. For example, Ito and Komatsu (2004)
(compare also Hegdé and Van Essen, 2000) reported that cells
in area V2 selectively respond as to generate representations
of sharp corners, or angles, selective for a particular opening
angle. Similarly, Pasupathy and Connor (1999); Yau et al. (2013)
show that area V4 cells respond to sharp shape corners with a
sub-population of cells preferring sharp corners with different
orientation and opening angles while another sub-population
prefers smooth rounded corners. While the previous hierar-
chical models can account for the response selectivity for any
of these generic corner types the perceptual representation of
sharp localized features that allow, e.g., to distinguish between
sharp and rounded corners remain unanswered. Sharp corners of
any opening angle would be indistinguishable from the smooth
variants of these corners given the increasing smoothing and
subsampling of the visual representation while proceeding in
the hierarchy. Our model argues in favor of a distributed rep-
resentation: While shape sensitive cells at an intermediate level
represent the salient shape protrusions (as in V4) the localized
detail of an outline is represented at a higher spatial resolu-
tion in lower-level representations, e.g., in V1, V2, V3. In our
model we suggest representations of smooth boundaries with dif-
ferent curvatures represented by groupings in model V2 while
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FIGURE 10 | Results for border ownership assignment. First two rows: Cells
at model V2 indicate the direction of figure side at positions where boundaries
exist. Initially, four hypotheses exist for possible figure direction. These are
refined in model V2, where only two hypotheses remain after the orientation of
the boundary is represented. Contextual integration in model V4 then provides

correct estimates with modulatory feedback. Subsequent normalization and
mutual competition leaves only one hypotheses for border ownership direction.
See text for details on the time phases of border ownership assignment. Third
row: Demonstration of the boundary assignment for a natural image. The initial
responses are improved after a few iteration steps.

sharp corners are implicitly represented by convergent V1 input in
local representations in model V2/V3. We assume that responses
of cells in the model V2/V3 complex mutually compete such
that their energy provides a measure to normalize individual
responses. These provide convergent input to curvature selec-
tive contour cells in model V4 which, in turn, send feedback
signals to their input sites at preceding stages. Since they are
driven by either smooth or sharp contour arrangements the
interaction of bottom-up sensory and top-down context-driven
signals leads to selective enhancement of the particular cor-
ner configuration in the present stimulus. The specific details
of the interaction between such counter-stream signal flows are
discussed below.

4.3. FEEDBACK AS PREDICTION MECHANISM TO LINK SHAPE
COMPONENTS

The hierarchical model architecture proposed here is composed
of multiple model areas each of which is represented by a three-
stage columnar cascade model. In a nutshell, the model cascade
consists of (i) an initial stage of input filtering, (ii) a stage of activ-
ity modulation of filter outputs by top-down or lateral re-entrant
signals, and (iii) a stage of center-surround interaction of target
cells against an inhibitory pool of cells leading to activity nor-
malization to generate the net output response of the model area.
These three stages can be roughly mapped onto compartments of
cortical area subdivisions (as suggested in Self et al., 2012). The
filtering stage of the driving feedforward input signals is specific
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to the particular (model) area under consideration. At the output
stage, the activity normalization is computed by a mechanism of
shunting inhibition, like the non-linear divisive mechanisms pro-
posed in Carandini and Heeger (1994); Carandini et al. (1999);
Kouh and Poggio (2008); Carandini and Heeger (2012). The feed-
back signal is generated at higher-level cortical stages or parallel
processing pathways and is thought to provide context infor-
mation that is re-entered at the stage earlier in the processing
hierarchy (Grossberg, 1980; Edelman, 1993).

The functional role feedback signals play still remains con-
troversial. Different proposals how feedback signals interact and
combine with the driving feedforward stream have been dis-
cussed in the literature which have received different support
from the experimental literature (Markov et al., 2013). One such
framework proposes that the goal of computation is to reduce
the residual error between the different signal streams in order
to approach the sensory prediction generated by higher stages
of processing (Ullman, 1995; Bastos et al., 2012). This idea is
rooted in the Bayesian theory of predictor-corrector mechanisms
which yields to the Kalman optimal filter realization under some
restricting assumptions (Rao and Ballard, 1999). We follow an
alternative route in which the feedback mechanism is modu-
latory in nature. Unlike predictive coding which tried to drive
the difference between driving signals and the prediction to
zero bottom-up input signals are amplified by matching feed-
back signals. This leads to a gain enhancement for those cell
responses where a matching top-down predictive signal template
has been generated. This feedback signal amplifies the sensory
signal such that the subsequent competition between neurons
yields a competitive advantage for the enhanced response pat-
terns [biased competition; (Girard and Bullier, 1989; Desimone,
1998; Roelfsema et al., 2002; Reynolds and Heeger, 2009)]. The
modulation mechanism is reminiscent of the linking mechanism
suggested by Eckhorn et al. (1990); Eckhorn (1999) to account for
activity synchronization in networks of spiking neurons. We have
recently demonstrated (Brosch and Neumann, 2014) that such
mechanism of convergent bottom-up feedforward and top-down
feedback signal correlation accounts for the signal amplification
as measured at the level of cortical pyramidal cells (Larkum,
2013).

In the shape processing architecture described here the mod-
ulatory feedback serves the role of a predictor (Spratling, 2008).
For example, bottom-up input in oriented contrast is integrated
by mechanisms of contour grouping and integration to generate
continuous boundary representations. This is similar in spirit as
the recent investigation of Piëch et al. (2013) who emphasized
how context information at higher cortical stages influence more
local feature representation at lower levels. Here, the same princi-
ple is replicated over different stages of model cortical processing.
Contour representations after grouping in model V2 and junc-
tion configurations in model V3 send their output activations to
curvature sensitive cells in model V4 where the activities are inte-
grated. These cells, in turn, send their feedback to the input pop-
ulations of neurons that have generated their input. The compu-
tational logic is that the curvature responses provide a template of
context-related information about the local presence of oriented
shape features. The modulatory feedback amplifies those inputs

that are consistent with the curvature feature representation. The
mutual competition of responses in a pool of cells at the lower
level leads to a suppression of inputs that do not contribute to
the present curvature feature. In all, a distributed representa-
tion of shape information is created that contains coarse-grained
configurational information about stimulus shape and, at the
same time, the spatially localized detail needed to distinguish
between sharp and smooth corners. Similarly, the action of feed-
back sent from ownership sensitive cells (in the V4/IT complex of
the model) to curvature sensitive and grouping cells in model V2
and V4 also provides context information for the assignment of
configurational information. Here, the ownership assignment is
based on the consolidation of evidence which convex shape ele-
ments make to establish a closed shape region in the visual field.
This context is delivered via feedback to their input that represents
fragments of shape components (irrespective of the sign of curva-
ture) and also to the grouping representations. Those shapes that
finally receive assigned direction of border ownership, and thus
figure-ground direction, will enhance the associated inputs at the
intermediate level orientation-curvature representations.

In all, the hierarchical processing scheme proposed here relies
on extensive bidirectional flow of information in which the feed-
back signals that represent context-sensitive templates are gated
by feedforward driving input signals. Such a modulating feed-
back driven gain control mechanism relates to mechanisms pro-
posed by Roelfsema and colleagues (Lamme and Roelfsema, 2000;
Roelfsema et al., 2002; Roelfsema, 2006) in which spatial detail
is generated by feature-driven low-level processes and represen-
tations and subsequently associated with coarse-grained context
information provided by intermediate and higher-levels of corti-
cal computation. The mechanisms implemented in the proposed
model are consistent with theoretical predictions from compu-
tational constraints visual perception imposes on the underlying
architecture (Tsotsos, 1988). The advantages in computational
complexity have been calculated for principles such as hierar-
chical organization, localized receptive field computations, and
dedicated (distributed) maps of feature representation and their
combination. Feedback has been suggested to steer an atten-
tional beam by selecting a spatial region and their computational
resources (Tsotsos, 2005). In the proposed architecture feedback
also selectively enhances representations of features by increas-
ing their gain which are coherent with the predictions generated
at higher-level stages with more condensed coding of shape and
figural properties. Also we emphasize that this provides a key to
enhance (and make accessible) localized shape features, such as
sharp edges, as part of a shape configuration that is represented
on a coarser scale.

4.4. MODEL LIMITATIONS AND FURTHER EXTENSIONS
The proposed model architecture emphasized the computational
role of feedforward and feedback mechanisms in order to gen-
erate a hierarchical distributed representation of shape informa-
tion. For that reason, we focused on the representational aspects
as steady-state solutions of an otherwise dynamic interaction
between neuronal populations and representations distributed
over several model areas. We did not, so far, investigate the tem-
poral response phases observed for shape sensitive cells in V4
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(Yau et al., 2013). The work of Roelfsema and colleagues has
shown that different response phases exist that can be reli-
ably assigned to different mechanisms in processing, namely
for feature detection, figure-ground segregation, and attention
(Roelfsema et al., 2007). We have demonstrated that such sep-
arate but temporally overlapping phases can be accounted for
by a recurrent network of mutually interacting neuronal sites.
The network model has been composed of the same compo-
nents like the present model architecture (Raudies and Neumann,
2010). It would thus be interesting to reveal whether similar
temporal phases can be identified for model V4 cells that may
give rise to identify different signatures indicative of contribu-
tions from delayed neuronal mechanisms that are involved in the
computation of figural shape information.

Different signal streams (particularly in the feedforward sweep
of feature processing) operate on different temporal scales.
Several lines of evidence suggest that the dorsal and the ventral
streams of processing do not operate entirely in isolation but
mutually interact at different levels (Felleman and Van Essen,
1991; Markov et al., 2013). Also different response character-
istics of cells may define different temporal routes of fast and
slow processing (Born, 2001) that may help fusing information
from different pathways. Here, we did not take into account such
interactions based on different temporal effectivenesses. However,
other model investigations capitalized on combining information
from different channels to improve the selectivity of representa-
tion. For example, edge detection and grouping (in the ventral
pathway) could be enhanced through mutually inhibitory gain
control (which is similar as the normalization stage described
here) generated by representations in the dorsal pathway. Since
the dorsal representation is created by magno-cellular responses,
such inhibition arrives already early to shape the selectivity of
shape representations in the ventral path that is mainly driven by
parvo-cellular responses (Shi et al., 2013). Similarly, interactions
between the motion and form pathway have been suggested to
help disambiguating localized features that give rise to occlusion
cues which, in turn, support the disambiguation of object rep-
resentation in the motion representation (Bayerl and Neumann,
2007; Beck and Neumann, 2010). Such detailed mechanisms
would further enhance the proposed model architecture in refin-
ing the selectivities at different levels of low and intermediate
representation.

As already pointed out above, the focus here is on the pro-
cessing of 2D shape representations. In Cadieu et al. (2007) the
authors have highlighted that their specific model investigation
on shape representation in V4 is part of a larger hierarchi-
cally organized architecture for object recognition (Riesenhuber
and Poggio, 1999; Serre and Poggio, 2010). Since their model
principles relied on purely feedforward processing the insights
provided in the work presented here might also shed some light
on the mutual interactions between different processes on an
even larger scale of object recognition processes. In addition, it
would be interesting to find out how the representation of 3D
surface patches (Yamane et al., 2008) seamlessly fit into a model
computational architecture of recurrent shape computation.

In the presented coverage our model does not respond to con-
tours elicited by contrasts of spatial luminance statistics caused

by differently textured regions. However, the core mechanisms,
including initial filtering, modulatory feedback and competitive
interaction for normalization, are like those proposed in the cur-
rent contribution. A model that focuses on the processing of
such boundaries has been developed in Thielscher and Neumann
(2003). It is thus very likely that the recent model architecture
proposed here can be extended with processing stages capable
to process texture define boundaries as well without changing
the basic architecture and computational principles. Also not
considered in the current version is a multi-scale approach. We
acknowledge the theoretical justification of hierarchical multi-
stage processing to build up a pyramid-like structure (Tsotsos,
2005). Incorporating this representational diversity would allow
the processing of a wider range of curvature configurations in
shape outlines. In addition, this would support a more robust seg-
regation of border ownership on the basis of convexities in the
figural outline. We have focused our efforts on the specification
of a hierarchically organized network architecture that utilized
bottom-up and top-down convergent processing flows. In order
to keep the computational efforts and the simulation times within
reasonable bounds we restricted our description to single scale
components at the different model stages within the hierarchy. A
more extended realization of components is certainly desired but
left for future investigations.

Intermediate level representations involve cells with recep-
tive fields that recruit multiple sub-field components (Mineault
et al., 2012; Yau et al., 2013). The model of Cadieu et al. (2007)
accounts for this by sequentially fitting the subunits of interme-
diate level receptive field models to match the response profiles
of V4 responses measured experimentally. This yields a sampling
structure of statistically significant inputs in a feature space that
contributes a significant amount of feature input to generate the
final response of a shape selective cell. So far, in our modeling
we sampled the spatial and the feature domains regularly. This of
course demands high representational as well as computational
resources. Consequently, it would be of interest to see how an
irregularly sampled 4D space-feature domain (with orientation
and curvature features) can be embedded into the scheme of
shape representation proposed here.
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