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Functional magnetic resonance imaging (fMRI) studies have converged to reveal the
default mode network (DMN), a constellation of regions that display co-activation during
resting-state but co-deactivation during attention-demanding tasks in the brain. Here, we
employed a Bayesian network (BN) analysis method to construct a directed effective
connectivity model of the DMN and compared the organizational architecture and
interregional directed connections under both resting-state and task-state. The analysis
results indicated that the DMN was consistently organized into two closely interacting
subsystems in both resting-state and task-state. The directed connections between DMN
regions, however, changed significantly from the resting-state to task-state condition. The
results suggest that the DMN intrinsically maintains a relatively stable structure whether
at rest or performing tasks but has different information processing mechanisms under
varied states.
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INTRODUCTION
The brain’s default mode network (DMN), characterized by
increased neural activity in specific brain regions during resting-
state compared with goal-oriented tasks (Raichle et al., 2001;
Greicius et al., 2003; Raichle and Snyder, 2007), has generated
a significant amount of interest in recent brain imaging studies.
There is a growing recognition that the DMN plays a significant
role in the brain, including such functions as self-referencing,
autobiographical memory retrieval, consolidation of past experi-
ence and future preparation (Gusnard and Raichle, 2001; Svoboda
et al., 2006; Hahn et al., 2007; Buckner et al., 2008). A number of
studies have been conducted attempting to elucidate the DMN’s
anatomy (Mazoyer et al., 2001; Greicius et al., 2003; Fox et al.,
2005; Fransson, 2005), working mechanism, its interaction with
other neural systems (Mazoyer et al., 2001; Greicius et al., 2004;
Rombouts et al., 2005; Wang et al., 2006; Margulies et al., 2007;
Buckner et al., 2009; Demirci et al., 2009; Li et al., 2009, 2012;
Stevens et al., 2009; Liao et al., 2010; Wu et al., 2011) and its rel-
evance to disease (Greicius et al., 2004; Rombouts et al., 2005;
Wang et al., 2006).

Recently, an increasing amount of imaging computing meth-
ods have been introduced to explore the connectivity architecture
of the DMN. Functional investigation of the DMN based on
the inter-regional correlation and independent component anal-
ysis (ICA) lead to the consensus that the DMN is composed of
specific brain regions, including the posterior cingulated cortex
(PCC), medial prefrontal cortex (MPFC), inferior parietal cortex

(IPC), inferior temporal cortex (ITC), and hippocampus (HC).
Among these regions, the PCC, MPFC and the bilateral IPC were
demonstrated to show the strongest regional correlations with
each other and the highest metabolism in the network (Raichle
et al., 2001; Greicius et al., 2003; Buckner et al., 2008). Moreover,
these regions also showed nearly consistent complete convergence
across multiple approaches which define the anatomical organi-
zation of the DMN including task-based deactivation studies and
resting-based spontaneous activity studies using PET and fMRI
techniques (Raichle et al., 2001; Greicius et al., 2003; Fransson,
2005; Raichle and Snyder, 2007; Buckner et al., 2008). These
regions have therefore been suggested as the hubs of the net-
work (Buckner et al., 2008). In addition, the PCC, MPFC and IPC
regions from the DMN were also demonstrated as the important
hubs in the whole cerebral cortex (Buckner et al., 2009). These
hubs were supposed to function to coordinate and integrate the
information processing of spatially distributed regions or distinct
neural systems in the brain (Buckner et al., 2008, 2009; Li et al.,
2009, 2012).

In addition to studying the undirected functional connectiv-
ity relationship between brain regions within the DMN, a variety
of directed effective connectivity analysis approaches including
the Granger causality mapping (GCM) (Goebel et al., 2003)
and Bayesian network (BN) (Zheng and Rajapakse, 2006; Wu
et al., 2011), have been introduced in an attempt to explore the
information exchange mechanism of the DMN. GCM uses a vec-
tor autoregressive model to analyze the functional interactions
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among regions and is a pair-wise connectivity analysis rather than
a global representation of a neural system. Jiao et al. (2011) inves-
tigated the Granger causal relations in the DMN and found a
highly consistent hierarchical distribution of the activity in the
network, with the highest level in the PCC and MPFC and with
the lowest level in the ITC. The BN learning approach, which
is a popular technique that has been widely applied to complex
systems for uncertainty reasoning and data analysis, is capa-
ble of learning the global effective connectivity pattern rather
than the pair-wise connectivity, without any prior assumptions
(Zheng and Rajapakse, 2006). Ever since Zheng et al. (Zheng and
Rajapakse, 2006) firstly applied the BN learning approach to char-
acterize the effective connectivity patterns among brain regions
in fMRI in the process of investigating silent word reading and
counting Stroop tasks, the BN approach has been widely applied
to fMRI data as a tool to determine the conditional dependencies
between brain regions (Zheng and Rajapakse, 2006; Rajapakse
and Zhou, 2007; Kim et al., 2008; Li et al., 2008, 2009). In our
previous study of the DMN using the BN method (Li et al.,
2009, 2012, 2013), we also demonstrated distinct connectivity
patterns between the PCC, MPFC, IPC and additional regions
including ITC and HC. The activity in the PCC, MPFC and IPC
were found to depend more on the network and show a higher
degree of local interactivity relative to other DMN regions (Li
et al., 2013). In combination with the functional connectivity of
the DMN, the directed connectivity of the network has further
suggested that the functional architecture of the network is hier-
archically organized into at least two interacting subsystems, with
the PCC, IPC, and MPFC representing anatomic and functional
keys or hubs in the DMN and the ITC together with the HC
representing the non-hubs (Buckner et al., 2008; Li et al., 2012,
2013).

The investigations of the DMN’s connectivity to date are
of great significance to understanding the working mechanism
of DMN, but overall, the current understanding and aware-
ness of the DMN have mainly been obtained by investigating
the temporal correlations between regions in the resting-state
network (Friston, 1994) or the relationship between the DMN
and neuropsychiatric disorders such as Alzheimer’s disease and
depression (Greicius et al., 2004; Rombouts et al., 2005; Wang
et al., 2006). In comparison, fewer studies have addressed the
directed connectivity architecture of the network and compared
the network between resting-state and other different task-state
conditions. It is suggested that probing deeply into the DMN
and detecting the differences between the resting-state and the
task-state could help us better comprehend the working mech-
anisms implied in this network. Adhering to this goal, some
studies have started to focus on the relationship between the
task activation and resting-state activities (Smith et al., 2009; Ma
et al., 2012). They have found that the full repertoire of func-
tional networks utilized by the brain in action is continuously
and dynamically “active” even when at “rest.” However, we still
understand very little about the connection framework of the
DMN and its information exchange during different working
states. Thus, it is essential for us to further study the differ-
ence of the network between the resting-state and task-state
conditions.

Specific to this study, given the accumulating number of stud-
ies investigating the DMN, we sought to employ the BN learning
approach (Friedman et al., 1997; Heckerman, 1998; Zheng and
Rajapakse, 2006; Rajapakse and Zhou, 2007; Kim et al., 2008;
Li et al., 2008, 2009, 2012, 2013) to construct an effective con-
nectivity model of the DMN in 14 healthy subjects during both
resting-state and task-state, and then, we compared the organiza-
tion pattern and connection characteristics of the brain regions
within the DMN between these two states. In addition to the BN
effective connectivity analysis of the DMN, we further introduced
a random permutation test to examine the connectivity difference
between the resting-state and the task-state conditions.

MATERIALS AND METHODS
SUBJECTS AND TASK
Fourteen healthy volunteers [8 males and 6 females, ages
between 19 and 26 years (Mean ± SD: 21.1 ± 3.74 years
old), right-handed] participated. Handedness was determined by
the Edinburgh Inventory. All participants were native Chinese
(Mandarin) speakers with no history of psychiatric or neuro-
logical abnormalities. All participants had normal or corrected
to normal vision through the use of MRI-compatible lenses.
The purpose of the study was explained to the participants, and
each of them provided written informed consent approved by
the Research Ethics Committee of the State Key Laboratory of
Cognitive Neuroscience and Learning, Beijing Normal University
(BNU), prior to the experiment.

All of the subjects were first instructed simply to keep their
eyes closed and not to think of anything in particular for the
resting-state scan. Then, a semantic judgment task, written word
semantic judgment (WJ), was followed to collect the data during
task condition. The participants were asked to judge whether the
visually presented items (e.g., gun, sheep) were semantically dan-
gerous or not. A positive response was indicated via key pressing
by the subject’s right hand, whereas a negative response was indi-
cated by his/her left hand. The participants were asked to respond
as quickly and accurately as possible. This task is described in
detail in our previous publication (Wu et al., 2009).

DATA ACQUISITION
MRI scanning was performed on a 1.5-Tesla Siemens whole-body
MRI system at Xuan Wu Hospital in Beijing. Gradient echo-
planar imaging was used to acquire 20 axial slices (6 mm thick-
ness, 1.8 mm gap, field of view, 220 × 220 mm2; matrix size, 64 ×
64; repeat time, 2000 ms; echo time, 50 ms; flip angle, 90◦; 132
repetitions per time series). A high-resolution T1-weighted 3D
MRI sequence with the following parameters was used: 1.9 mm
thickness; 0.95 mm gap; repeat time, 1970 ms; echo time, 3.93 ms;
and flip angle, 15◦.

DATA PREPROCESSING
For each participant, the original first five-time functional images
were discarded to allow for equilibration of the magnetic field.
All of the preprocessing steps were performed using the Statistical
Parametric Mapping program (SPM8; http://www.fil.ion.ucl.
ac.uk/spm/). They included within-subject inter-scan realign-
ment, between-subject spatial normalization to a standard brain
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template in the Montreal Neurological Institute (MNI) coordi-
nate space and smoothing by a Gaussian filter with a full width at
a half maximum of 8 mm. Following this, detrending and tempo-
ral band-pass filtering of the fMRI data were performed in order
to reduce the effects of low-frequency noise (Biswal et al., 1995).
To exclude the impact of head movement and several potential
nuisance signals on the regional connectivity (Friedman et al.,
2000; Power et al., 2012; Van Dijk et al., 2012), we then backed
off the possible sources of artifacts of the fMRI data, including
six head-motion profiles, global signal, white matter signal, and
cerebrospinal fluid (CSF) signal via the Resting-State fMRI Data
Analysis Toolkit (REST; http://restfmri.net).

GROUP INDEPENDENT COMPONENT ANALYSIS
Group ICA is widely used to separate patterns of task-activated
neural networks, image artifacts and physiologically generated
independent components (ICs) in a data-driven manner. The
preprocessed resting-state and task-state data of all participants
were separately entered into the Group ICA program in the fMRI
Toolbox (GIFT, http://icatb.sourceforge.net/) for the separation
of DMN and the determination of DMN regions for BN analy-
sis. The Group ICA program included twice principal component
analysis (PCA) for reduction of the fMRI data dimensions, ICA
separation and back-reconstruction of the ICs and the corre-
sponding mean time course for each subject (Calhoun et al.,
2001). The optimal number of principal components, 15 for
resting-state data and 16 for task-state data, were estimated based
on the minimum description length (MDL). In the first round
of PCA, the data for each individual subject were dimension-
reduced to the optimal number temporally. After concatenation
across subjects within groups, the dimensions were again reduced
to the optimal numbers via the second round of PCA. Then, the
data were separated by ICA using the Extended Infomax algo-
rithm (Lee et al., 1999). After ICA separation, the mean ICs and
the corresponding mean time courses over all of the subjects were
used for the back-reconstruction of the ICs and time courses for
each individual subject (Calhoun et al., 2001).

Finally, the independent component that best matched the
DMN was selected for both the resting-state and task-state data.
Following this, one sample t-test (p < 0.001, corrected by false
discovery rate, FDR) was then performed to separately determine
the DMN for the resting-state and task-state data. Between-group
DMN differences were determined by two-sample t-test (FDR
corrected, p < 0.005).

BAYESIAN NETWORK ANALYSIS
To determine the regions for the subsequent Bayesian network
analysis, we identified eight DMN regions as regions of interest
(ROIs) for both the resting-state and task-state data separately.
Each ROI was defined as a 6-mm sphere centered on the local
maximum functional connectivity (FC) cluster in the DMN map
from the ICA analysis. We overlaid the results of one sample
t-test onto these eight spheres to obtain the final ROIs. The list
of spheres’ center coordinates are shown in Table 1. The ROIs
were then entered into the BN analysis for the construction of
EC patterns of DMN. The averaged time series over the vox-
els in each ROI of every subject were extracted and then linked

Table 1 | The ROIs defined for BN analysis.

Condition Brain region MNI coordinate BA T -value

x y z

Resting-state PCC −6 −60 28 31 18.17

Left IPC (lIPC) −42 −66 44 40 15.45

MPFC 1 50 24 9, 10 10.97

Right IPC (rIPC) 48 −57 36 39, 40 9.25

Right ITC (rITC) 63 −27 −20 20 7.43

Left ITC (lITC) −59 −21 −20 20, 21 6.43

Left HC (lHC) −24 −12 −28 35 5.82

Right HC (rHC) 24 −30 −16 36 6.77

Task-state PCC −1 −63 24 7, 31 15.81

Left IPC (lIPC) −45 −69 39 39, 40 9.38

MPFC −6 54 28 9 15.18

Right IPC (rIPC) 52 −66 28 39 5.12

Right ITC (rITC) 54 6 −36 21 9.43

Left ITC (lITC) −51 −9 −28 20, 21 10.39

Left HC (lHC)* −24 −12 −28 35 5.82

Right HC (rHC)* 24 −30 −16 36 6.77

*The lHC and rHC are not shown to be active in the task-state data at p <

0.001 with FDR corrected. To ensure the consistency of the network structure,

we choose the resting-state data’s 6-mm sphere center coordinates of the two

regions for task-state data.

individual-by-individual to represent the time series of each ROI
for the BN analysis.

A BN model is a directed acyclic graph (DAG) that encodes a
joint probability distribution over a set of random variables X =
{X1, X2, · · · , Xn}, in which nodes represent the brain regions for
the connectivity analysis, and arcs denote the conditional depen-
dence relationships between these regions. The dependencies are
qualified by the conditional probability of each region node given
its parent region nodes in the network. In addition, the absence of
arcs represents conditional independencies among these regions.
The BN graph encodes the Markov assumption. That is, each
node is independent of its non-descendants, given its parent
nodes in the network (Friedman et al., 2000). The BN can learn
the global connectivity patterns for complex systems without any
prior knowledge in a data-driven manner.

In our study, nodes in the BN represent ROIs from the DMN,
the time series from which is assumed to follow a linear Gaussian
conditional distribution. The nodes Xi(i = 1, 2, · · · , n) repre-
sents the ith ROI (n = 8), and the conditional probability density
of Xi given its parents Pa(Xi) can be given by

P (Xi|Pa(Xi)) = 1√
2πσi

exp

[
− 1

2σ2
i

(xi − ui)
2
]

Where ui and σi are, respectively, the conditional mean and con-
ditional variance of child node Xigiven its parent nodes, and
ui = μi + ∑

Xp∈Pa(Xi)
bp(xp − μp). bp is the connection weight coef-

ficient from parent node Xp to Xi that quantifies the strength
of relationship between them (Geiger and Heckerman, 1994);
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μi is the unconditional mean of node Xi; μp is the uncondi-
tional mean of parent node Xp. The joint probability distribution
of X = {X1, X2, · · · , Xn} is defined as a multivariate Gaussian as
listed below:

P (X1, X2, · · · , Xn) =
n∏

i = 1

P (Xi|Pa(Xi))

In other words, a determined linear Gaussian BN is the same as
a set of multivariate linear regression equations and each node
Xi can be considered as the linear regression of its parent nodes
Pa(Xi)(Shachter and Kenley, 1989).

The BN is typically viewed as a model selection problem
(Zucchini, 2000), which aims to find the network that best
characterizes the conditional dependencies represented by the
observation data. In general, there are two different model
selection approaches: constraint-based approach and score-based
approach (Spirtes et al., 2000). The constraint-based approach
performs a number of hypothesis tests on the independent rela-
tions between variables firstly, and next searches for the network
structure which is best consistent with the relations between brain
regions observed from data. The score-based approach makes
use of scoring metrics to guide the search process and choose
the network structure which maximizes the scoring function
as the optimal selection. Currently quite popular scoring func-
tions include the MDL, Bayesian information criterion (BIC)
and Akaike information criterion (AIC) (Akaike, 1974; Rissanen,
1978; Schwarz, 1978).

To learn the EC among the DMN regions, we employed the
BIC-based learning approach. The BN model that maximized the
BIC score among the space of possible candidates was selected as
the best fit network. The BIC is given by formula

BIC (G | D) ≈ log P
(
D

∣∣ G,�∗) − d

2
log m

in which the first term log P (D | G,�∗) is the maximized log-
likelihood of data D conditional on �∗, which measures the
degree of goodness for a given �∗, the maximum likelihood (ML)
estimation of parameters. The second term d

2 log m is a penalty
on the learned network complexity. Parameter d is the number
of independent parameters, and m is the number of the data
samples.

Then, we used the L1-Regularization Paths algorithm
(Schmidt et al., 2007) and the maximum likelihood (ML) esti-
mate implemented in the collections of Matlab functions written
by Murphy et al. (http://www.cs.ubc.ca/∼murphyk/Software) to
learn the DAG structure and parameters of the BN model, respec-
tively, for the resting-state and task-state. A step-wise regression
procedure was then performed to test the significance of connec-
tions in the learned BN model of DMN. This significance test
approach was based on the fact that the identified Gaussian BN
was equivalent to a set of multivariate linear regression equations.
That is, each node in the BN model can be considered as a lin-
ear regression of its parent nodes with connection weights as the
regression coefficients (Shachter and Kenley, 1989; Li et al., 2009).
Thus, the statistical significance of the regression coefficients can

be tested (p < 0.05). Finally the set of regression equations with
significant weights were in turn expressed in the form of BN graph
(Li et al., 2009, 2013; Wu et al., 2011), which was the determined
as the effective connectivity model of DMN.

EFFECTIVE CONNECTIVITY COMPARISON BETWEEN THE
RESTING-STATE AND TASK-STATE
For the constructed BN model of DMN, it was also our interest to
examine the difference of the effective connectivity between the
resting-state and the task-state groups via a randomized permuta-
tion. The null hypothesis is that there is no significant difference
of the BN connectivity weight coefficients between the resting-
state and the task-state groups. We take the differences of the
connection weight coefficients between the two conditions as
the statistical measure. The reference distribution is obtained by
calculating all possible values of the test statistic under rearrange-
ments of the group labels on the observed fMRI datasets. The
statistics for the real two group samples were calculated first. Then
at each iteration of the test process, the subject-group member-
ship was randomly assigned for each subject. A BN model for each
rearranged group was constructed, and the differences of the con-
nection weight coefficients between the two rearranged groups
were calculated. We ran a total of 1000 permutations and assessed
the sample distributions for these statistics. Finally, the probabili-
ties of the connections in the BN model of resting-state group that
were stronger than the ones in the task-state group as well as the
probabilities of the connections in the model of task-state group
that were stronger than the ones in the resting-state group were
examined for each of the connections presented in the BN model
for the resting-state group or task-state group.

RESULTS
FUNCTIONAL CONNECTIVITY RESULT OF THE DMN
Figure 1 shows the group DMN results in the resting-state (A)
and task-state (B), respectively, detected by Group ICA followed
by one-sample t-test with a p < 0.001 (FDR corrected). The
DMN in both the resting-state and task-state includes the PCC,
MPFC, bilateral IPC, ITC, and HC. To determine the regions for
subsequent EC analysis of the DMN in both the resting-state and
task-state groups, we defined the eight brain regions mentioned
above as ROIs in these two groups (Table 1).

BETWEEN-GROUP DMN FUNCTIONAL CONNECTIVITY DIFFERENCE
To compare the functional connectivity difference of the DMN
between the resting-state and task-state conditions, we performed
a two-sample t-test (FDR, p < 0.005) on individual DMN maps
between the two groups. Figure 2 displays the functional connec-
tivity differences of the DMN between the two states. The regions
including the lIPC, rIPC, and PCC display increased functional
connectivity in the resting-state compared with the task-state
(“rest>task”), whereas the lITC displays increased functional
connectivity during the task-state compared with the resting-state
(“task>rest”).

BN-BASED EFFECTIVE CONNECTIVITY OF THE DMN
Figure 3 shows the directed effective connectivity model of the
DMN during the resting-state and the task-state learned by the
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FIGURE 1 | DMN Maps of the resting-state (A) and task-state (B).

FIGURE 2 | Functional connectivity difference of the DMN between resting-state and task-state. The left panel (A) represents regions that show
increased connectivity during resting-state (“rest>task”), and the right panel (B) represents the opposite case (“task>rest”).

BN approach. To better elucidate the organizational architecture
of the DMN, we displayed the nodes including the PCC, MPFC,
and bilateral IPC, which were called hubs in previous literatures
(Buckner et al., 2008, 2009) in red, and other nodes in blue in the
connectivity model graphs. In accordance with our previous BN
analysis of the DMN (Li et al., 2012, 2013), Figure 3 demonstrates
consistently in the two states that the non-hub regions including
bilateral ITC and HC only receive connections from each other,
and there is no connection generating from the PCC, IPC or
MPFC to them. In the resting-state, the rITC receives connec-
tion from the lITC, and the lHC receives connections from the
bilateral ITC and rHC; while in the task-state, the lITC receives

connection from rITC, and the lHC receives connections from the
bilateral ITC, and the rHC receives connections from the bilateral
ITC and lHC. In contrast, the hub regions including the PCC,
IPC, and MPFC not only receive connections from each other, but
also receive connections from lITC and HC. That is the Bayesian
network connectivity of DMN in both resting-state and task-state
demonstrates a consistent “from non-hub subsystem to hub sys-
tem” direction pattern. It is also important to note that the PCC
works as a special node that does not generate but only receives
connections in the network under both the two conditions. As
shown in Figure 3, the PCC receives connections from the MPFC,
rITC, rHC and bilateral IPC in both the two conditions and also
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FIGURE 3 | Effective connectivity models of DMN during the

resting-state (A) and the task-state (B). Nodes responsible for the hubs
and the non-hubs are shown in red and blue, respectively. Solid and dashed
arcs are, respectively, for positive and negative connections. The line width is

proportional to the connection weights. The connections in the resting-state
group stronger than the ones in the task-state group (“rest>task”) are
shown in blue in the left panel (A), and the connections with the opposite
direction (“task>rest”) are shown in blue in the right panel (B).

receives two more connections from lHC and lITC during the
resting-state.

BETWEEN-GROUP DMN EFFECTIVE CONNECTIVITY DIFFERENCE
The results of the randomized permutation test are also shown
in Figure 3, in which the connection weights in the resting-state
group that are stronger than the ones in the task-state group
(“rest>task”) are shown in blue in the Figure 3A, and the con-
nections with the opposite direction (“task>rest”) are shown in
blue in the Figure 3B.

Figure 3 demonstrated that the weight coefficients of the con-
nections from lITC to rITC and bilateral IPC, from bilateral HC
and MPFC to PCC, from lIPC to MPFC and PCC, from rIPC to
lIPC, and from rHC to rIPC were greater during the resting-state
as compared to the task-state condition. While during the task-
state condition, the connections from bilateral ITC to MPFC and
bilateral HC, from rITC to PCC and bilateral IPC, from MPFC
to rITC and bilateral IPC, and from rIPC to PCC have larger
connection weights than that during the resting-state condition.

DISCUSSION
In this study, we first detected the functional connectivity of
the DMN in the resting-state and task-state conditions by using
Group ICA. Then, we examined the functional connectivity
difference between these two different conditions. The brain
regions in the DMN that displayed significant reductions in the
task-state group include the lIPC, rIPC, and PCC, whereas the
lITC displayed significant reductions in the resting-state group.
Furthermore, we employed a BN learning approach to explore
the effective connectivity patterns of the DMN during the resting-
state and the task-state. In conjunction with BN, we used a ran-
dom permutation test to assess the effective connectivity group
difference.

STABLE ORGANIZATIONAL ARCHITECTURE OF THE DMN
With or without a driving task, we found that the organization
pattern of the DMN is basically stable in both the resting-state and
task-state conditions, which is consistent with previous studies
that report the stable organization pattern in the DMN (Friston,
1994; Smith et al., 2009; Ma et al., 2012; Li et al., 2013). In
the present study, by referring to previous studies of the DMN
(Buckner et al., 2008, 2009; Li et al., 2012, 2013), we divided
regions in the network into hub regions including the PCC,
MPFC, and IPC, and non-hub regions including the ITC and
HC, and then examined the connections within the hub region
subsystem, the non-hub region subsystem and the ones between
them. The BN result of the DMN shows that, except for the
interactions with each other, the ITC and HC do not receive
any connections but only generate connections pointing to the
PCC, MPFC and IPC during both conditions. While for the PCC,
MPFC, and IPC, they are closely interconnected and also receive
connections from other regions in the network. This directed con-
nectivity relations suggest a consistent “from non-hub regions
to hub regions” organization architecture which is in accordance
with our previous BN analysis of the DMN in young (Li et al.,
2012) and older (Li et al., 2013) subjects during the resting-
state. The effective connections from the non-hub to hub regions
suggest an orderly information transmission projecting from the
lower areas to the higher areas during the resting and task state
consistent with the recent models of cognition based on hierar-
chical Bayesian inference and Helmholtzian free-energy (Friston,
2003; Carhart-Harris and Friston, 2010). Here the result indicates
that whether the brain is at rest or performing tasks, the DMN
appears to remain a stable and similar organizational architecture.
In addition we noticed that the PCC acted as a confluent node
that integrated information from all other regions during both
resting- and task-state conditions. It suggests that the PCC may
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play a pivotal role in mediating the neural activity throughout the
whole network (Fransson and Marrelec, 2008). This is consistent
with the observations of the PCC being a brain region of early
and prominent amyloid pathology (Fransson and Marrelec, 2008)
with reciprocal connections with the non-hub areas and connec-
tions with the prefrontal cortex and IPC (Kobayashi and Amaral,
2003, 2007).

The stability of the DMN in functional organizational archi-
tecture may first arise from the underlying solid neural anatomi-
cal infrastructure (Deco et al., 2010). Greicius et al. (2009) com-
bined resting-state fMRI with diffusion tensor imaging (DTI) to
demonstrate that functional connectivity of the DMN reflects the
underlying structural connectivity. It is speculated that the neu-
roanatomical connections may develop an architecture to be able
to store different and flexibly accessible brain functions (Deco
and Jirsa, 2012). Thus, we could find that regions in the DMN
were synchronously co-deactivated during a series of attention-
demanding tasks while co-activated during the resting-state in
previous reports (Raichle et al., 2001; Greicius et al., 2003; Raichle
and Snyder, 2007; Buckner et al., 2008), and similarly we could
demonstrate here that the dynamics of the DMN as represented
by the BN directed connectivity maintained a stable architec-
ture whether the brain was at rest or performing tasks. Smith
et al. (2009) employed ICA to compare the functional connec-
tivity networks during rest and activation, and they found a
close correspondence between the independent analyses of activa-
tion networks and resting-state networks. Our study has further
demonstrated a correspondence between the resting- and task-
state dynamics and suggested a stable network organizational
architecture that is based upon directed connectivity between
regions in the DMN. The stabilized architecture is functionally
meaningful in that it helps relevant DMN regions to process effi-
ciently and respond fast to any external stimulations, and to be
mobilized rapidly for perception and action (Deco et al., 2013).
In addition, the result may also suggest that the DMN can be
tested in a very short scanning session without having to decide in
advance what experimental paradigm should be used and requir-
ing active subject participation. This is particularly essential in the
clinical settings where the subjects may be Alzheimer’s patients.

DIFFERENCES OF DMN EFFECTIVE CONNECTIVITY BETWEEN
RESTING-STATE AND TASK-STATE
Although the organization pattern of the DMN is basically stable,
the interaction between different brain regions changed dramati-
cally in the task-state compared with that in the resting-state. We
found plenty of connections exert significant changes in these two
states by comparing the difference of each connection weights.
These findings indicate that the information processing mech-
anism of brain regions within the DMN was different between
the resting-state and task-state, which may be related to the
semantic task. Most worthy of mention is that among all the
12 connections that show increased connectivity weights during
the task-state condition, nine of them are directly related to the
ITG (Figure 3). This result is consistent with previous findings
that the lateral temporal regions play an essential role in seman-
tic processing (Demonet et al., 1992; Vandenberghe et al., 1996;
Maguire and Frith, 2004; Wei et al., 2012). Many neuroimaging

studies have demonstrated activations in the temporal regions in
semantic-related visual (Kobayashi and Amaral, 2007) and audi-
tory (Hickok and Poeppel, 2004) word and picture processing
tasks. In stroke patients (Schwartz et al., 2009) and seman-
tic dementia patients (Mummery et al., 2000), altered temporal
structure was related to word-level semantic comprehensions.
Wei et al. (2012) also found that the temporal regions function-
ally connected with the frontal cortex to generate a semantic
network that largely overlapped with the DMN in configura-
tion. The increased connectivity between the ITC and MPFC,
PCC, bilateral IPC and HC as denoted by BN is highly consis-
tent with the current recognition that the semantic processing is
related with widely distributed regions including the medial and
lateral temporal regions, prefrontal cortex, and posterior cingu-
late (Patterson et al., 2007; Binder et al., 2009; Han et al., 2013).
Therefore, the increased directed connectivity suggests that the
ITG was involved in the semantic processing together with the
MPFC, PCC, IPC, and HC in the DMN.

LIMITATIONS
Several limitations of the present study deserve a mention. First,
as a DAG, BN cannot model reciprocal connections between dif-
ferent brain regions and self-influenced connections. The acyclic
constraint on BN structure determines that the method cannot
disclose reciprocal connections of the DMN in the present study.
Second, the effective connectivity model constructed by BN is a
single snapshot of the dynamic process, and it cannot explicitly
disclose temporal causal relations between nodes. Future stud-
ies using the dynamic BN (Rajapakse and Zhou, 2007) which
can capture temporal interrelationships of brain regions, and
model reciprocal connections, would ideally be utilized to fur-
ther compare the dynamic of the DMN during the resting-state
and task-state conditions. Third, since the effective connectivity
measures in the current study were estimated for the resting- and
task-state groups separately, rather than individual subjects, it is
difficult to establish correlations between fMRI connections and
individual behavioral performance. Therefore, we note the con-
nection directionality identified from BN should be cautiously
interpreted.

In summary, using the BN learning approach, our current
study explored the effective connectivity pattern of the DMN
during the resting-state and the task-state. We have provided
compelling evidence for the stable organization structure of the
DMN whether the brain is in the resting-state or the task-state.
In addition, we have also demonstrated that the interactions
between different brain regions within the DMN are significantly
changed in the task-state. The results suggest that the DMN
intrinsically maintained a relatively stable structure whether at
rest or performing tasks but had different information processing
mechanisms under varied states. Furthermore, it is also our inter-
est to explore the relationship of the connections between brain
regions within the DMN and behavioral performance to further
reveal the work mechanism of the DMN in the future.

ACKNOWLEDGMENTS
This work was supported by the Funds for International
Cooperation and Exchange of the National Natural Science

Frontiers in Computational Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 118 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Wu et al. Bayesian network analysis of DMN

Foundation of China (61210001), the general Program of
National Natural Science Foundation of China (61222113,
31200847), Program for New Century Excellent Talents in
University (NCET-12-0056), Open Project Funding of the State
Key Laboratories of Transducer Technology (SKT1303), and
the Open-project of National Key Laboratory of Cognitive
Neuroscience and Learning (CNLYB1213).

REFERENCES
Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans.

Autom. Control. 19, 716–723. doi: 10.1109/TAC.1974.1100705
Binder, J. R., Desai, R. H., Graves, W. W., and Conant, L. L. (2009). Where

is the semantic system? A critical review and meta-analysis of 120 func-
tional neuroimaging studies. Cereb. Cortex 19, 2767–2796. doi: 10.1093/cercor/
bhp055

Biswal, B., ZerrinYetkin, F., Haughton, V. M., and Hyde, J. S. (1995). Functional
connectivity in the motor cortex of resting human brain using echo-planar MRI.
Magn. Reson. Med. 34, 537–541. doi: 10.1002/mrm.1910340409

Buckner, R. L., Andrews-Hanna, J. R., and Schacter, D. L. (2008). The brain’s default
network. Ann. N Y. Acad. Sci. 1124, 1–38. doi: 10.1196/annals.1440.011

Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T.,
et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: map-
ping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29,
1860–1873. doi: 10.1523/JNEUROSCI.5062-08.2009

Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. J. (2001). A method for mak-
ing group inferences from functional MRI data using independent component
analysis. Hum. Brain Mapp. 14, 140–151. doi: 10.1002/hbm.1048

Carhart-Harris, R. L., and Friston, K. J. (2010). The default-mode, ego-functions
and free-energy: a neurobiological account of Freudian ideas. Brain 133,
1265–1283. doi: 10.1093/brain/awq010

Deco, G., and Jirsa, V. K. (2012). Ongoing cortical activity at rest: criti-
cality, multistability, and ghost attractors. J. Neurosci. 32, 3366–3375. doi:
10.1523/JNEUROSCI.2523-11.2012

Deco, G., Jirsa, V. K., and McIntosh, A. R. (2010). Emerging concepts for the
dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci.
12, 43–56. doi: 10.1038/nrn2961

Deco, G., Jirsa, V. K., and McIntosh, A. R. (2013). Resting brains never rest: com-
putational insights into potential cognitive architectures. Trends Neurosci. 36,
268–274. doi: 10.1016/j.tins.2013.03.001

Demirci, O., Stevens, M. C., Andreasen, N. C., Michael, A., Liu, J., White, T.,
et al. (2009). Investigation of relationships between fMRI brain networks in the
spectral domain using ICA and Granger causality reveals distinct differences
between schizophrenia patients and healthy controls. Neuroimage 46, 419–431.
doi: 10.1016/j.neuroimage.2009.02.014

Demonet, J. F., Chollet, F., Ramsay, S., Cardebat, D., Nespoulous, J. L., Wise, R.,
et al. (1992). The anatomy of phonological and semantic processing in normal
subjects. Brain 115, 1753–1768. doi: 10.1093/brain/115.6.1753

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., and Raichle,
M. E. (2005). The human brain is intrinsically organized into dynamic, anticor-
related functional networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673–9678. doi:
10.1073/pnas.0504136102

Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: an
fMRI investigation of the resting-state default mode of brain function hypothe-
sis. Hum. Brain Mapp. 26, 15–29. doi: 10.1002/hbm.20113

Fransson, P., and Marrelec, G. (2008). The precuneus/posterior cingulate cor-
tex plays a pivotal role in the default mode network: evidence from
a partial correlation network analysis. Neuroimage 42, 1178–1184. doi:
10.1016/j.neuroimage.2008.05.059

Friedman, N., Geiger, D., and Goldszmidt, M. (1997). Bayesian network classifiers.
Mach. Learn. 29, 131–163. doi: 10.1023/A:1007465528199

Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000). Using Bayesian
networks to analyze expression data. J. Comput. Biol. 7, 601–620. doi:
10.1089/106652700750050961

Friston, K. (2003). Learning and inference in the brain. Neural Netw. 16, 1325–1352.
doi: 10.1016/j.neunet.2003.06.005

Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: a
synthesis. Hum. Brain Mapp. 2, 56–78. doi: 10.1002/hbm.460020107

Geiger, D., and Heckerman, D. (1994). “Learning Gaussian networks,” in
Proceedings of the Tenth Annual Conference on Uncertainty in Artificial
Intelligence (Seattle, WA), 235–243.

Goebel, R., Roebroeck, A., Kim, D. S., and Formisano, E. (2003). Investigating
directed cortical interactions in time-resolved fMRI data using vector autore-
gressive modeling and Granger causality mapping. Magn. Reson. Imaging 21,
1251–1261. doi: 10.1016/j.mri.2003.08.026

Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V. (2003). Functional con-
nectivity in the resting brain: a network analysis of the default mode hypothesis.
Proc. Natl. Acad. Sci. U.S.A. 100, 253–258. doi: 10.1073/pnas.0135058100

Greicius, M. D., Srivastava, G., Reiss, A. L., and Menon, V. (2004). Default-mode
network activity distinguishes Alzheimer’s disease from healthy aging: evi-
dence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 101, 4637–4642. doi:
10.1073/pnas.0308627101

Greicius, M. D., Supekar, K., Menon, V., and Dougherty, R. F. (2009). Resting-
state functional connectivity reflects structural connectivity in the default mode
network. Cereb. Cortex 19, 72–78. doi: 10.1093/cercor/bhn059

Gusnard, D. A., and Raichle, M. E. (2001). Searching for a baseline: functional
imaging and the resting human brain. Nat. Rev. Neurosci. 2, 685–694. doi:
10.1038/35094500

Hahn, B., Ross, T. J., and Stein, E. A. (2007). Cingulate activation increases dynam-
ically with response speed under stimulus unpredictability. Cereb. Cortex 17,
1664–1671. doi: 10.1093/cercor/bhl075

Han, Z., Ma, Y., Gong, G., He, Y., Caramazza, A., and Bi, Y. (2013). White mat-
ter structural connectivity underlying semantic processing: evidence from brain
damaged patients. Brain 136, 2952–2965. doi: 10.1093/brain/awt205

Heckerman, D. (1998). A Tutorial on Learning With Bayesian Networks.
Netherlands: Springer.

Hickok, G., and Poeppel, D. (2004). Dorsal and ventral streams: a framework for
understanding aspects of the functional anatomy of language. Cognition 92,
67–99. doi: 10.1016/j.cognition.2003.10.011

Jiao, Q., Lu, G., Zhang, Z., Zhong, Y., Wang, Z., Guo, Y., et al. (2011). Granger
causal influence predicts BOLD activity levels in the default mode network.
Hum. Brain Mapp. 32, 154–161. doi: 10.1002/hbm.21065

Kim, D., Burge, J., Lane, T., Pearlson, G. D., Kiehl, K. A., and Calhoun, V.
D. (2008). Hybrid ICA–Bayesian network approach reveals distinct effective
connectivity differences in schizophrenia. Neuroimage 42, 1560–1568. doi:
10.1016/j.neuroimage.2008.05.065

Kobayashi, Y., and Amaral, D. G. (2003). Macaque monkey retrosplenial cortex: II.
Cortical afferents. J. Comp. Neurol. 466, 48–79. doi: 10.1002/cne.10883

Kobayashi, Y., and Amaral, D. G. (2007). Macaque monkey retrosplenial cortex: III.
Cortical efferents. J. Comp. Neurol. 502, 810–833. doi: 10.1002/cne.21346

Lee, T. W., Girolami, M., and Sejnowski, T. J. (1999). Independent component
analysis using an extended infomax algorithm for mixed subgaussian and super-
gaussian sources. Neural Comput. 11, 417–441. doi: 10.1162/0899766993000
16719

Li, J., Li, R., Chen, K., Yao, L., and Wu, X. (2012). Temporal and instantaneous con-
nectivity of default mode network estimated using Gaussian Bayesian network
frameworks. Neurosci. Lett. 513, 62–66. doi: 10.1016/j.neulet.2012.02.008

Li, J., Wang, Z. J., Palmer, S. J., and McKeown, M. J. (2008). Dynamic Bayesian net-
work modeling of fMRI: a comparison of group-analysis methods. Neuroimage
41, 398–407. doi: 10.1016/j.neuroimage.2008.01.068

Li, R., Chen, K., Zhang, N., Fleisher, A. S., Li, Y., and Wu, X. (2009). “Effective
connectivity analysis of default mode network based on the Bayesian network
learning approach,” in Progress in Biomedical Optics and Imaging - Proceedings
of SPIE 7262, 72621W (Lake Buena Vista, FL). doi: 10.1117/12.810893

Li, R., Yu, J., Zhang, S., Bao, F., Wang, P., Huang, X., et al. (2013). Bayesian network
analysis reveals alterations to default mode network connectivity in individ-
uals at risk for Alzheimer’s disease. PLoS ONE 8:e82104. doi: 10.1371/jour-
nal.pone.0082104

Liao, W., Mantini, D., Zhang, Z., Pan, Z., Ding, J., Gong, Q., et al. (2010). Evaluating
the effective connectivity of resting state networks using conditional Granger
causality. Biol. Cybernet. 102, 57–69. doi: 10.1007/s00422-009-0350-5

Ma, S., Calhoun, V. D., Eichele, T., Du, W., and Adalı, T. (2012). Modulations of
functional connectivity in the healthy and schizophrenia groups during task and
rest. Neuroimage 62, 1694–1704. doi: 10.1016/j.neuroimage.2012.05.048

Maguire, E. A., and Frith, C. D. (2004). The brain network associated with acquir-
ing semantic knowledge. Neuroimage 22, 171–178. doi: 10.1016/j.neuroimage.
2003.12.036

Frontiers in Computational Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 118 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Wu et al. Bayesian network analysis of DMN

Margulies, D. S., Kelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos, F. X.,
and Milham, M. P. (2007). Mapping the functional connectivity of anterior
cingulate cortex. Neuroimage 37, 579–588. doi: 10.1016/j.neuroimage.2007.
05.019

Mazoyer, B., Zago, L., Mellet, E., Bricogne, S., Etard, O., Houde, O., et al. (2001).
Cortical networks for working memory and executive functions sustain the
conscious resting state in man. Brain Res. Bull. 54, 287–298. doi: 10.1016/S0361-
9230(00)00437-8

Mummery, C. J., Patterson, K., Price, C. J., Ashburner, J., Frackowiak, R. S. J.,
and Hodges, J. R. (2000). A voxel-based morphometry study of semantic
dementia: relationship between temporal lobe atrophy and semantic mem-
ory. Ann. Neurol. 47, 36–45. doi: 10.1002/1531-8249(200001)47:1%3C36::AID-
ANA8%3E3.3.CO;2-C

Patterson, K., Nestor, P. J., and Rogers, T. T. (2007). Where do you know what you
know? The representation of semantic knowledge in the human brain. Nat. Rev.
Neurosci. 8, 976–987. doi: 10.1038/nrn2277

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., and Petersen, S.
E. (2012). Spurious but systematic correlations in functional connectivity
MRI networks arise from subject motion. Neuroimage 59, 2142–2154. doi:
10.1016/j.neuroimage.2011.10.018

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., and
Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci.
U.S.A. 98, 676–682. doi: 10.1073/pnas.98.2.676

Raichle, M. E., and Snyder, A. Z. (2007). A default mode of brain func-
tion: a brief history of an evolving idea. Neuroimage 37, 1083–1090. doi:
10.1016/j.neuroimage.2007.02.041

Rajapakse, J. C., and Zhou, J. (2007). Learning effective brain connectivity with
dynamic Bayesian networks. Neuroimage 37, 749–760. doi: 10.1016/j.neuro
image.2007.06.003

Rissanen, J. (1978). Modeling by shortest data description. Automatica 14, 465–471.
doi: 10.1016/0005-1098(78)90005-5

Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. J., and Scheltens, P.
(2005). Altered resting state networks in mild cognitive impairment and mild
Alzheimer’s disease: an fMRI study. Hum. Brain Mapp. 26, 231–239. doi:
10.1002/hbm.20160

Schmidt, M., Niculescu-Mizil, A., and Murphy, K. (2007). “Learning graph-
ical model structure using L1-regularization paths,” in Proceedings of
the 22nd Conference on Artificial Intelligence, Vol. 2 (Vancouver, BC),
1278–1283.

Schwartz, M. F., Kimberg, D. Y., Walker, G. M., Faseyitan, O., Brecher, A., Dell, G. S.,
et al. (2009). Anterior temporal involvement in semantic word retrieval: voxel-
based lesion-symptom mapping evidence from aphasia. Brain 132, 3411–3427.
doi: 10.1093/brain/awp284

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat. 6, 461–464.
doi: 10.1214/aos/1176344136

Shachter, R. D., and Kenley, C. R. (1989). Gaussian influence diagrams. Manage.
Sci. 35, 527–550. doi: 10.1287/mnsc.35.5.527

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., et al.
(2009). Correspondence of the brain’s functional architecture during activa-
tion and rest. Proc. Natl. Acad. Sci. U.S.A. 106, 13040–13045. doi: 10.1073/pnas.
0905267106

Spirtes, P., Glymour, C. N., and Scheines, R. (2000). Causation, Prediction, and
Search, Vol. 81. New York, NY: MIT press.

Stevens, M. C., Pearlson, G. D., and Calhoun, V. D. (2009). Changes in the inter-
action of resting-state neural networks from adolescence to adulthood. Hum.
Brain Mapp. 30, 2356–2366. doi: 10.1002/hbm.20673

Svoboda, E., McKinnon, M. C., and Levine, B. (2006). The functional neu-
roanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44,
2189–2208. doi: 10.1016/j.neuropsychologia.2006.05.023

Vandenberghe, R., Price, C., Wise, R., Josephs, O., and Frackowiak, R. S. (1996).
Functional anatomy of a common semantic system for words and pictures.
Nature 383, 254–256. doi: 10.1038/383254a0

Van Dijk, K. R., Sabuncu, M. R., and Buckner, R. L. (2012). The influence of head
motion on intrinsic functional connectivity MRI. Neuroimage 59, 431–438. doi:
10.1016/j.neuroimage.2011.07.044

Wang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., et al. (2006). Changes
in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence
from resting state fMRI. Neuroimage 31, 496–504. doi: 10.1016/j.neuroimage.
2005.12.033

Wei, T., Liang, X., He, Y., Zang, Y., Han, Z., Caramazza, A., et al. (2012). Predicting
conceptual processing capacity from spontaneous neuronal activity of the left
middle temporal gyrus. J. Neurosci. 32, 481–489. doi: 10.1523/JNEUROSCI.
1953-11.2012

Wu, X., Li, R., Fleisher, A. S., Reiman, E. M., Guan, X., Zhang, Y., et al. (2011).
Altered default mode network connectivity in Alzheimer’s disease—a resting
functional MRI and Bayesian network study. Hum. Brain Mapp. 32, 1868–1881.
doi: 10.1002/hbm.21153

Wu, X., Lu, J., Chen, K., Long, Z., Wang, X., Shu, H., et al. (2009). Multiple neural
networks supporting a semantic task: an fMRI study using independent com-
ponent analysis. Neuroimage 45, 1347–1358. doi: 10.1016/j.neuroimage.2008.
12.050

Zheng, X., and Rajapakse, J. C. (2006). Learning functional structure from fMR
images. Neuroimage 31, 1601–1613. doi: 10.1016/j.neuroimage.2006.01.031

Zucchini, W. (2000). An introduction to model selection. J. Math. Psychol. 44,
41–61. doi: 10.1006/jmps.1999.1276

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 30 May 2014; accepted: 05 September 2014; published online: 24 September
2014.
Citation: Wu X, Yu X, Yao L and Li R (2014) Bayesian network analysis revealed the
connectivity difference of the default mode network from the resting-state to task-state.
Front. Comput. Neurosci. 8:118. doi: 10.3389/fncom.2014.00118
This article was submitted to the journal Frontiers in Computational Neuroscience.
Copyright © 2014 Wu, Yu, Yao and Li. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Computational Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 118 | 9

http://dx.doi.org/10.3389/fncom.2014.00118
http://dx.doi.org/10.3389/fncom.2014.00118
http://dx.doi.org/10.3389/fncom.2014.00118
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Bayesian network analysis revealed the connectivity difference of the default mode network from the resting-state to task-state
	Introduction
	Materials and Methods
	Subjects and Task
	Data Acquisition
	Data Preprocessing
	Group Independent Component Analysis
	Bayesian Network Analysis
	Effective Connectivity Comparison between the Resting-State and Task-State

	Results
	Functional Connectivity Result of the DMN
	Between-Group DMN Functional Connectivity Difference
	BN-Based Effective Connectivity of the DMN
	Between-Group DMN Effective Connectivity Difference

	Discussion
	Stable Organizational Architecture of the DMN
	Differences of DMN Effective Connectivity between Resting-State and Task-State
	Limitations

	Acknowledgments
	References


