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We often encounter pairs of variables in the world whose mutual relationship can be
described by a function. After training, human responses closely correspond to these
functional relationships. Here we study how humans predict unobserved segments of a
function that they have been trained on and we compare how human predictions differ to
those made by various function-learning models in the literature. Participants’ performance
was best predicted by the polynomial functions that generated the observations. Further,
participants were able to explicitly report the correct generating function in most cases
upon a post-experiment survey. This suggests that humans can abstract functions. To
understand how they do so, we modeled human learning using an hierarchical Bayesian
framework organized at two levels of abstraction: function learning and parameter
learning, and used it to understand the time course of participants’ learning as we
surreptitiously changed the generating function over time. This Bayesian model selection
framework allowed us to analyze the time course of function learning and parameter
learning in relative isolation. We found that participants acquired new functions as they
changed and even when parameter learning was not completely accurate, the probability
that the correct function was learned remained high. Most importantly, we found that
humans selected the simplest-fitting function with the highest probability and that they
acquired simpler functions faster than more complex ones. Both aspects of this behavior,
extent and rate of selection, present evidence that human function learning obeys the
Occam’s razor principle.
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INTRODUCTION
Identifying relationships among environmental variables is often
crucial to accurately predicting the value of one variable while
using information from another. For instance, we routinely judge
whether to cross a road after a quick glance at an oncoming car
because we make predictions consistent with the functional rela-
tionship between distance, velocity and time. While playing ball
sports, we predict how to best intercept a moving ball aided by
predictions based on limited visual information of its trajectory.
When trained, humans can reproduce these functional relation-
ships fairly accurately. An explanation of how humans learn to
accurately reproduce functions is however widely contested.

Some key issues underlying the study of function learning
are, abstraction, rule-based learning, and parsimony. Abstraction
refers to the ability to observe low-level information and infer
an overarching rule that helps to better classify and predict these
observations. Rule-based learning, in the context of function
learning, refers to whether humans make principled assump-
tions while interpolating or extrapolating functions. Parsimony
refers to the preference of a learning method that is effective in
producing reliable predictions yet requires minimal resources.

Some theories suggest that functions are abstracted as inte-
grated entities in a manner similar to polynomial regression
(Carroll, 1963; Brehmer, 1974; Koh and Meyer, 1991) while other
theories assume that no abstraction is necessary to explain human
function learning. The proponents of the latter view propose
that localized learning of a function through multiple indepen-
dent elements (Kalish et al., 2004), Gaussian Processes (Griffiths
et al., 2008) or paired associations between input and output
based on trial and error learning (Busemeyer et al., 1997; DeLosh
et al., 1997; McDaniel et al., 2009) can explain responses produced
by humans. The second issue of contention is whether function
learning is rule-based (irrespective of abstraction of the function)
or whether function learning is a consequence of simple associa-
tions that emerge through trial-and-error learning. For instance,
some algorithms assume that local linear basis functions can par-
tition any given function until it is reasonably approximated. The
use of a linear basis function constitutes a rule-based assumption.
Thirdly, various algorithms proposed in function learning use a
different number of parameters and therefore differ in algorith-
mic complexity, while at the same time, the generating functions
presented to participants also differ in complexity since they have
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a different number of parameters (see McDaniel et al., 2009).
Under these circumstances, it becomes difficult to compare mod-
els in an unbiased manner and at the same time detect systematic
differences that humans display toward functions with different
complexity. Without resolving such issues, the study of online
learning of changing functional relationships will remain a chal-
lenge and it will be nearly impossible to tease apart whether a
given effect is a consequence of inherent bias in algorithms or is
derived from human behavior during online function learning.

In this work, we propose to study function learning under a
new framework that provides a unifying perspective on all three
of the above mentioned issues: structure learning (Braun et al.,
2009, 2010a; Kemp and Tenenbaum, 2009; Tenenbaum et al.,
2011). Structure learning supports the view that (1) functions are
abstracted while at the same time, (2) allowing room for both
associative and rule-based accounts for learning. (3) Assuming a
structure hierarchy between functions and parameters allows us
to study function learning online by internally compensating for
algorithmic complexity, and therefore revealing the human treat-
ment of function complexity while adjusting to online changes in
the presented function.

Structure learning has recently emerged as an important the-
ory to explain human learning in cognitive science (Kemp and
Tenenbaum, 2008, 2009; Griffiths et al., 2010; Tenenbaum et al.,
2011), perceptual learning (Körding et al., 2007; Braun et al.,
2010b; Turnham et al., 2011; Narain et al., 2013a), and sensori-
motor learning (Braun et al., 2009, 2010b; Acuña and Schrater,
2010). Its main principle is abstraction along an hierarchy of
variables. It contends that the rapidity of learning and the exten-
siveness of learning generalization in humans can be explained
by the abstraction of lower-dimensional manifolds. For exam-
ple, in the case of function learning, a set of limited discrete
function hypotheses may exist on a low dimensional subspace
(ex. linear, quadratic or cubic), whereas the parameter spaces of
each of these lie at a higher dimension (2 dimensions for lin-
ear, 3 dimensions for the quadratic). One of the advantages of
such structure learning is that if evidence for a certain function is
substantial, such information will constrain the search of param-
eters from an infinite search space to a finite subset within these
higher dimensions and therefore facilitate the discovery of the
true parameters. Thus, far, function-learning research has never
attempted to separate these two levels of abstraction. Therefore,
when participants did not reproduce the exact function, it was
concluded that they could not learn the function. Although func-
tion learning and parameter learning may depend on each other,
it should be possible to abstract the correct function without
a completely accurate understanding of the parameters of that
function.

Here we develop a new intuitive paradigm for function learn-
ing that introduces uncertainty into the learning process, thereby
making multiple function hypotheses possible. Participants were
given a brief spatial cue and were asked to shoot at a tran-
sient target that would appear after an unknown time-interval.
Unbeknownst to the participants, the cue location and target time
were related according to various continuous functions. In our
first experiment, we tested performance based on predictions of
associative learning algorithms (ALM: Associative learning model

and EXAM: Extrapolation-Association model Busemeyer et al.,
1997; DeLosh et al., 1997), on partition-based algorithms [POLE:
Population of linear experts; (Kalish et al., 2004)], polynomial
regression (Carroll, 1963; Koh and Meyer, 1991), and Gaussian
Processes (Griffiths et al., 2008). Most importantly, we did not
merely test the mean of the predictions, but also took the vari-
ance of the predictions of each of these algorithms into account.
This method allowed us to assess how much of the variability in
participants’ responses could be explained by each algorithm.

The results of this study revealed that participants may be
abstracting the functions that we presented. Motivated by this
finding, we assumed a hierarchy between functions and param-
eters and used Bayesian model selection (BMS) to separate the
model-learning and parameter-learning levels of analysis. BMS is
a method to compute relative posterior probabilities among mod-
els by comparing the likelihood that each model produced the
observed data (Raftery, 1995; Wasserman, 2000; Burnham and
Anderson, 2002). The most important attribute of BMS is that
it requires each parameter to be integrated out from the likeli-
hood of each model. This gives rise to the marginal likelihood
(or evidence) for that model, which is the key term in determin-
ing the model posteriors. When multiple models can fit the data
equally well, models with more parameters have broader marginal
likelihoods than those of simpler models. Therefore, BMS has an
inbuilt parsimony mechanism that penalizes model hypotheses
that have more parameters. At the same time, we implement BMS
without any free parameters and ensure that all model hypotheses
are equiprobable a priori. This ensures that the probabilities gen-
erated by BMS are largely driven by the data of the participants.
This enables us to focus on the results of participants’ behavior
and to determine whether human learning is governed by any
perceptual rules of parsimony based on function complexity. We
ensure that other aspects of our analysis do not bias our findings
by performing a control analysis where we quantify what to expect
from a simulated participant with full knowledge of the structure
in the stimuli.

When we analyzed our participants’ data using BMS, we found
that even when other functions were viable candidates, and even
if parameter learning was not completely accurate, the probabil-
ity of the simplest function that could account for the data was
the highest. Furthermore, the rate of acquisition of this simpler
function was faster than that of more complex functions. Such
parsimonious selection and facilitation is reminiscent of the the-
oretical principle called the Occam’s razor. The principle states
that when different models of varying complexity can account for
the data equally well, the simplest one should be selected.

MATERIALS AND METHODS
EXPERIMENT 1
Design and procedure
Seven naïve paid participants gave written informed consent to
perform a computerized experiment. This experiment was part
of a program that has been approved by the ethical committee
of the faculty of Human Movement Sciences, VU University, and
adheres to the principles expressed in the Declaration of Helsinki.
Before starting the experiment, all participants were shown an
instruction video that familiarized them with the protocol and
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showed an example of a trial. They were invited to perform five
trials on the setup (display: 597 × 336 mm, 83 Hz) on stimuli that
were not used in the experiment.

In the study, participants attempted to strike a transient target
by means of an animated bullet, launched on the screen by means
of a key press (Figure 1A). Within a single trial, the animated bul-
let moved upwards and the target flashed at one fixed location.
The lateral position of the target changed across trials. Before the
start of each trial, participants saw a starting rectangle indicating
the lateral coordinate of the future target, and pressed a key to
initiate the trial. Upon initiation, the screen refreshed to a plain
black background whereupon a cue flashed briefly (35 ms) at the

exact location of the future target, serving as a second spatial cue
of the lateral target position. Participants had to anticipate the
target by firing an animated shot that would intercept the target,
which flashed for 150 ms after an unknown interval. If the shot
was fired after the target appeared it would surely miss (300 ms
travel time on each trial).

Unbeknownst to the participants, there was a functional rela-
tionship between the time at which the target appeared after the
start of the trial and the lateral position of the cue (identical to the
lateral position of the target). In order to distinguish the presented
functions from functions inferred from participant responses, we
shall refer to the former as ‘generating functions’. Three such

FIGURE 1 | Experiment 1. (A) Timeline of a single trial. Participants
initiated a trial, were presented with a cue about the spatial location of a
future target and they pressed a key to launch an animated bullet to
catch it en route. (B) Generating functions in three experimental sessions.
The vertical extent of the curves indicates the time during which the
target was visible (150 ms). Orange colors represent the test regions;
other colors represent the training regions. (C) Smoothed data-averages
(Gaussian kernel radius 10 mm) from all participants overlaid upon pooled
responses. (D) A single participant’s data for the quadratic (purple) and
cubic (green) sessions along with the set of models/heuristics that were

fit individually to the training data of each participant and whose
prediction distributions were used to calculate likelihoods on the basis of
the test data (curves indicate mean, shaded regions represent standard
deviation). (E) Differences between the negative log likelihoods (summed
over all participants) of the generating function and remaining heuristics
and models. Positive bars indicate worse performance when compared to
the generating function whereas negative bars indicate better
performance. Numbers atop each bar quantify how well the model
performs with respect to the generating function model i.e., 2lnK where
K is the Bayes factor (see Materials and Methods for details).
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generating functions were presented in a different session each:
a linear, a quadratic, and a cubic function spanning 200 mm of
space and a temporal range of 660–2000 ms. Within a session
the lateral positions of the stimuli were serially uncorrelated and
uniformly distributed. In the equations, x represents the lateral
position of the stimulus in mm, where x = 0 represents the cen-
ter of the display and of all distributions. f(x) represents various
functions specifying the onset time of the stimuli (in ms) relative
to trial initiation:

Linear : f1(x) = −5x + 1250

Quadratic : f2(x) = −0.1x2 + 0.5x + 1700

Cubic (wherea = 1/1500) : f3(x) = ax3 + ax2 − 3ax + 1500

There were two types of trials, those in which the target was
shown (training trials) and those in which the target was never
shown (test trials). In the training trials, the full extent of the error
was observable since the bullet crossed the screen before the trial
ended. Participants were given points, auditory and visual signals
if they scored a hit on the training trials. The bullet was seen on
test trials, but the target never appeared, and neither did any feed-
back. Training and test trials were drawn from separate regions
(Figure 1B). Three sessions, separated by 5-min pauses, were each
dedicated to a certain generating function. Different pre-trial
screen colors were used to aid participants in their recollection of
these sessions when they were questioned later. Participants were
asked to treat each block as a new experiment. The session order
was randomized across participants. Each session consisted of 170
trials in total, the first 50 were training trials and thereafter 60 test
and training trials were interleaved.

At the conclusion of the experiment, participants were asked
if they used a certain “strategy” to maximize their points. If they
indicated that they recognized a relationship between the target
location and timing, they were presented with a sheet containing
16 graphs (Supplementary Information Figure SI-1), consisting of
functions of various shapes and forms, and asked to pick the gen-
erating functions in the correct order in the three sessions (also
distinguished by different colors) in which they were presented.

Data analysis
Of the seven participants that we tested, we excluded from the
analysis the data of one participant who secured an average hit
rate of less than 10% for all three sessions and responded at
roughly the same value for the duration of each session, thereby
demonstrating no knowledge of the nature of the generating
function. The lowest average hit rate among the remaining six
participants was 24%, while the mean hit rate was about 38%.

To the training responses of the remaining six participants, we
fitted several models and heuristics that were inspired by vari-
ous function-learning accounts in the literature. The parameters
of all of the following models were fit in the same way only on
the training region data, through maximum likelihood estima-
tion. (1) An interpolation heuristic was fitted (details of fitting
follow in next paragraph) with separate line segments for each
training region and the predictions were interpolated linearly
between these. In case of extrapolation regions (linear and cubic

functions), this algorithm produced flat flanks extending at a con-
stant value obtained from the nearest peripheral observations of
the training range. This heuristic was developed to account for the
behavior of algorithms like the associative learning model (ALM:
Busemeyer et al., 1997) and for findings in studies where partic-
ipants used linear approximations for interpolation but were not
successful in extrapolating (Ernst and van Dam, 2010). We also
used (2) an extrapolation heuristic that also fitted line segments
to each training region but extrapolated its predictions. In the
flanked test regions (central), when the intersection point of the
two fitted line segments lay within the test region, we extrapo-
lated these segments and when it did not, we linearly interpolated
between the line segments. This is a partitioning algorithm based
on Population of Linear Experts (POLE: Kalish et al., 2004). The
associative ALM model was further developed to include linear
extrapolation EXAM (DeLosh et al., 1997), and therefore uses
different mechanisms to explain interpolation and extrapolation
behavior. EXAM’s predictions are therefore covered by a combi-
nation of the interpolation and extrapolation heuristic (discussed
later).

To account for the function abstraction view either through
polynomial regression or log-polynomial regression (Carroll,
1963; Brehmer, 1974; Koh and Meyer, 1991), we also used the
(3) generating function and (4) various polynomials of lower and
higher degrees. And finally, we used (5) Gaussian processes regres-
sion with a squared exponential kernel function (free parameters:
scale and precision) to test a novel approach to function learn-
ing (Griffiths et al., 2008). We could have used different basis
functions for each generating function like Griffiths et al. (2008),
however, the use of various polynomial basis functions implies
the abstraction of different functions and therefore would be tan-
tamount to using the Structure learning framework. Therefore,
we constrain our Gaussian processes regression analysis in a non-
parametric and abstraction-free spirit using the most widely-used
Gaussian processes kernel, the squared-exponential kernel.

We assumed, based on previous experiments (Narain et al.,
2013a) that participants would have adequately learned the task in
the first fifty training trials. We therefore removed these from the
analysis. The remaining 60 training trials, which were interleaved
with the same number of test trials, were used to fit the parameters
for each function using maximum likelihood estimation. Using
the fitted values of the parameters from the training regions, the
mean and variance of predictive distributions were generated for
the stimuli presented in test regions. The predictive distributions
for continuous functions were assumed to be Gaussian and their
mean and variance were calculated by calculating the variance
of the model given parameters. For example, in the linear case,
where θ̂0, is the estimate of the constant (bias) parameter, and θ̂1

that of the slope, while x∗ represents the observed location of the
cue for which a timing will be predicted, then the variance of that
prediction is given by:

var
(
θ̂0 + θ̂1x∗) = var

(
θ̂0

)
+ var

(
θ̂1

)
x∗2 + 2x∗cov

(
θ̂0, θ̂1

)

In the case of heuristics, different variances in two segments gave
rise to discontinuities in the predicted variance. The Gaussian
Processes provide their own predictive distribution. Given these
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predictive distributions, we then obtained the likelihoods of
these heuristics and models given the responses in the test
regions.

Bayes factor
The Bayes Factor (K) was calculated using the marginal likeli-
hoods by integrating the likelihoods over a large range of parame-
ters values for each model and heuristic. We then took the ratio of
the marginal likelihoods of each model and heuristic against that
of the generating function. The values reported in Figure 1E are
2 ln(K), which can be interpreted as in Table 1 (Kass and Raftery,
1995).

While Experiment 1 was designed to test whether human par-
ticipants can learn the structure of an abstract spatio-temporal
relationship at all, it tells us little about how fast they can learn
this relationship, how resilient they are while switching to a new
relationship, and whether they acquire different models at differ-
ent rates. We addressed these issues in a second experiment, and
describe methods for Experiment 2 below.

EXPERIMENT 2
Design and procedure
Thirty-one naïve paid participants provided written informed
consent to perform the same task as Experiment 1. The data
from three participants who matched the poor hit rate criteria in
Experiment 1 were excluded from the analysis. Unlike Experiment
1, feedback of errors was given on each trial and the full domain
of the generating function was uniformly and independently
sampled in the presented range. The generating functions used
were constant, linear and quadratic spanning the same ranges
as in Experiment 1 (in the equations below, x represents lateral
stimulus position in mm, functions f(x) represent the stimulus
onset-timing relative to trial initiation, in ms).

Constant : f0(x) = 1350

Linear f1(x) = 7x + 1350

Quadratic f2(x) = −0.15x2 + 0.1x + 2100

During the course of the experiment, the generating function was
switched twice, once after 100 trials and then after 250 trials.
Participants were divided into four groups (after exclusions, there
were seven participants in the first two groups, eight participants
in the third group and six in the last group) with various kinds of
switches (Figures 2, 3).

Table 1 | A scale to interpret the measure 2 ln(K), where K is the

Bayes Factor, a measure used in Figure 1E.

2 ln(K) Strength of evidence

0–2 Not worth a mention

2–6 Positive

6–10 Strong

>10 Very strong

Unlike hypothesis testing, there is no single criterion but graded levels of

evidence to support one of two hypotheses.

Data analysis and simulation
We analyzed both the model-level and parameter-level of analysis
in moving windows of 50 trials (451 window frames for the 500
trials in total). This window-size was chosen based on a trade-
off between the reduced power in smaller window sizes and loss
of temporal resolution in larger ones. Rates of acquisition were
calculated for 0.33, 0.5, 0.66, and 0.99 threshold probabilities of
selection based on the posterior probabilities obtained from the
Model level of analysis.

Control analysis
To control for whether the pattern of results was an inadver-
tent consequence of our analysis, we simulated the responses of
a participant with noisy responses but perfect knowledge of the
switches between models, the generating functions, and their cor-
responding parameters. Noise in responses plays an important
role in such analyses and therefore we added different levels of
zero-mean white Gaussian noise (sd: 10, 30, 50, 100, 150, 200,
400 ms) using Monte Carlo methods to the simulated partici-
pant’s responses. We then performed a moving-window analysis
identical to that used for the actual participants’ data, in order to
obtain the posterior probability of each model in each window
frame. We found that even with different noise levels, the poste-
riors and acquisition times were almost identical as long as the
maximum likelihood estimate (not the actual noise level) for the
noise level was recalculated in every window (451 frames for 500
trials) for each run (total Monte Carlo runs = 500). In Figure 4,
we use a simulated dataset with standard deviation 10 ms, which
was the uncertainty caused by the refresh rate of the monitor.

Bayesian model selection
We used the Bayesian Model Selection framework to obtain the
posterior probabilities of each model within a window frame.
We computed the marginal distributions for each model by ana-
lytically integrating out any parameters from lower levels in the
hierarchy. By using Bayes’ rule, and assuming prior distributions
(described below), we obtained posterior distributions for the
models given the data.

The data that we obtained from participants were first cast as a
multivariate Gaussian likelihood distribution (Equation 1). Here,
� constituted a diagonal matrix where the precision (1/variance)
of each element was specified by l, observation noise. Since we did
not always have access to the value of l, we numerically marginal-
ized this parameter (range of 0–5000 ms), assuming a uniform
prior over this entire range. Therefore, our implementation of the
BMS algorithm had no free parameters.

(1) The Likelihood of the models and parameters given the data
for Experiment 2:

p(Data|θ1:m, Mj) = |�|1/2

(2π)n/2
e− 1

2 (Y−F(θ1:m,X))T�(Y−F(θ1:m,X))

n Number of observations
m Number of parameters in jth model
Mj jth model, where j = 1–3 models under

consideration: constant, linear and quadratic
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FIGURE 2 | Function learning in Experiment 2. (A) The three
generating functions used in this experiment were presented in
different serial orders of presentation to the four groups. (B) The
average posterior probabilities (foreground bars) for the most-likely
function corresponding to participants’ responses within a

moving-window of 50 trials are shown over the course of the
experiment. The generating function that was used at a certain trial is
indicated by the presence of a background color. The four panels
represent averages of the four groups with different presentation
orders for the generating functions.

X ∈ R
n Stimuli (lateral position)

Y ∈ R
n Observation vector (responses)

F Generating function
� Precision matrix for multivariate Gaussian

Likelihood
θi Parameter space for each model

We defined priors over each of the parameters of the three gener-
ating functions (Equation 2). For simplicity, the Gaussian priors
for the parameters were assumed to be independent of each other
and centered at a mean value far from the true parameter value
with their standard deviation scaled to an order of magnitude
larger than their means. Thus, BMS did not have correct a priori

information about the true mean of the parameters. It is impor-
tant to note that the role of the prior in BMS is negligible in
comparison to that of the marginal likelihood under these cir-
cumstances i.e., the mean value of the prior, due to its inflated
variance hardly affects the outcome.

(2) Prior over parameters for Experiment 2:

p(θi|Mj) =
m∏

i = 1

√
ωi

(2π)1/2
e− 1

2 (θi − μi)
2ωi

ωi Precision of the ith parameter distribution (1/variance)
of the jth model
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FIGURE 3 | Parameter learning in Experiment 2. (A–D) The four panels
represent the four different groups of participants. Each panel consists of
three sub-parts, each indicating the parameters for the terms of the model
when the corresponding generating functions were presented (note that the
parameters have different scales and dimensions). Dashed lines represent
the values of the generating function. All other lines represent the maximum

likelihood estimate (MLE) of the parameters in a moving window of 50 trials.
Thin lines represent individual participants and thick lines represent averages.
The lines pertain to the parameters of the presented generating function and
therefore there may be discontinuities in the lines at the switches. All
participants’ data are plotted irrespective of whether or not the generating
function was the best description of the participants’ responses.

μi Mean of ith parameter distribution
θi ith parameter vector of jth model where j = 1–3

models under consideration: constant, linear and
quadratic

For the posterior probability of models described in Equation
(3), we first calculated the marginal likelihood by integrating the
product of the likelihood from Equation (1) with the parameter
priors from Equation (2).

(3) Marginal Likelihood for Experiment 2:

p(Data|Model) =
∫

θm

. . .

∫
θ1

p(Data|θ, Model)

p(θ |Model).dθ1 . . . dθm

After each parameter was integrated out analytically, we used the
marginal likelihood to compute the posterior probability of each
model given the data (Equation 4). Here the prior probability
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of each model being selected was assumed to be uniform (equi-
probable), therefore no one model was more likely than the other
a priori.

(4) Posterior Distribution of models in Experiment 2:

p(Model|Data) = p(Data|Model)p(Model)∑3
i = 1 p(Data|Modeli)p(Modeli)

Parameter estimation
In addition to analyzing the model posteriors in Experiment 2, we
also analyzed the learning of the parameters over the course of the
experiment. We obtained maximum likelihood estimates of each
parameter in each model given the observation noise that max-
imized the marginals in each window frame, obtained through
Bayesian model selection. The search space for parameters used to
determine the likelihood distributions (two orders of magnitude
larger than actual parameter dimensions) for terms of various
degrees were as follows, constant term: −10,000:10,000 ms, lin-
ear term: −100:100 ms.mm−1 quadratic term: −10:10 ms.mm−2.
The maximum likelihood estimates were calculated at each frame
of a window of 50 trials, and thus computed over the course of
the experiment. These curves were smoothed using a univariate
Gaussian kernel with a radius of 5 data points.

RESULTS
EXPERIMENT I
After being shown a brief spatial cue, participants were asked to
respond by firing an animated bullet, aiming to hit a transient
target en route. Unbeknownst to them, the location of the cue
and the timing of the target constituted a functional relation-
ship (linear, quadratic, or cubic; Figure 1B) and the purpose of

the experiment was to train them on certain regions of this func-
tion and test transfer to other regions. The participants’ responses
(lines in Figure 1C) seem to approximate most of the presented
functions. In Figure 1D we see an example of some models and
heuristics of the quadratic and cubic sessions being fit to the
responses from the training regions obtained from a represen-
tative participant. To assess model performance, the likelihoods
of the various models were calculated given the test stimuli and
participants’ test responses, based on MLE estimates of parame-
ters from the training regions. The best model or heuristic would
maximize the likelihood of the predictive distributions when
given the participants’ test responses i.e., it would minimize the
negative log likelihood. None of the models or heuristics enjoy
an advantage due to having more parameters since they were fit-
ted on regions that were different than those they were tested
on. This procedure uses a principle similar to cross-validation
techniques. The minimum negative log likelihood (summed over
trials and participants) that was obtained in all three cases was
that of the generating function, indicating that it was the best
model in all cases. But this does not necessarily imply that it was
an unequivocal winner. To understand the relative performances
of the models, we subtract the summed negative log likelihood
of the generating function model from that of each other model
(Figure 1E).

Another measure that we use to quantify these differences
is the Bayes factor (reported atop bars in Figure 1E). We cal-
culate the ratio of evidence (Marginal likelihood) between the
generating function and each other model or heuristic to obtain
the Bayes factor (details in Materials and Methods). We report
twice the log of the Bayes factor for each heuristic and model
in Figure 1E where any value greater than 2 indicates positive
evidence for rejecting that hypothesis in favor of the generating
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FIGURE 4 | Comparisons of function acquisition times in Experiment 2.

Comparison of (A) participants’ data and (B) average responses from
simulated participants with noisy responses (see Materials and Methods for
various noise values) for different switches of generating functions. The
ordinate represents acquisition time, i.e., the number of trials taken to

achieve a selection probability of 0.33. Average acquisition times of each
model for (C) participant’s data and (D) for responses from a simulated
participant. (E) Average function acquisition times for participants’ data as a
function of the selection threshold at which the acquisition time is
determined. Error bars represent standard error across participants.
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function (Table 1, also see Kass and Raftery, 1995). We find that
the differences between predictions from the higher degree poly-
nomial regression and those from regressing with the generating
function are negligible for the linear and quadratic sessions. For
all three sessions, participants’ performance is best predicted by
regression with polynomial functions of degree equal to or higher
than the generating function (Figure 1E). For all sessions, we find
that the extrapolation and interpolation predictions, predictions
from lower degree polynomials and predictions of Gaussian pro-
cess regression do not perform as well as the generating function.
Based on these results, one can conclude that our participants’
performance is either consistent with the use of the veridical
function or a higher degree polynomial suggesting that function
abstraction may have taken place.

We had another source of information to determine whether
participants had abstracted the generating function. After the
experiment, participants were asked whether they were able to
formulate a reliable strategy and if they indicated that there was
a relationship between the lateral target position and its timing,
they were asked to identify the nature of these relationships in
the order in which they were presented them from a panel of 16
cartoons (Figure S1, Supplementary Information). All six partic-
ipants identified the existence of a relationship in the stimuli and
also identified the linear and quadratic relationship in the correct
order. Four of these picked a positively sloped line for the cubic
condition and two participants chose a constant line for their
choice of generating function in the cubic session. Their selec-
tion of a positively sloped line for the cubic session also seems
to correspond with what can be seen in the averaged responses
of participants for the cubic session in Figure 1C. On the other
hand, in Figure 1E, we find that a cubic model best predicts
the responses of the participants in the cubic session. It must
be noted, however, that the fitted cubic functions do not resem-
ble the true generating function in the stimuli. The participants’
selection of a straight line in the questionnaire after the experi-
ment, may suggest that the information we provided about the
cubic was too noisy for them to be certain of its true shape and
a line best described the observations. Alternatively, they might
have been using a model that we did not test. We speculate that
participants’ inability to reproduce the actual cubic function may
be due to the very limited extent to which we exposed the cubic
generating function in the training regions. This seems quite
plausible since we know from other studies that observations of
target times and positions can be noisy (van Beers et al., 1999;
Ernst and Banks, 2002; Alais and Burr, 2004; Brenner and Smeets,
2007; Faisal et al., 2008; Maij et al., 2009; Jazayeri and Shadlen,
2010; Narain et al., 2013b).

EXPERIMENT II
We found in Experiment 1 that polynomial regression, often with
the generating function, best explains the participants’ responses
in most cases. Furthermore, upon post-experiment question-
ing, participants correctly identified the shapes of the linear and
quadratic functions. This shows that the performance of our par-
ticipants was most consistent with an abstracted function, espe-
cially in the linear and quadratic cases. The structure-learning
framework when applied to this problem would constitute a

hierarchy between the function and its parameters, whereby the
abstraction of a function would constrain the learning of its
parameters. To study whether function learning and parameter
learning can coexist, we performed an experiment (Experiment 2)
where we surreptitiously changed the function over the course of
the experiment.

We analyzed the time course of function-learning and
parameter-learning independently for our participants. We deter-
mined analytical solutions for the marginal likelihoods specific
to our generating functions using the Bayesian Model Selection
framework (Raftery, 1995; Wasserman, 2000; Burnham and
Anderson, 2002). We thus obtained posterior probabilities of each
function, which were independent of the values of their param-
eters. This allowed us to determine the time course of function
acquisition. These posterior probabilities were directly inferred
from the participants’ responses and indicated the probability of
functions that were most likely to be used by the participants
in generating their responses. Therefore, we took these posterior
probabilities to reflect the functions that participants abstracted.
By computing these posteriors over a moving window, we were
able to obtain an insight into how participants relearned func-
tions after we administered a sudden switch. Figure 2B shows that
participants were able to switch to the changes in the generating
function. The background colors in Figure 2B indicate the gen-
erating function and we see the average posterior probabilities in
the foreground. In order to show the variability of participants
within each group, we calculated the mean posterior value for
each participant’s data for all three models while that model deter-
mined the stimulus (including the first 100 trials where learning
may have been incomplete). We then averaged this mean value
of the posterior for each model across participants in each group
(Supplementary Information Figure SI-2). Note that these repre-
sent the extent of model selection and not the rate of acquisition
shown in subsequent figures.

Figure 3 shows the results of the parameter-level of analysis,
which in combination with Figure 2, provides us with the com-
plete picture of our participants’ learning behavior. While the
parameter estimates are calculated for each function, it is worth
noting that higher order functions can fully mimic simpler func-
tions whereas the reverse is not true. In Figure 3, the dashed lines
represent the true value of the parameters for the three models
and the background colors display the generating functions that
were presented over the course of the experiment. We see here
that the averages across participants (thick lines) begin to con-
verge toward the dashed lines after the switches occur, indicating
that the parameters selected by the participants were close to the
veridical parameter values. Please note that different parameter
values differ in dimension and impact the shape of the function
in different ways. For instance, small fluctuations in the quadratic
term, lead to large changes in the convexity or concavity of the
quadratic function. Most importantly, we see that the parameter
values for participants do not always reach the veridical values,
while the function selection probabilities remain high. Bayesian
model selection can only incur high posterior probabilities for a
certain function when the responses and noise-level indicate it to
be a clear winner. Therefore, function abstraction is possible even
when parameter learning is not fully accurate.
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Furthermore, since Bayesian model selection calculates poste-
rior probabilities for all models simultaneously and compensates
inherently for their complexity, it allows us to perform Bayesian
model comparison on all three functions simultaneously. We
find that posteriors calculated for participant’s responses corre-
spond to high selection probabilities for the simplest model that
is viable for the data (Figure 2B). For example, in selecting the
linear model, the parameters of both the linear and quadratic
models yield the same result. In fact, had there been serious non-
linearities in participants’ responses, the posteriors would have
been highest for the quadratic function. We find in Figure 2B,
that there is a remarkable coincidence in high selection probabil-
ities for the function presented. This is independently confirmed
by the parameter values in Figure 3. This selection of the simplest
most viable model when other functions were equally plausi-
ble is consistent with the Occam’s razor principle. One could
argue however, that these results are symptomatic of the fact that
Bayesian model selection has an internal penalty on its marginals
that controls for complexity. To address this issue, in the following
paragraphs we discuss an independent measure to test whether
human learning of function obeys the Occam’s razor.

Figure 2B suggests that the time taken by participants to learn
different functions varies. As we reasoned above, if we can estab-
lish that the selection of simpler models that are viable is also
facilitated over the selection of more complex models, this would
be further support for the view that learning is consistent with the
Occam’s razor principle. If we observe the acquisition time for the
quadratic function in Group 2 (Figure 2B), and compare it to the
opposite transition, the switch to the constant function from the
quadratic in Group 4, we find the latter to be more rapid. To better
quantify these acquisition times, we organized the various pairs
of switches on the basis of function complexity, i.e., constant to
linear vs. linear to constant, and so forth, and calculated the aver-
age time for which the posterior probability for the correct model
for each participant reaches a certain threshold (p = 0.33; chance
level for model selection).

The results in Figure 4A show that participants acquired sim-
pler models faster than complex models. To interpret these results
and to ensure that the pattern observed in the data was not
merely an artifact created by elements of the analysis or algorithm,
we simulated responses generated by a simulated participant
who had perfect knowledge of the location of switches and the
nature of the models and parameters. We added various lev-
els of noise to the simulated participant’s responses (not shown
in Figure 4, details in Materials and Methods) and then sub-
jected these responses to the same windowed analysis as that used
for our participants in Figure 2B. We considered the acquisition
times obtained from the simulated participant as a baseline to
interpret actual participants’ data. In Figure 4B, we observe that
the baseline is biased toward selecting a complex model more
rapidly than selecting a simple one. This bias is introduced due to
our use of the moving-window analysis. When the window over
which we analyze our data moves over a transition-point between
two models, it contains a mixture of responses from two different
models. Of the two, the model with higher degrees of freedom
is likely to distinguish itself more prominently than the simpler
model and is therefore likely to be selected faster by the algorithm.

For example, 15 independent samples from a quadratic are likely
to provide strong evidence of non-linearity even when 15 remain-
ing samples suggest a noisy linear trend. The moving-window
analysis therefore invariably creates an asymmetry in the acqui-
sition times such that more complex models are selected faster.
Please note that the asymmetry found in the data of human
participants was exactly the opposite in nature (Figure 4A).

For the participants, the acquisition of complex models was
slower than that of simpler ones, which can be seen in the aver-
aged plots in Figure 4C. Treating the model acquisition times
from the simulated participant responses as a baseline crite-
rion, we performed two-tailed t-tests (since the effect could
be in either direction) with the differences obtained from the
participants’ data (Figures 4A,B). We found all differences to
be significantly different from those obtained from the base-
line [LC-CL t(5) = −13.04, p < 0.01; QL-LQ t(6) = −9.39, p <

0.001; QC-CQ t(5) = −7.80, p < 0.001]. In all cases, the differ-
ence in acquisition times for the transitions to complex models
were longer than those for the transitions to simper models.
To determine whether the pattern of results from the partici-
pants’ data depended upon a certain selection probability, i.e.,
the posterior probability at which we compute the acquisition
time, we repeated the above analysis for different threshold cri-
teria (Figure 4E). We found that the result that the acquisition
for transitions to simpler functions is facilitated over transi-
tions to complex ones, holds for different selection probabilities.
Therefore, not only is the simplest most viable function selected
to the greatest extent by the participants, its acquisition is also
facilitated over that for more complex models. These results in
combination are suggestive that function acquisition obeys the
Occam’s razor principle.

DISCUSSION
In this paper, we propose structure learning as a candidate frame-
work to explain human function learning. We make our case by
tackling three issues central to function learning. (1) Can humans
abstract functions? (2) Are rule-based learning and associative
learning mutually exclusive? (3) Do humans employ principles
of parsimony, like the Occam’s razor while learning various
functions?

ABSTRACTION
Early accounts of function learning claim that humans are capa-
ble of abstracting continuous functions (Carroll, 1963; Bedford,
1989; Koh and Meyer, 1991). Recent accounts have shifted the
focus from testing performance in humans to the trial-by-trial
learning of the generating function presented (Kalish et al., 2007;
McDaniel et al., 2009). In Experiment 1, we generate predictions
that are compatible with five different function learning algo-
rithms in the literature. When we tested both the participants’
responses in the test regions we found that polynomial regres-
sion of the veridical model or higher orders, best explained the
data. We assumed that all these algorithms consistently applied
a single principle during interpolation and extrapolation of the
function and therefore, we could not directly test an important
function learning algorithm, EXAM, which assumes associational
learning for interpolation but linear extrapolation. However, the
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predictions of EXAM would be consistent with the extrapolation
heuristic for the linear and cubic functions, and for the quadratic
function, they would be most consistent with the interpolation
heuristic (see McDaniel et al., 2009). For our data, neither of these
heuristics performed better than the generating functions.

Intuitively, one would expect human behavior to reflect some
continuity of prediction across the entire domain of the functions
that humans experience and predict in. For example, one could
expect the variance of human predictions to gradually increase
as the location of extrapolation moves further away from the
last observed point, but one would not expect an abrupt jump
in the prediction variance just outside the experienced range
of stimuli. Such discontinuities sometime occur while imple-
menting POLE and EXAM. To address this problem, Gaussian
processes may prove a good alternative both (Griffiths et al.,
2008). Gaussian process regression has elements of rule-based
and instance-based learning, and embodies a unifying princi-
ple and suffers no discontinuities in its predictions. It is also
compatible with neural network implementations and therefore
enjoys a plausible description at a biological level. What we
achieve through Bayesian model selection can be achieved by
assuming different polynomial Gaussian process kernels, how-
ever, this would also require the explicit assumption that the
function is abstracted, and therefore amounts to the same argu-
ment that is made by us through BMS. Gaussian processes
with a generic kernel (squared exponent) could not however
explain the performance of our participants convincingly, sug-
gesting that there may be some value in assuming abstracted
basis functions.

It has been thought that polynomial and heuristic regression
models are indistinguishable since they make predictions that
cannot be teased apart, however, with adequate statistical power,
the use of likelihoods and quantifying these results using the
Bayes factor, one can sensitively discriminate the predictions of
these models. As is the case with all multiple model comparisons,
there can be no certainty about whether participants were using
a model that was not included in the hypothesis set. However,
within the hypothesis set considered, which in our opinions spans
all major algorithms in function-learning research, polynomial
regression, especially with the veridical function, emerges as the
best candidate. These results in combination with the results from
the questionnaires after the experiments imply that either the
veridical function, or a function of higher order was abstracted
by the participants.

RULE-BASED LEARNING vs. ASSOCIATIVE LEARNING
In the structure learning account, rule-based learning and asso-
ciative learning can in fact coexist, just like we demonstrate
in Experiment 2 that high posterior selection probabilities can
occur even when the parameter values are not fully learned.
One possibility to reconcile these two views is that associative
learning may take place until a function is abstracted, and there-
after the function can constrain the search for parameters in a
rule-based manner. This may indicate a new interpretation of
results in previous function learning studies; the inability to recre-
ate a presented function exactly does not imply the lack of an
understanding of that function.

One interesting insight that has emerged from recent data is
that the manner in which a function is exposed to participants
may influence whether they abstract a rule or whether they merely
learn an associative map. Fulvio et al. (2013) propose that sparse
sampling leads to associative mapping whereas dense sampling
may lead to the abstraction of a function. Narain et al. (2013a)
found that participants could not learn a function when it was
exposed to them locally, whereas they rapidly learned it when the
sampling was uncorrelated and dense. Ernst and van Dam (2010)
found a lack of linear extrapolation behavior in a shape associ-
ation task, however they used sparse sampling. All these results
suggest that density and serial correlation of sampling may play a
role in whether learning is rule-based or associative.

OCCAM’S RAZOR
It has long been reported in literature that there is a primacy
of linear functions in human function learning (Carroll, 1963;
Deane et al., 1972; Brehmer, 1974; Bedford, 1989). In other
words, humans learn linear functions faster than non-monotonic
non-linear functions. It has also been shown that across differ-
ent blocks, more complex functions take longer to be learned
(McDaniel and Busemeyer, 2005).

In Experiment 2, we study the acquisition of functions of dif-
ferent complexity as they change surreptitiously over time. This is
the first time that a function learning study has been performed in
a non-stationary environment. Our use of Bayesian model selec-
tion allows us to perform a parallel comparison among the three
functions without any fear of biased outcomes due to overfitting
with more complex functions. The results demonstrate that even
when other models could explain the data equally well (i.e., for the
constant case, a linear and quadratic model can mimic a constant
model), The selection probabilities were highest for the simplest
model (Figure 2). Please note that this result stands out especially
because we implement BMS without any free parameters and use
an equal a priori selection probability for each model.

The data in Experiment 2 was analyzed over a sliding window
of 50 trials. This window-size was selected because it traded-off
reliable posterior calculations with the minimum loss of tempo-
ral resolution. This does not take the possibility that participants
may have switched models multiple times during the transition,
into account. Unfortunately, at smaller window sizes estimating
the posterior becomes unreliable due to noise (Supplementary
Information Figure SI-3), although the overall pattern remains
the same as the fifty-trial window. We may not be able to pin-
point the exact switch point but with our current analysis and by
testing multiple thresholds, we can generate a consistent and reli-
able measure for the model acquisition rate of each model and
participant.

In addition to selecting the simplest, most-viable function, the
simpler functions also enjoyed faster acquisition rates for differ-
ent switch combinations (Figure 4). Therefore, simpler functions
have an advantage both in the extent of selection and also in
their rates of selection. Both these independent measures sug-
gest that the learning of simpler models is preferred over that
of equally viable complex models. The Occam’s razor principle
states that when multiple models are equally capable of explain-
ing a dataset, the simplest one should be selected. Recent studies
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have revealed that humans exhibit Occam’s razor-like parsimony
in perceptual and sensorimotor learning tasks (Gershman, 2013;
Genewein and Braun, 2014). If the Occam’s razor is a pervasive
principle in human perception and model learning, it may explain
the previous findings on primacy of linear function over non-
linear functions, since linear models would have low parametric
complexity. Such a unifying principle could help us better under-
stand how humans abstract and learn functions among variables
in the world.

In summary, we propose that structure learning may serve
as a unifying framework for function learning. We believe this
to be a viable framework due to the results in Experiment 1
where function abstraction seems most likely. The separation
of function learning and parameter learning makes room for
abstraction, rule-based learning as well as associative accounts.
Further, it helps us to understand human perceptual principles
free of algorithm-induced biases and in a massively parallel man-
ner. In this study, it has led to the revelation that human function
learning obeys the Occam’s razor principle.
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