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Three-dimensional visual perception requires correct matching of images projected to
the left and right eyes. The matching process is faced with an ambiguity: part of one
eye’s image can be matched to multiple parts of the other eye’s image. This stereo
correspondence problem is complicated for random-dot stereograms (RDSs), because
dots with an identical appearance produce numerous potential matches. Despite such
complexity, human subjects can perceive a coherent depth structure. A coherent solution
to the correspondence problem does not exist for anticorrelated RDSs (aRDSs), in
which luminance contrast is reversed in one eye. Neurons in the visual cortex reduce
disparity selectivity for aRDSs progressively along the visual processing hierarchy. A
disparity-energy model followed by threshold nonlinearity (threshold energy model) can
account for this reduction, providing a possible mechanism for the neural matching
process. However, the essential computation underlying the threshold energy model is
not clear. Here, we propose that a nonlinear modification of cross-correlation, which
we term “cross-matching,” represents the essence of the threshold energy model. We
placed half-wave rectification within the cross-correlation of the left-eye and right-eye
images. The disparity tuning derived from cross-matching was attenuated for aRDSs.
We simulated a psychometric curve as a function of graded anticorrelation (graded
mixture of aRDS and normal RDS); this simulated curve reproduced the match-based
psychometric function observed in human near/far discrimination. The dot density was
25% for both simulation and observation. We predicted that as the dot density increased,
the performance for aRDSs should decrease below chance (i.e., reversed depth), and the
level of anticorrelation that nullifies depth perception should also decrease. We suggest
that cross-matching serves as a simple computation underlying the match-based disparity
signals in stereoscopic depth perception.

Keywords: binocular disparity, stereo vision, correspondence problem, random-dot stereogram, anticorrelated,

nonlinearity, discrimination

INTRODUCTION
The stereoscopic system gives rise to three-dimensional visual
perception by combining the images from the left and right eyes.
To successfully combine the two images, the system needs to
match a given part of one eye’s image to the correct counter-
part in the other eye’s image projected from the same object. The
positional difference between the correctly matched parts, called
binocular disparity, is a quantitative depth cue for the stereoscopic
system.

The matching process is often confronted with the stereo
correspondence problem, in which locally correct but globally
incoherent matches (i.e., false matches) result in ambiguous
solutions to the problem. The stereoscopic system must select
correct matches and discard false matches in order to gener-
ate an appropriate representation of three-dimensional world
(Julesz, 1971; Marr and Poggio, 1979). The correspondence prob-
lem is particularly complex for random-dot stereograms (RDSs;
Figure 1; Julesz, 1971), in which identical black and white dots

yield numerous false matches (Figure 2). Despite this complex-
ity, human subjects can perceive a coherent three-dimensional
structure embedded in RDSs, suggesting that the stereoscopic sys-
tem is capable of selecting a globally consistent solution to the
correspondence problem (red rounded box, Figure 2).

Anticorrelated RDSs (Figure 1B) are often used to test the neu-
ral representation of the globally consistent solution (Cumming
and Parker, 1997; Nieder and Wagner, 2001; Janssen et al., 2003;
Krug et al., 2004; Tanabe et al., 2004; Kumano et al., 2008; Preston
et al., 2008; Theys et al., 2012). In anticorrelated RDSs, one eye’s
image is contrast-reversed to produce the photographic negative
of the other eye’s image. For this stimulus, the correspondence
problem does not have a globally consistent solution. Therefore,
neurons representing the solution should lose or reduce dispar-
ity selectivity for anticorrelated RDSs, while retaining sensitivity
for correlated RDSs. Some neurons in the visual cortex, par-
ticularly in higher areas in the cortical hierarchy, exhibit such
response properties (Janssen et al., 2003; Tanabe et al., 2004;
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Doi and Fujita Modified cross-correlation underlying depth perception

FIGURE 1 | Three random-dot stereograms (RDSs) with different

binocular correlations. (A) Correlated RDSs. Binocular fusion of the left
and right half-images with parallel (uncrossed) viewing produces a
sensation of a central square floating from background. (B) Anticorrelated
RDSs. The luminance contrasts are reversed for all the dots in the central
square of the right half-image. Reversed, correct, or no depth is perceived,
depending on stimulus configuration. (C) Half-matched RDSs. Half of the
dots in the central square of the right half-image have reversed contrasts.
Correct depth can be perceived, since half of the dots carry the same
disparity signals as in the correlated RDSs.

Haefner and Cumming, 2008; Kumano et al., 2008; Theys et al.,
2012).

Threshold nonlinearity after a disparity energy model explains
the reduced disparity selectivity for anticorrelated RDSs (Lippert
and Wagner, 2001; Nieder and Wagner, 2001). We call this
model the “threshold energy model.” The threshold nonlinearity
provides a sufficient explanation for neurons with even-
symmetric tuning curves, and a further combination of energy-
model subunits explains the reduced selectivity in odd-symmetric
tuning curves (Haefner and Cumming, 2008; Tanabe and
Cumming, 2008).

Cross-correlation of left- and right-eye images is the funda-
mental computation underlying the disparity selectivity of energy
models (Fleet et al., 1996; Anzai et al., 1999; Filippini and Banks,
2009). Similarly, thresholded cross-correlation may represent the
fundamental computation underlying the disparity selectivity of
the threshold energy model. However, the characteristics of such
a nonlinear extension of cross-correlation have yet to be exam-
ined in detail. In particular, the size of a spatial window before
threshold nonlinearity should influence the output of thresh-
olded cross-correlation. Here, we derived the analytical solution
for the disparity signal of thresholded cross-correlation, for which
we coined the term “cross-matching.” We examined two versions

FIGURE 2 | A schematic illustration of the stereo correspondence

problem. The problem is illustrated using an example of one-dimensional
random-dot stereograms. The visual system infers the three-dimensional
structure in the environment (top) from the images projected to the left
and right retinae (middle). The process of solving the problem can be
defined as finding the globally consistent solution (red rounded box) while
discarding local matches that do not belong to the global solution (false
matches, pink elements outside of the red rounded box). Aquamarine
elements indicate contrast-reversed combinations. Gray elements indicate
background–background or background–dot combinations.

of cross-matching in responses to RDSs with graded anticorrela-
tion (i.e., a graded mixture of anticorrelated and correlated dots).
First, we considered the simplest version of cross-matching, in
which the threshold operates with single-pixel resolution. Second,
we explored a more general version of cross-matching, in which
signals are spatially averaged with various window sizes prior to
the threshold. We showed that both versions of cross-matching
reproduced a nearly flat disparity-tuning function to anticor-
related RDSs. The first version also explained the match-based
psychometric curve of near/far discrimination hypothesized and
observed in our previous psychophysical studies (Doi et al., 2011).
The results obtained with the first version of cross-matching were
preserved in the second version, up to a modest extent of spatial
averaging prior to the threshold. Finally, we derived testable pre-
dictions regarding how the match-based psychometric function
should change if the dot density in RDSs is manipulated.

RESULTS
CROSS-CORRELATION AND CROSS-MATCHING FOR CORRELATED,
ANTICORRELATED, AND HALF-MATCHED RDSs
We examined cross-correlation and cross-matching when the fol-
lowing conditions were met. First, dot patterns of RDSs were
updated over time while a three-dimensional structure defined by
binocular disparity remained fixed (i.e., dynamic RDSs). Thus,
responses to individual dot patterns could be averaged out.
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Doi and Fujita Modified cross-correlation underlying depth perception

Second, a flat disparity plane was embedded in the RDSs
(Figure 1). Third, the shape and position of the embedded dispar-
ity plane were given a priori, so that the spatial windows (receptive
fields) could have matching shapes and positions. Because these
conditions are often met in measurements of neuronal dispar-
ity tunings, our conclusions are applicable to a wide range of
neurophysiological experiments.

Under these conditions, cross-correlation unambiguously sig-
nals the disparity embedded in correlated RDSs (Figure 3A). We
used the cross-correlation (C) with the following form:

C(d) =
〈

1

k

∑
(x,y)∈wIL

(
x, y

)
IR

(
x − d, y

)〉
, (1)

where d indicates the disparity between the left-eye window (W)
and the right-eye window (receptive-field disparity); IL and IR

indicate the luminance contrasts of left-eye and right-eye images,
respectively (1 for bright dots, 0 for background, and −1 for dark
dots), as a function of horizontal (x) and vertical (y) positions; k
indicates the number of elements (pixels) in the spatial window;
and 〈·〉 indicates the expected value across an infinite number of
time frames (i.e., different dot patterns).

We illustrated the cross-correlation by showing the horizon-
tal sections of RDSs (Figure 3). The cross-correlation is the
spatial average of possible binocular combinations (diamond
field in Figure 3) along the horizontal (frontoparallel) dimen-
sion. The binocular combinations of contrast signals have the
following codes: b = (bm, br, bb) = (1, −1, 0), where bm,
br , and bb indicate the codes for contrast-matched (pink ele-
ments in Figure 3), contrast-reversed (aquamarine elements),
and background–background or background–dot combinations
(gray elements), respectively. We calculated the expected value
of the cross-correlation by bpT , where p = (pm, pr, pb) indi-
cates the probability for a given binocular combination to be
contrast-matched, contrast-reversed, and background, respec-
tively. If the receptive-field disparity (d) matches the stimu-
lus disparity (ds) (e.g., zero in the examples in Figure 3), p =( 1+c

2 ρ, 1−c
2 ρ, 1 − ρ

)
, where c and ρ indicate binocular corre-

lation and dot density in units of probability, respectively. If

d �= ds, p =
(

ρ2

2 ,
ρ2

2 , 1 − ρ2
)

. Thus, the expected value of the

cross-correlation C (d) = cρ if d = ds, and 0 otherwise.
We also calculated the probability density function of the

cross-correlation to examine the size of the variability originat-
ing from the randomness of the RDSs. The probability for the
spatial window W to contain a given combination of contrast-
matched, contrast-reversed, and background pixels is defined by
the trinomial distribution with the following form:

D(n, p) = k!
nm!nr!nb!pnm

m × pnr
r × pnb

b , (2)

where n = (nm, nr, nb) indicates the numbers of contrast-
matched, contrast-reversed, and background pixels, respectively,
within the spatial window. The value of the cross-correlation is
1
k bnT = nm−nr

k for a given n. We constructed the probability den-
sity function of the cross-correlation across all possible combi-
nations of (nm, nr, nb) that satisfy nm + nr + nb = k. In Figure 3,

FIGURE 3 | Graphical illustration of cross-correlation and

cross-matching for the detection of disparity in RDSs. (A) Left, an
example correlated RDS and the internal reconstruction (diamond). Right,
expected cross-correlation and cross-matching as a function of
receptive-field disparity (Equations 1 and 3, respectively, with a dot density
of 25%). Dotted lines indicate the 95% intervals of the probability density
functions, calculated with a pixel number of 1024. Our cross-correlation and
cross-matching correspond to the spatial average of contrast-matched
(pink) and contrast-reversed (aquamarine) elements in the diamond along
the frontoparallel axis, with the codes described at the bottom of the figure.
The temporal average across different random-dot patterns gives the
smooth expected functions plotted at the right side. (B,C) Anticorrelated
and half-matched RDSs, respectively, in the same format as in (A).

we showed the 95% interval of the probability density function
calculated with k = 1024. With this window size and 25% dot
density, the total number of dots becomes similar to that used in
our previous psychophysical experiments (Doi et al., 2011, 2013).

For correlated RDSs, the cross-correlation has a peak at zero
disparity, corresponding to the depth of the globally consistent
solution (Figure 3A, blue). This is because all non-background
binocular combinations are contrast-matched at the stimulus
disparity, whereas contrast-matched and contrast-reversed com-
binations occur with equal probability and on average cancel
each other out at other disparities in correlated RDSs. Cross-
correlation (Equation 1) is most closely related to the disparity
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tuning of tuned-excitatory energy models. These neurons have
receptive fields shifted in position between the two eyes, just as
the cross-correlation has windows shifted in position. Neuronal
disparity tuning is a function of stimulus disparity, and the cross-
correlation is a function of window (receptive field) disparity.
Both neuronal disparity tuning and cross-correlation peak when
stimulus disparity and receptive-field disparity are aligned, but
fall to baseline levels when the two disparities are different. For
a neuronal tuning curve, the transition from peak to baseline is
gradual because of the band-pass nature of receptive fields (Qian
and Zhu, 1997).

We defined cross-matching as a nonlinear modification of
cross-correlation with the following form:

M(d) =
〈

1

k

∑
(x,y)∈w

[
IL

(
x, y

)
IR

(
x − d, y

)]+〉
, (3)

where [·]+ indicates half-wave rectification. In this version of
cross-matching, we placed the half-wave rectification inside the
cross-correlation, so that the threshold nonlinearity operated
with single-pixel resolution. The cross-matching can be under-
stood as easily as the cross-correlation, because the only difference
is the code for contrast-reversed combination (−1 for the cross-
correlation and 0 for the cross-matching). If we substitute the

binocular-combination codes b with the new codes b
′ = [

b
]+ =

(1, 0, 0), the expected value of the cross-matching is b′pT =
1+c

2 ρ if d = ds, and ρ2

2 otherwise. Thus, the disparity tuning
of the cross-matching is similar to that of the cross-correlation
for correlated RDSs (Figure 3A), although the baseline height

is slightly different: 0 for the cross-correlation but ρ2

2 for
the cross-matching (ρ = 0.25 for the examples in Figure 3,
right).

Outputs of cross-correlation and cross-matching differed
more prominently when RDSs were anticorrelated (Figure 3B).
The cross-correlation became inverted, because in anticorrelated
RDSs all binocular combinations at the stimulus disparity are
contrast-reversed. However, the cross-matching was nearly flat
for a low dot density (e.g., 25%), because half-wave rectifica-
tion converts negative, contrast-reversed combinations to zero.
The expected value is exactly zero when stimulus and window
disparities are aligned, and it is close to zero otherwise. Thus, a
simple nonlinear modification of cross-correlation is sufficient to
explain nearly flat disparity tuning, at least for low-density RDSs
(see below for high-density RDSs).

We found the opposite pattern of difference for half-matched
RDSs, in which half of the dots were contrast-matched and
the other half contrast-reversed (Figure 1C). Any purely cross-
correlation-based mechanisms would be unable to detect the
disparity of half-matched RDSs, because the signals between
contrast-matched and contrast-reversed binocular combinations
cancel each other out (see the zero-disparity line in Figure 3C).
However, human subjects can perform a near/far discrim-
ination task for half-matched RDSs, suggesting an involve-
ment of separate match-based disparity detectors (Doi et al.,
2011, 2013). Here, the cross-matching function serves as a
computation underlying the match-based detector. As a result

of half-wave rectification (Equation 3), contrast-reversed and
contrast-matched binocular combinations do not cancel out
by the spatial average. The expected peak height is generally
higher than the expected baseline level. Thus, unlike the cross-
correlation, cross-matching can signal the disparity embedded in
half-matched RDSs.

A FULL PROFILE OF SIGNAL STRENGTH AS A FUNCTION OF
BINOCULAR CORRELATION AND DOT DENSITY
We next examined a more complete profile of cross-correlation
and cross-matching by varying the dot density from 0 to 100%. In
the examples above, we used a dot density of 25%, which has been
often used in physiological and psychophysical studies with anti-
correlated RDSs (Cumming and Parker, 1997; Krug et al., 2004;
Tanabe et al., 2004; Kumano et al., 2008; Doi et al., 2011, 2013).
We defined signed signal strength as the peak minus baseline
of the cross-correlation or cross-matching. For cross-correlation,
the expected signal strength (SC) has the following form:

SC (c, ρ) = C (d = ds) − C (d �= ds)

= cρ (4)

The signal strength is separable into correlation and density
terms, odd-symmetric relative to zero binocular correlation
(Figure 4A, left, vertical solid line), and linearly dependent on
both binocular correlation (Figure 4B, left) and dot density
(Figure 4C, left).

For cross-matching, the expected signal strength (SM) has the
following form:

SM (c, ρ) = M (d = ds) − M
(
d �= ds

)
= (c + 1) ρ

2
− ρ2

2
(5)

The signal strength is not separable into correlation and den-
sity terms (Figure 4A, right). The zero-signal line slanted in the
correlation-density map (Figure 4A, right, solid line). In other
words, the signal strength, as a function of correlation, crossed
the zero level at larger correlations for larger densities (Figure 4B,
right). Notably, for a dot density of 100%, the profile was sim-
ilar to that of cross-correlation (compare solid lines between
Figure 4B left and right). However, as the dot density decreased,
the signal strength changed nonlinearly in a manner dependent
upon binocular correlation (Figure 4C, right). The positive sig-
nals near 100% correlation slowly decayed (Figure 4C, right, solid
line), but the negative signals near −100% correlation diminished
more quickly (Figure 4C, right, dotted line). At 0% correlation,
the signal strength had a concave profile with a peak at 50%
density (Figure 4C, right, broken line).

For anticorrelated RDSs, the peak of the cross-matching is
always zero, whereas the baseline increases with the dot density.
Thus, the signal strength becomes more and more negative with
increasing density. For half-matched RDSs, the peak and baseline
have the same values at 0% and 100% density; thus, the signal
strength is zero at the two ends. Indeed, a half-matched RDS
with 100% density is an uncorrelated RDS devoid of any form
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FIGURE 4 | Expected signal strengths of cross-correlation (left

column) and cross-matching (right column). (A) Expected signal
strength (peak − baseline) is plotted as a function of dot density and
binocular correlation. Black line indicates zero signal strength. (B)

Horizontal cross-section of the signal strength in (A), as a function of

binocular correlation. Solid, broken, and dotted lines indicate sections at
100, 62.5, and 25% dot densities, respectively. (C) Vertical cross-sections
of the signal strength in (A), as a function of dot density. Solid, broken,
and dotted lines indicate sections at 100, 0, and −100% correlations,
respectively.

of disparity information. For intermediate densities, the peak is
higher than the baseline, with the maximum difference at 50%
density.

We also examined the variability of signal strength caused by
the randomness of the RDSs, because the variability is relevant
for psychophysical performance. To this end, we generated 1000

random-dot patterns for a given combination of dot density and
binocular correlation, and calculated the standard deviation of
the signal strength for the cross-correlation and cross-matching.
All simulations in this study were performed using Matlab
(Mathworks). An RDS consisted of a central square and a sur-
rounding background, as in Figure 1. The central square had a
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size of 32 pixels × 32 pixels (i.e., 1024 pixels), whereas the sur-
rounding area had a size of 34 pixels × 34 pixels. The disparity
of the central square was −2 pixels (crossed disparity). The signal
strength was simulated as the response difference between near-
preferring and far-preferring units [C (d = −2) − C (d = 2) and
M (d = −2) − M (d = 2) for the cross-correlation and cross-
matching, respectively; note that here C (d) and M (d) indicate
responses to an individual dot pattern, but not an expected value
across different patterns]. The receptive-field size and location

were adjusted to the center square of the RDS (k = 1024). We
calculated the average standard deviation across 200 simulation
runs.

When the number of pixel was sufficiently large (i.e., 1024),
the scale of the standard deviation was smaller than that of the
expected value. The maximum standard deviation was 0.044 and
0.022 for the cross-correlation and cross-matching, respectively
(Figure 5). By contrast, the expected signal strength varies from
1 to −1 for the cross-correlation and from 0.5 to −0.5 for the

FIGURE 5 | Standard deviations of the signal strengths. The figure convention is the same as that used in Figure 4, except for the color scale of (A) and the
y-axis range of (B,C). (C) The dotted line overlaps the solid line in the left panel.
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cross-matching (Figure 4). Thus, when the number of pixels is
matched to our experimental condition (Doi et al., 2011), the
variability of the signal strength should have only a negligible
effect on psychometric functions.

If the size of the spatial window is decreased, the overall scale
of the standard deviation should increase, although the depen-
dence of the standard deviation on binocular correlation and dot
density (Figure 5) should be invariant with respect to window
size. When the expected value and standard deviation have com-
parable scales, both should influence the shapes of psychometric
functions.

GENERALIZED CROSS-MATCHING WITH SPATIAL AVERAGE PRIOR TO
THRESHOLD
The original version of cross-matching has a threshold (half-wave
rectification) before spatial average (Equation 3), allowing us to
derive the simple form of signal strength (Equation 5). However,
the spatial average of binocular-interaction signals is likely to
occur prior to thresholding nonlinearity in the visual system. In
the threshold energy model (Lippert and Wagner, 2001), a thresh-
old is applied to the outputs of energy models. Energy models
produce signals that are already spatially averaged according to
the receptive-field profiles (Ohzawa et al., 1990). Therefore, we
also considered a more general form of cross-matching, defined
as follows:

G(d) =
〈[

1

k

∑
(x,y)∈wIL

(
x, y

)
IR

(
x − d, y

)]+〉
, (6)

in which half-wave rectification is applied after spatial average. We
calculated the expected signal strength of the generalized cross-
matching using the trinomial distribution (Equation 2). The dis-
tribution describes possible combinations of contrast-matched,
contrast-reversed, and background pixels in the spatial win-

dow. The value of the generalized cross-matching is 1
k

[
bnT

]+ =
[nm−nr]+

k for a given n. When the size of the spatial window (k) is
1, the expected value of the generalized cross-matching is equiv-
alent to that of the original cross-matching (Equation 5). When
the size of the spatial window is 2, the calculation using the trino-
mial distribution gives an expected signal strength (SG) with the
following form:

SG (c, ρ|k = 2) = ρ

4

(
ρc2 + 2c + ρ3 − 3ρ + 2

)
. (7)

When the size of the spatial window is infinite, the generalized
cross-matching is equivalent to the half-wave-rectified cross-
correlation: G (d|k = ∞) = [C(d)]+. Thus, the expected signal
strength has the following form:

SG (c, ρ|k = ∞) = G (d = ds|k = ∞) − G (d �= ds|k = ∞)

= [C (d = ds)]+ − [C (d �= ds)]+

= [cρ]+ . (8)

Figure 6 showed the expected signal strength of generalized cross-
matching for window sizes of 2, 8, 32, and infinite pixels. As the

window size increased, the expected signal strength varied from
that of the original cross-matching (Figure 4, right column) to
the half-wave-rectified version of the cross-correlation (Figure 6,
rightmost column). The negative signal near −100% correlation
became weaker, whereas the positive signal near 100% correlation
became stronger (Figure 6A). For the generalized cross-matching,
the zero-signal contour was not a straight line (Figure 6A, black
curve). For a larger window size, a larger part of the zero-signal
contour stayed close to the vertical zero-correlation line, and
the contour deflected more sharply at a lower dot density. For
the 32-pixel window, the signal strength crossed zero at a near-
zero correlation, even for 25% dot density (Figure 6B, middle
right, dotted line). The signal strength was close to zero both
for −100 and 0% correlations across the entire range of dot
densities (Figure 6C, middle right, broken and dotted lines).
However, original and generalized cross-matching shared some
key characteristics up to a modest extent of spatial averaging
(e.g., 8 pixels). In both cases, the signal strength crossed zero
at larger correlations for larger dot densities (Figure 6B, middle
left). The signal strength at −100% correlation decreased with dot
density (Figure 6C, middle left, dotted line). We shall focus on
these shared characteristics when we derive testable predictions
regarding psychophysical performance in the next section.

SIMULATION OF THE PSYCHOMETRIC FUNCTION IN NEAR/FAR
DISCRIMINATION
To examine how these disparity signals contribute to the
psychophysical performance of depth judgment, we simu-
lated near/far discrimination based on either cross-correlation
(Equation 1) or cross-matching (the original definition; Equation
3). We generated RDSs using the same method we used for the
simulation of signal-strength variability (Figure 5). The dispar-
ity of the central square was either 2 (uncrossed) or −2 (crossed)
pixels. We prepared “near” and “far” detectors for each compu-
tation (cross-correlation and cross-matching). Response subtrac-
tion between these detectors was consistent with the standard
decision-making mechanism in two-alternative forced-choice
discriminations (Figure 7A; Shadlen et al., 1996; for physiolog-
ical evidence in depth discrimination, see Uka and DeAngelis,
2004; Uka et al., 2005; Shiozaki et al., 2012). The response sub-
traction is also consistent with an “opponency” implemented in
a generalized disparity energy model (Haefner and Cumming,
2008; Tanabe and Cumming, 2008). The near and far detec-
tors had window (receptive-field) disparities corresponding to
the crossed and uncrossed disparities of the RDSs, respectively
(d = −2 and 2). The size and location of the window (W in
Equations 1 and 3) were matched to those of the central square
of an RDS.

We simulated a psychometric function by varying the correla-
tion level from −100 to 100% for each of four dot densities (25,
50, 75, and 100%). In a given trial, we calculated the response of
a detector averaged over 16 random-dot patterns. In our previ-
ous experiments, human subjects observed the same number of
dot patterns on each trial (Doi et al., 2011). The model gener-
ated a near choice if the response of the near detector was larger
than that of the far detector. The response was rendered into
a binary choice after corruption with “decision noise” (Shadlen
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FIGURE 6 | Signal strength for generalized cross-matching. Spatial
averages were taken at various window sizes (2, 8, 32, and infinite
pixels from the left to right columns) before thresholding nonlinearity.
Other figure conventions are the same as those used in Figure 4,

including the color scale of (A), except for the y-axis range of (B,C). In
the rightmost panel of (A), the solid black line indicates the boundary
between positive and zero signal strengths, and the left part of the line
is all zero.

et al., 1996). The noise was sampled from a normal distribution
with a mean of zero. The standard deviation of the normal dis-
tribution was 0.1 for the main simulations, whereas it was varied
from 0.025 to 0.2 for supplementary simulations. We chose 0.1 for
the main simulations so that the simulated psychometric function
had a shape roughly similar to that of the observed psychomet-
ric function (Doi et al., 2011). However, the noise size does not
affect the binocular correlation at which the psychometric func-
tion crosses the level of chance, a key prediction that we shall focus
on later. Each single data point of the psychometric function was
based on 1200 trials ([30 trials each for crossed and uncrossed
disparity] × 20 blocks).

The psychometric functions had qualitatively different shapes
for cross-correlation and cross-matching when the dot density
was 25% (Figure 7B, top). The psychometric function of cross-
matching was close to the chance level at −100% correlation,
and performance gradually increased with increasing correlation.

Notably, the performance was well above the chance level at 0%
correlation (i.e., half-matched RDSs). By contrast, the psycho-
metric function of the cross-correlation had an odd-symmetric
shape that reflected its odd-symmetric signal strength (Figure 4B,
left, dotted line). These simulated psychometric functions resem-
bled the ideal match-based and correlation-based psychometric
functions hypothesized previously (Figure 7C adapted from Doi
et al., 2011, 2013). Under certain conditions, the near/far dis-
crimination of human subjects agrees with the ideal match-based
psychometric curve (Figure 7D; Doi et al., 2011). Thus, cross-
matching serves as a simple computation underlying match-based
depth perception.

Our previous psychophysical studies used only a dot density of
25%. Thus, the psychometric functions simulated with higher dot
densities provide testable predictions regarding cross-matching.
The performance at −100% correlation should monotonically
decrease below the level of chance as the dot density is increased.
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FIGURE 7 | Simulation of psychometric functions based on

cross-correlation and cross-matching. (A) Schematic diagram of the
simulation. Near and far detectors were prepared for each computation
(cross-correlation and cross-matching); their receptive fields are shown
with orange and aquamarine squares on RDSs. The responses of these
detectors were subtracted, corrupted with Gaussian noise, and rendered
into a binary decision. (B) Simulated psychometric functions for a
near/far discrimination task with low (top) to high (bottom) dot densities.

(C) Ideal psychometric functions for the match-based (red) and
correlation-based (blue) psychometric functions, hypothesized previously
(adapted from Doi et al. (2011, 2013); the copyright of this figure
belongs to the Association for Research in Vision and Ophthalmology).
(D) Psychometric function observed in human subjects with 25% dot
density and 0.03◦ disparity (Doi et al., 2011). Performance was averaged
across four subjects. Error bars indicate standard error of means across
subjects.

The same prediction can be derived from the cross-correlation
or pure energy models, because cross-correlation also produces
a negative signal at −100% correlation, and the negative sig-
nal is stronger for higher densities (Figure 4C, left, dotted line).

However, another prediction is specific to the cross-matching: the
psychometric function crosses the level of chance, and the cor-
relation level at this crossing point should be higher for larger
densities (Figure 7B). These predictions are straightforward
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consequences of the signal strength (Figure 4B, right), and are
preserved even when binocular signals are averaged modestly
before threshold nonlinearity (Figure 6B, leftmost and middle
left columns for 2-pixel and 8-pixel averages, respectively).

We performed additional simulations to examine how the
size of the decision noise affects psychometric functions. First,
for a given dot density, the psychometric function of the cross-
matching crossed the chance level at the same binocular corre-
lation, irrespective of the noise size (Figure 8, red). Thus, noise
size does not affect our key prediction for the cross-matching: the
binocular correlation for the crossing point should increase with
dot density. Second, the simulated psychometric function of the
cross-matching qualitatively agreed with the ideal match-based
function (Figure 7C, red) and observed function (Figure 7D) at
a dot density of 25% and a noise sigma of 0.1, but not at a
higher density, irrespective of the noise size (Figure 8, red). As
the density was increased, the performance at −100% correla-
tion decreased away from the chance level. This discrepancy from
the ideal and observed functions can be remedied by increasing
the noise size. However, an increase in the noise size decreases
the performance at 0% correlation toward the chance level, giv-
ing rise to another discrepancy. This is noteworthy because the
actual dot density we used in our experiments was also 25%.

The stereoscopic system may give rise to match-based depth
perception (Figure 7C, red) for only low-density RDSs.

SIMULATED PSYCHOMETRIC FUNCTION FROM THRESHOLD ENERGY
MODEL
Finally, we attempted to confirm that the psychometric function
simulated from the threshold energy model agrees with that from
original cross-matching when the model’s receptive field and
stimulus dot have comparable sizes. To this end, we performed
a similar simulation using the disparity detectors of a threshold
energy model rather than those of cross-matching (Figure 9A).
Likewise, we swapped the detectors of cross-correlation with
those of a pure energy model. In our simulation, an energy-
model detector consisted of two simple cells with different
receptive-field phases (0 and 0.5π). For each simple cell, we cal-
culated the inner product of the receptive field and stimulus
for the left and right eyes (see the next paragraph for details).
The results were summed across both eyes, followed by squar-
ing nonlinearity, and integrated across the two simple cells to
obtain an energy-model response. For the detectors of threshold
energy model, we extracted the binocular-interaction component
from the energy-model response by subtracting the monocular
components (Tanabe et al., 2005). The binocular-interaction

FIGURE 8 | Effects of noise size on the simulated psychometric

functions. Simulated psychometric functions for a near/far
discrimination task with low (top) to high (bottom) dot densities

and small (left) to large (right) decision noises. A decision-noise
sigma of 0.1 (middle right column) was the value used in the main
simulations (Figure 7B).
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FIGURE 9 | Simulation of psychometric functions based on energy

model and threshold energy model. (A) Schematic diagram of the
simulation. Orange and aquamarine circles indicate the receptive
fields of the near and far detectors, respectively. The radius of the
circle corresponds to two standard deviations of the receptive-field

envelope. We simulated the response of the threshold energy model
by passing the binocular-interaction component of the energy model
response through half-wave rectification. (B) Simulated psychometric
functions for a near/far discrimination task tested from low to high
dot densities.

component was then passed through half-wave rectification
(zero threshold). It is often useful to remove the monocu-
lar components from an energy-model response before output
nonlinearity (Thomas et al., 2002). We integrated the frame-
by-frame responses of detectors across 16 different random-dot
patterns per trial and added Gaussian decision noise (mean,
0; standard deviation, 1000). We chose this value of standard
deviation for the same reason as described above for the sim-
ulation for cross-matching. The near/far choice was obtained
by comparing the responses between the near and far detec-
tors, for both the energy model and the threshold energy
model.

The receptive fields of the model simple cells were small
two-dimensional Gabor functions, which we used previously
(Equation 7 in Doi et al., 2013). Briefly, the vertical and horizon-
tal widths of receptive field (the standard deviations of Gaussian
envelope) were 0.05◦, comparable to the receptive fields of some
macaque V1 neurons (Prince et al., 2002). The far and near

detectors had position disparities of 0.14◦ and −0.14◦, respec-
tively (i.e., even-symmetric tuning curve), and the RDSs also had
stimulus disparities of ±0.14◦. For simplicity, we matched these
disparity magnitudes to a single-dot size used in our previous
experiments (Doi et al., 2011, 2013). RDSs and receptive fields
had a size of 24 pixels × 24 pixels; a single dot had a size of 8 pix-
els × 8 pixels; and one pixel corresponded to 0.0175◦. Each single
data point of the psychometric function was based on 1200 trials,
as in the simulation of cross-matching.

We confirmed that the psychometric functions simulated from
the threshold energy model behaved similarly to those simu-
lated from original cross-matching (compare Figure 9B red and
Figure 7B red). In particular, we observed the same character-
istics in the shift of a psychometric curve as a function of dot
density. As the dot density increased, the performance at −100%
correlation decreased below the level of chance. Psychometric
functions crossed the level of chance. The binocular correla-
tion of this crossing point shifted toward larger correlations
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for larger densities. Thus, the predictions we made from orig-
inal cross-matching held for the threshold energy model. The
depth discrimination simulated from original cross-matching is
qualitatively similar to that obtained from a threshold energy
model, if the receptive-field size of the threshold energy model
is comparable to the dot size of the RDS.

DISCUSSION
In this study, we proposed a nonlinear modification of cross-
correlation, termed “cross-matching,” as the fundamental com-
putation underlying threshold energy model. In cross-matching,
binocularly combined signals undergo half-wave rectification
before being spatially averaged. This threshold eliminates the neg-
ative signals from contrast-reversed combinations, while preserv-
ing the positive signals from contrast-matched combinations. We
showed that cross-matching produced disparity tunings nearly
insensitive to anticorrelated RDSs but sensitive to correlated and
half-matched RDSs (Figure 3, right) when the dot density was
low (e.g., 25%). As the dot density increased, the negative signal
(i.e., inverted tuning) with anticorrelated RDSs became stronger
(Figure 4C, right, dotted line), and the correlation level yield-
ing a zero signal (i.e., flat tuning) became larger (Figure 4B,
right). These characteristics were preserved up to a modest
extent of pre-threshold spatial averaging (e.g., 8 pixels; Figure 6,
middle left column). The psychometric curve simulated for
near/far discrimination (Figure 7B, top, red) agreed with the
previously hypothesized (Figure 7C) and observed (Figure 7D)
match-based psychometric curves (Doi et al., 2011). Both sim-
ulated and observed results were obtained with 25% dot density.
We derived testable predictions by increasing the dot density from
25 to 100%. The performance with anticorrelated RDSs grad-
ually decreased below the level of chance with increasing dot
density (Figure 7B, top to bottom). The correlation level yield-
ing the chance performance also increased with dot density. A
threshold energy model produced similar psychometric functions
when the receptive-field size matched the dot size (Figure 9B).
We suggest that cross-matching serves as a simple, abstract
computation underlying the transformation of correlation-based
disparity signals into match-based signals by the stereoscopic
system.

LIMITATION OF CROSS-MATCHING
We intended cross-matching to be parsimonious and minimally
differentiated from cross-correlation. Given this, cross-matching
is most useful under limited conditions. First, smooth disparity
tuning can only be obtained after averaging signals across differ-
ent dot patterns. Second, a uniform disparity plane should be
embedded in an RDS. Third, the monocular windows (recep-
tive fields) should have the same shape and location as the
embedded depth plane. These conditions are often fulfilled when
neuronal disparity tunings or psychometric functions are mea-
sured: mean firing rate or percent correct judgment is normally
calculated as the average across different monocular dot patterns;
a test plane often has a uniform disparity (but see Janssen et al.,
2003); and the stimulus shape and location are tailored to match
the receptive field of a neuron under physiological recording.
In most psychophysical experiments, these stimulus parameters

are fixed, and subjects can estimate the shape and location of
the tested depth plane accurately in easy trials (e.g., correlated
RDSs). Subsequently, the decision mechanism can monitor the
neurons best suited to process the stimulus shape and location
at hand.

Solving the correspondence problem in a more general sit-
uation may involve more sophisticated algorithms such as
cooperative process (Marr and Poggio, 1976; Samonds et al.,
2009), coarse-to-fine process (Marr and Poggio, 1979; Menz
and Freeman, 2003; Chen and Qian, 2004), suppressive mech-
anisms (Tanabe et al., 2011; Tanabe and Cumming, 2014), and
the detection of naturally impossible binocular inputs (Read
and Cumming, 2007). Moreover, the integration of spatial fre-
quency channels may underlie the reduced disparity selectivity
and chance-level depth judgment of anticorrelated RDSs (Read
and Eagle, 2000; Kumano et al., 2008; Hibbard et al., 2014). These
mechanisms might fill the gap between the observed psycho-
metric curve and the simulated curve based on cross-matching.
The observed curves typically have sigmoidal shapes, even when
the performance at −100% correlation is close to the level of
chance (Figure 7D). By contrast, the psychometric curve of the
cross-matching and that of the threshold energy model did not
have a sigmoidal shape when the performance at −100% cor-
relation was near the level of chance: the curves had positive,
but not zero, slopes at −100% correlation for 25% dot density
(Figure 7B, top, red; Figure 9B, top left, red). The sophisticated
mechanisms described above might underlie the flattening of
the observed psychometric function at the low correlation levels
near −100%.

THRESHOLD ENERGY MODEL, GENERALIZED CROSS-MATCHING, AND
CROSS-MATCHING
Our generalized cross-matching is equivalent to cross-correlation
followed by half-wave rectification. Binocularly multiplicative
signals are spatially averaged within a window. The averaged sig-
nal, if negative, is nullified by a threshold. These processes are
directly related to those of a threshold energy model described
below. First, disparity energy models compute the spatial aver-
age of monocular images (i.e., weighted sum within monocular
receptive fields) and encode the binocular interaction through
binocular summation and squaring nonlinearity. Second, this
spatially averaged binocular signal is nullified by a threshold if
the net binocular interaction is negative.

The threshold added to energy model explains the reduced dis-
parity selectivity for anticorrelated RDSs (Lippert and Wagner,
2001; Nieder and Wagner, 2001). This is a simple solution for
tuned-excitatory cells, because the disparity-dependent modula-
tion for anticorrelated RDSs occurs below the baseline response
level for these cells. Further combination of these subunits
expains the reduced selectivity for odd-symmetric tuning curves
(Haefner and Cumming, 2008; Tanabe and Cumming, 2008).

The original version of cross-matching is a special case of gen-
eralized cross-matching in which the spatial window has a size
of one pixel; thus, the threshold operates on binocularly multi-
plicative signals with single-pixel resolution. However, some char-
acteristics of original cross-matching are preserved even when
a modest amount of spatial averaging (e.g., 8 pixels) occurs
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prior to the threshold. The signal strength at −100% correla-
tion decreased with dot density (Figure 6C, middle left, dotted
line), and the correlation level yielding a zero signal increased
with dot density (Figure 6B, middle left). Under certain condi-
tions, original cross-matching is a reasonable simplification of
a threshold energy model, with the key being the relationship
between the size of a stimulus dot and the size of the spatial
receptive field: when the two sizes match, original cross-matching
captures the essential characteristics of the threshold energy
model. The psychometric functions simulated from original
cross-matching and the threshold energy model shifted in a simi-
lar manner depending on the dot density (compare Figure 7B and
Figure 9B).

PSYCHOPHYSICAL CONSIDERATIONS OF THE EXTENT OF SPATIAL
AVERAGING PRIOR TO THRESHOLD
In match-based depth perception, the extent of the pre-threshold
spatial window is likely to be small, not significantly larger than
a few dots. We used a dot size of 0.14◦ × 0.14◦ (Doi et al.,
2011, 2013); some disparity-selective neurons in macaque V1
have receptive fields as small as this (estimated from disparity tun-
ing width in Prince et al., 2002). Neurons with small receptive
fields preferentially encode fine disparities (size-disparity corre-
lation; Prince et al., 2002). Indeed, depth perception is more
strongly match-based, as opposed to correlation-based, with finer
disparities (Doi et al., 2011). Furthermore, three experiments
have provided evidence for a fine spatial window underlying
match-based depth perception. First, match-based depth percep-
tion is stronger at smaller eccentricities, where receptive-field
sizes are smaller (Figure 11 of Doi et al., 2013). Second, match-
based depth perception is stronger for slower pattern refreshes
(Doi et al., 2013). Neurons preferring slow temporal inputs tend
to prefer fine spatial features (DeAngelis et al., 1993). Third,
match-based depth perception relies on the binocular correla-
tion calculated within a small area (Doi et al., 2013). Depth
perception for a half-matched RDS degrades when a contrast-
matched dot is placed right next to every contrast-reversed dot
in the RDS. The distance between the contrast-matched and
contrast-reversed dots was 0.15◦. These results suggest that spa-
tial averaging takes place within a small area prior to threshold
nonlinearity (generalized cross-matching with a small window).
Overall, generalized cross-matching is the fundamental compu-
tation underlying the threshold energy model and match-based
depth perception. Original cross-matching is a reasonable sim-
plification, if experimental manipulation does not change local
correlation statistics within the receptive field.

ADVANTAGE OF ORIGINAL OVER GENERALIZED CROSS-MATCHING
Simplicity is the advantage of original over generalized cross-
matching. The signal strength of original cross-matching is
expressed as a simple function of binocular correlation and dot
density (Equation 5). By contrast, it is not clear whether the sig-
nal strength of generalized cross-matching can be expressed as a
simple function of correlation, density, and spatial-window size.

By taking the advantage of its simplicity, we showed that
original cross-matching is equivalent to a model in which the
half-wave rectification is placed immediately after monocular

contrast signals. Equation 3 for original cross-matching can be
rewritten as:

M (d) =
〈

1

k

∑
(x,y)∈W

{[
IL

(
x, y

)]+ [
IR

(
x − d, y

)]+
+ [−IL

(
x, y

)]+ [−IR
(
x − d, y

)]+} 〉
, (9)

where IL and IR can be considered as the outputs of ON monoc-
ular channels and −IL and −IR as the outputs of OFF monocular
channels. The binocular multiplication is taken separately for the
thresholded outputs of the ON and OFF channels. This expres-
sion invokes another modified energy model that was also devel-
oped to explain the reduced disparity selectivity for anticorrelated
RDSs (Read et al., 2002). In this model, threshold nonlinearity
is placed on the outputs of monocular simple cells. The model
has four monocular channels differing in receptive-field phase.
The model combines the thresholded outputs of the monocular
simple cells across the two eyes separately for each channel. The
encoded binocular interactions are integrated across channels to
obtain the final output. These steps are similar to those expressed
in Equation 7. The equivalence of Equations 3 and 7 suggests the
equivalence of the two modified energy models with thresholds
inserted at different steps: one after monocular cells (Read et al.,
2002), and the other after a binocular energy cell (Lippert and
Wagner, 2001; see also Read et al., 2002 for the proof). However,
we should note that the model of Read et al. (2002) has an advan-
tage over that of Lippert and Wagner (2001), in that the reduced
selectivity of an odd-symmetric tuning curve can be realized in
the same mathematical framework.

THRESHOLD NONLINEARITY AND PEAK DETECTION
In our simulations, cross-correlation and disparity-energy model
always produced reversed depth perception for anticorrelated
RDSs, because we adopted the opponency (i.e., response sub-
traction) between near and far units as a mechanism to trans-
form sensory responses into near/far decisions. The opponency
mechanism is widely supported by theoretical and physiological
studies in motion and stereoscopic depth perception (Shadlen
et al., 1996; Prince and Eagle, 2000; Ditterich et al., 2003; Uka
and DeAngelis, 2004; Uka et al., 2005; Shiozaki et al., 2012).
However, peak detection (winner take all or maximum operation)
is another influential mechanism implicated in the chance-level
performance for anticorrelated RDSs (Read and Eagle, 2000;
Hibbard et al., 2014). The cross-correlation function does not
have a positive peak for anticorrelated RDSs (Figure 3B, blue),
and neither does a population activity of energy model neu-
rons, if averaged across spatial frequency channels (Hibbard et al.,
2014). Thus, peak detection can only produce the chance-level
performance from cross-correlation or disparity-energy model
for anticorrelated RDSs.

The threshold nonlinearity used in cross-matching and thresh-
old energy model, in effect, implements a peak detection in the
framework of opponency decoding. If the dot density is low, the
threshold nonlinearity eliminates the response dip present in sen-
sory responses (compare Figure 3B red and blue), so that only the
positive response peak contributes to near/far decisions, if any.
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Our experiments show that the performance of human observers
for low-density, anticorrelated RDSs varies from the chance level
to the reversed depth perception depending on the magnitude of
disparity and the refresh rate of the dot pattern (Tanabe et al.,
2008; Doi et al., 2011, 2013). Although the performance varies,
all stereoscopic processes originate in the primary visual cortex,
which computes disparity energy (Ohzawa et al., 1990; Cumming
and Parker, 1997). The presence or absence of threshold nonlin-
earity after V1 may cause the variability in performance from the
common disparity signals in V1. Without the threshold nonlin-
earity, the signals are fed into the opponency decision mechanism
to give rise to the reversed depth perception for anticorrelated
RDSs. With the nonlinearity, the response dip is eliminated, and
the disparity representation devoid of any positive peak results in
chance-level performance.

CONCLUSION
Cross-correlation is the fundamental computation underlying
the disparity selectivity of energy models. We proposed a mod-
ified cross-correlation, termed “cross-matching,” as an equivalent
computation for the energy model followed by threshold nonlin-
earity (Lippert and Wagner, 2001). Cross-matching can explain
the reduced disparity selectivity for anticorrelated RDSs, as well
as the disparity selectivity for half-matched RDSs (half-and-half
mixtures of correlated and anticorrelated RDSs). The simulated
psychometric function agreed with the ideal match-based psy-
chometric function hypothesized and observed previously (Doi
et al., 2011), and also agreed with the psychometric function sim-
ulated with a threshold energy model. In original cross-matching,
threshold nonlinearity operates on binocular signals with single-
pixel resolution. Some characteristics of original cross-matching
were preserved even when a modest amount of spatial averag-
ing (e.g., 8 pixels) occurred prior to the threshold. We suggest
that cross-matching serves as a minimal computation underlying
match-based disparity representation (Nieder and Wagner, 2001;
Janssen et al., 2003; Tanabe et al., 2004; Kumano et al., 2008) and
depth perception (Doi et al., 2011), just as cross-correlation serves
as the fundamental computation underlying the initial cortical
representation of disparity (Ohzawa et al., 1990; Fleet et al., 1996;
Qian and Zhu, 1997; Anzai et al., 1999) and some aspects of depth
perception (Cormack et al., 1991; Filippini and Banks, 2009; Doi
et al., 2011, 2013).
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