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The balanced state of recurrent networks of excitatory and inhibitory spiking neurons
is characterized by fluctuations of population activity about an attractive fixed point.
Numerical simulations show that these dynamics are essentially nonlinear, and the
intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent.
Therefore, stochastic differential equations with additive noise of fixed amplitude cannot
provide an adequate description of the stochastic dynamics. The noise model should,
rather, result from a self-consistent description of the network dynamics. Here, we
consider a two-state Markovian neuron model, where spikes correspond to transitions
from the active state to the refractory state. Excitatory and inhibitory input to this
neuron affects the transition rates between the two states. The corresponding nonlinear
dependencies can be identified directly from numerical simulations of networks of leaky
integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range.
Deterministic mean-field equations, and a noise component that depends on the dynamic
state of the network, are obtained from this model. The resulting stochastic model reflects
the behavior observed in numerical simulations quite well, irrespective of the size of
the network. In particular, a strong temporal correlation between the two populations,
a hallmark of the balanced state in random recurrent networks, are well represented by
our model. Numerical simulations of such networks show that a log-normal distribution of
short-term spike counts is a property of balanced random networks with fixed in-degree
that has not been considered before, and our model shares this statistical property.
Furthermore, the reconstruction of the flow from simulated time series suggests that
the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type.
We expect that this novel nonlinear stochastic model of the interaction between neuronal
populations also opens new doors to analyze the joint dynamics of multiple interacting
networks.

Keywords: Markov process, self-consistent noise model, balanced random network, nonlinear dynamics, networks

of finite size, Wilson-Cowan type model

1. INTRODUCTION
Cortical neurons of behaving animals show highly irregular pat-
terns of activity. One hypothesis for the source of such irregu-
larity is the balance of excitation and inhibition in the steady
state activity of the network (Softky and Koch, 1993; Bell et al.,
1994; Shadlen and Newsome, 1994, 1998; Tsodyks and Sejnowski,
1995; van Vreeswijk and Sompolinsky, 1996). Experimental evi-
dence in favor of this hypothesis suggest that excitation-inhibition
balance is the principle of brain dynamics (Sanchez-Vives and
McCormick, 2000; Shu et al., 2003; Haider et al., 2006; Okun and
Lampl, 2008). The balanced state is an emergent self-consistent
and stable solution of the temporal dynamics of the network
(van Vreeswijk and Sompolinsky, 1996, 1998; Amit and Brunel,
1997b; Brunel, 2000). In other words, in a recurrent balanced net-
work, both excitatory and inhibitory activity are shaped such that
in cooperation with each other, they generate a stationary, self-
consistent input-output behavior on the level of the mean and
the fluctuations. The collective activity of the involved neuronal

populations include weakly correlated and irregular spike trains.
Due to its stochastic appearance, this feature is referred to as
“self-generated noise” or simply “noise” in this paper. In fact,
these fluctuations are generated mainly by the complex recur-
rent interactions in the network, even in absence of any external
source of noise (van Vreeswijk and Sompolinsky, 1996; Kriener
et al., 2008). As in our model there is no external source of noise,
the fluctuations are very likely due to deterministic chaos in a
high-dimensional system (for details see Jahnke et al., 2009).

Temporal fluctuations of neuronal activity reflect brain pro-
cesses. Transient activity of neuronal networks, for instance,
correspond to different neural computations at different stages
of a cognitive task (see for example Churchland et al., 2011) or
the representation of information in the brain (Destexhe and
Contreras, 2006). Fluctuations also influence sensory perception
in the case of ambiguous input. This phenomenon has been mod-
eled by a multi-stable noise-driven dynamical system in which
activity fluctuations cause transitions between meta-stable fixed
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points (Moreno-Bote et al., 2007; Deco and Romo, 2008). It was
shown that dynamic noise in a neuronal network also gives rise
to different dynamical states of the network. Both theoretical and
simulation studies have addressed the role of noise for dynamic
stability, or for the emergence of oscillations in network dynam-
ics (Brunel and Hansel, 2006; Ghosh et al., 2008; Touboul et al.,
2011; Cai et al., 2012) which may have implications for brain
functions. Therefore, to understand the functional properties of
neuronal networks, it is essential to understand the dynamics of
the time dependent variability in such systems. Theoretical stud-
ies of balanced random networks indicate that the fluctuations are
essentially determined by two factors: neuronal correlations and
the finite size of the network (Ginzburg and Sompolinsky, 1994;
Brunel and Hakim, 1999; Brunel, 2000).

To address the fluctuations of the activity of a complex
high-dimensional system such as a spiking neural network,
a reduced low-dimensional description of network activity is
needed. However, to compensate for the loss of degrees of free-
dom, an analytical treatment is needed such that the essential
properties of the stochastic dynamics of the system fluctuations
are preserved to an acceptable degree. Finding a suitable stochas-
tic model to replace the spiking dynamics of a network is a
challenge. One reason is that such networks are hybrid systems,
as the membrane potential of each neuron is a continuous vari-
able, and the spiking activities are discrete quantities. Secondly,
an appropriate time scale has to be defined because the ampli-
tude and the dynamics of the fluctuations depend on the temporal
resolution. Thirdly, the stationary activity of the reduced model
should maintain the statistical properties of the population activ-
ities, as their statistics are crucial for the switching dynamics of a
network with two or more interacting populations (Bressloff and
Newby, 2013). Finally, each neuron is a highly nonlinear element
in a random network, due to its threshold and refractoriness. It
has been hypothesized that in the thermodynamic limit, when the
number of neurons becomes very large, the global dynamics is
linearized due to the negative feedback from the inhibitory popu-
lation (van Vreeswijk and Sompolinsky, 1996, 1998; Tetzlaff et al.,
2012; Helias et al., 2013). However, in networks of finite size, as
we show in this paper, the dynamics are not fully described by a
linear framework.

An influential study on population dynamics of excitatory and
inhibitory neurons has been performed more than 40 years ago
(Wilson and Cowan, 1972). The authors considered an infinitely
large number of neurons in each population such that a fraction
of all neurons in the population are in the refractory state. They
derived an ad hoc response function for the non-refractory neu-
rons and using coarse-graining of activities in time, they derived
a set of coupled ordinary differential equations. However, cor-
relations and finite size fluctuations were not captured by this
model. In essence, without fluctuations in the input, there are
no output fluctuations in this model. In fact, most theoretical
studies of population interactions using a mean-field approach
(see e.g., Gerstner, 1995; Amit and Brunel, 1997a,b; Brunel, 2000;
Aviel and Gerstner, 2006; Kriener et al., 2008; Toyoizumi et al.,
2009; Cardanobile and Rotter, 2011; Ledoux and Brunel, 2011;
Ostojic and Brunel, 2011) have not addressed the consequences
of the finite size of the network and/or pairwise correlations

for the temporal dynamics of the population activities in a
self-consistent way.

There are a few explicit or implicit suggested approaches to
study finite size population dynamics. The first type of studies are
based on deterministic equations using mean-field approaches
that are derived by an external source of noise (Kriener et al.,
2008; Toyoizumi et al., 2009; Tetzlaff et al., 2012). Seminal stud-
ies on balanced random networks show that a stochastic input
is not needed for network fluctuations and the noise in the sys-
tem is self-generated as a result of recurrent activity and stochastic
spiking of neurons (van Vreeswijk and Sompolinsky, 1996, 1998).
Therefore, this approach cannot describe the temporal dynamics
in a self-consistent way. Moreover, a deterministic set of equations
with additive noise (Kriener et al., 2008) cannot reproduce the
state dependent fluctuations of the network activity, as we will
show in our study.

A second class of studies considered independent neurons
with Poisson statistics (Brunel and Hakim, 1999; El Boustani and
Destexhe, 2009). This approach could lead to unrealistic number
of spike counts in a short time bin. Moreover, with the assump-
tion of uncorrelated neurons, neural Poisson statistics result in
network Poisson statistics. As we show in this article, the statis-
tics of the population activities in balanced random networks
are not Poissonian. Exploiting a general escape noise model in a
point process framework, Spiridon and Gerstner (1999) derived
an integral equation for the population activity of a fully coupled
network. According to their approach, the finite size effect would
show up as a multiplicative noise term in the original equation. As
we show later, our analysis supports these results to some extent.

A third approach tries to describe either the dynamics of each
neuron (Ohira and Cowan, 1993, 1995; Soula and Chow, 2007;
El Boustani and Destexhe, 2009) or the network (Touboul and
Ermentrout, 2011; Buice and Chow, 2013a) by a Markov process.
The latter has the problem that possible jumps of the Markov pro-
cess are limited to the immediate neighbors of each state; meaning
that the number of active neurons in each population can either
increase or decrease by one. The former approach seems to be
able to better capture the dynamics and statistics of the network.
Soula and Chow (2007) assumed a Markov model in discrete time
with a time scale in the range of membrane time constant in the
case of instantaneous synapses. The transition rate of a typical
neuron in the network is calculated from the stationary firing
rate and includes the net amount of excitation in the system.
However, balanced random networks operate on a much faster
time scale compared to that of a single neuron. Also, the inter-
action between excitation and inhibition, and the consequences
of the negative feedback on temporal dynamics are not analyzed
in this study. In another study, following a similar approach in
continuous time, a master equation for the activity of a balanced
network with current-based and conductance-based synapses was
derived (El Boustani and Destexhe, 2009). This method needs the
static transfer function of a single neuron that maps input rates to
output rates.

Finally, population density approaches based on a conser-
vation law imposed on the probability flux (the number of
neurons is constant) (for details see Knight, 1972; Abbott and
van Vreeswijk, 1993; Treves, 1993; Knight et al., 1996; Omurtag
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et al., 2000; Sirovich et al., 2000; Haskell et al., 2001; Nykamp
and Tranchina, 2001; Mattia and Del Giudice, 2002) are yet
another way of deriving stochastic dynamics from deterministic
equations. In a study on the temporal dynamics of the interac-
tion between excitation and inhibition in networks of finite size,
an eigenfunction expansion of the essentially nonlinear Fokker-
Planck equation resulted in a set of coupled ordinary differential
equations (Mattia and Del Giudice, 2002, 2004). However, the
noise term included in the model to account for the finite size
of the network, was a white noise of fixed amplitude. Recently,
Buice and Chow (2013a,b), using a population density method
and moment hierarchies of the equation, derived path integrals
of a moment generating functional. To get a time dependent
correlation function of the system, by introducing a small per-
turbation, they applied a linear expansion of the equation of
moments (Buice and Chow, 2013a,b).

In this paper, we aim at describing statistics and dynam-
ics of finite-size fluctuations in a balanced random network of
excitatory and inhibitory neurons self-consistently, such that the
temporal dynamics of the network is driven by the interactions
in the network. Moreover, a high correlation between the excita-
tory and inhibitory population, in their stochastic representation
in the model, has to be preserved. To this end, a typical neuron
in the network is modeled by a two-state Markov system that its
transition probabilities needs to be derived dependent on the net-
work activity states. Our model is based on the state space analysis
of numerical simulations of interactions between the excitatory
and the inhibitory population in a large balanced network, in the
regime dominated by inhibition.

Systematic analysis of the two-dimensional population spike
counts shows that no dynamic model with additive Gaussian
noise can fully describe the temporal dynamics of the network
activity. Specifically, the more excitation and the less inhibition is
recruited in the network at any given point in time, the higher is
the variance of the self-generated noise. It will be demonstrated
in this paper that a stationary external input results in non-
linear interactions between excitation and inhibition. Moreover,
we will show that the self-generated and state dependent noise
emerges naturally as a result of the finite number of neurons in
the network. Furthermore, the suggested two-state Markov model
is capable of producing a heavy-tailed (positively skewed) distri-
bution of excitatory and inhibitory spike counts, a property of
balanced random networks that is considered here for the first
time. We show that this heavy-tailed distribution can be well
approximated by a log-normal distribution.

2. MATERIALS AND METHODS
In this section, we first describe our assumptions about the struc-
ture and the parameters of the network. Then, we show how to
reconstruct the dynamic flow based on the results of spiking net-
work simulations. In Section “Estimation of the dynamic flow
underlying the mean-field dynamics” we first suggest a Markov
model to represent the collective activity of neuronal populations,
with transition probabilities inferred from numerically simulated
networks of spiking neurons. The objective of this study is to
identify a suitable bin size to represent the temporal dynamics
of the network fluctuations. Then, in Section “Markov model for

the mean-field and stochastic dynamics” we introduce a two-state
Markov model for each neuron, termed the “Active-Refractory
Markov” (ARM) model. A method to find the mean-field equa-
tions and a self-consistent noise model based on the Markovian
single-neuron dynamics is introduced at the end of this section.

2.1. NETWORK STRUCTURE AND PARAMETERS
The network under study is composed of 10,000 excitatory and
2500 inhibitory neurons, similar to the network studied by Brunel
(2000). Each neuron receives local inputs from randomly cho-
sen fraction of the excitatory and the inhibitory population (10%
each). An external Poisson process of rate 25 spikes/ms mimics the
input from other brain areas. The neurons are modeled by a leaky
integrate-and-fire (LIF) dynamics with pulse-like post-synaptic
currents (PSC), and exponential post-synaptic potentials (PSP).
Therefore, the dynamics of neuron i in the network, regardless of
whether it is excitatory or inhibitory, satisfies

τ v̇i(t) = −vi(t) + τ

N∑
j = 1

JijSj(t − td) (1)

where Sj(t) = ∑
k δ(t − t

j
k) is the spike train of neuron j, which is

seen by the postsynaptic neuron with a delay of td, and integrated
by it with a membrane time constant τ = 20 ms. Jij is the ampli-
tude of the post synaptic potential (PSP), J = 0.1 mV for the
available excitatory synapses to each neuron and −gJ = −0.6 mV
for inhibitory synapses. N is the total number of neurons in the
network. The membrane potential of each neuron, once reached
the threshold at θ = 20 mV, is reset to vreset = 10 mV and a spike
will be generated. The membrane potential remains at vreset for a
refractory period of 2 ms. These parameters are identical to those
studied in Brunel (2000) and represent a simplified model for one
cubic millimeter of neocortical tissue. The results of our study are
valid for a wide range of biologically realistic parameters, as far
as the network is in the inhibition dominated regime. Numerical
simulations of the network were all conducted in NEST (Gewaltig
and Diesmann, 2007) with a time resolution of 0.01 ms and a
minimal synaptic delay td equal to the time resolution. The net-
work simulation time was 100 s. As a result, a total number of 107

data points for each population in a histogram with a bin size of
0.01 ms was available for further data analysis.

2.2. ESTIMATION OF THE DYNAMIC FLOW UNDERLYING THE
MEAN-FIELD DYNAMICS

We reconstructed the flow corresponding to the mean-field
dynamics from a simulated time series of the spiking network
activities. To this end, for each possible combination (i, j) of exci-
tatory spike count i, and inhibitory spike count j, the “state” of the
system, we first collected the corresponding derivatives by com-
puting the increments in successive time bins divided by the time
bin, for both excitatory and the inhibitory spike counts. Taking
the mean of the encountered derivatives for each state gave the
average direction into which the system moved forward in time.
This way, for each state visited in the simulation, a velocity vector
is obtained, yielding a vector field that approximates the flow in a
two-dimensional state space. Calculating the variance of the state
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dependent derivatives results in the state dependent variance of
the self generated noise (fluctuations) in the system (see Results
for more details).

2.3. MARKOV MODEL FOR THE MEAN FIELD AND STOCHASTIC
DYNAMICS

As mentioned in the beginning of this section, we considered
two different Markov models for different purposes. First, for the
selected time bin dt, chosen such that a Markov model is capa-
ble of reproducing the power spectrum of the network activity
with the highest fidelity, a state transition matrix was inferred
entirely based on the data obtained from a spiking network sim-
ulation. It is important to stress that the Markov model for the
selected bin size dt provides a compressed description of the net-
work dynamics, assuming that only the most recent bin, and no
longer account of the history of the network activity, determines
the dynamics of the network at any given point in time. The anal-
ysis described here explores the limits of such a description of
the the large-scale dynamics, and in this paper we refer to it as
“Markov chain analysis.” However, deriving the transition matrix
from a self-consistent analysis is difficult. Therefore, we looked
for a more analytically tractable approach in a second step. This
approach, which is the main focus of this study, is based on a
two-state Markov description of individual neurons. As shown
in this article, this model is able to describe both the dynam-
ics and the statistics of the collective activity of the network in
a self-consistent way. The transition rates of this model are also
estimated form the spiking network simulations.

2.3.1. Markov chain analysis
In this section we address the question whether we can identify a
time scale such that a Markov model can describe the time depen-
dent dynamics of the network sufficiently well. To that end, based
on the joint time series of the two population spike counts, a
matrix of transition probabilities for any possible jump from state
(i, j) at time t to state (i′, j′) at time t + dt was inferred. Starting
from an arbitrary initial condition, a stochastic signal was then
generated which was able to match the dynamics and statistics
of the two populations PSTH sufficiently well (Figures 1B–D).
However, as the power spectra of the stochastic implementation
of the Markov model were not exactly identical to those of the
spiking network simulations, even for the optimal step size dt (see
next subsection), we conclude that the Markov property is only
approximately satisfied. This approximation to the complicated
dynamics of the system provides a simple model for the stochastic
behavior of the network. It is important to check which proper-
ties of the system can be explained by a Markov model of the type
discussed here. Some limits of the model due to this assumption
are described in the results and will be further analyzed in the
Discussion Section.

2.3.2. Selection of the bin size
To extract the activity of the two neuronal populations, we con-
sider a variant of the Peri-Stimulus Time Histogram (PSTH) of
the spike trains of the excitatory and inhibitory neuronal popula-
tions. To find a suitable time resolution such that the dependency
of the dynamics on the past history is essentially reduced to the

most recent time bin, we looked at the autocorrelation functions
of the PSTH of each population. As commonly done, we con-
sidered the first zero-crossing of the autocorrelation function as
a first estimate for the time scale of the dynamics. As Figure 1A
shows, however, the two populations have slightly deviating time
scales. In the range of these two time scales, we explored a set of
bin sizes that were integer multiples of the temporal resolution
for the spiking network simulations (0.01 ms). For each value,
we reconstructed the transition probabilities from the data, as
explained in Section “Markov chain analysis.” Using these tran-
sition probabilities, a stochastic signal for both populations was
generated and the power spectra of the signals were compared
with those of the spiking network simulations extracted at the
same bin size. We found that a bin size of 0.1 ms provides power
spectral densities best matching to those obtained from spik-
ing network simulations for both populations (Figure 1D). This
yields a reasonable time basis for the dynamics, based on numer-
ical experiments, in line with the Markov assumption. Due to the
discrete nature of spike counts in each bin, the dynamics in this
paper is analyzed in discrete time, with a discrete noise model
corresponding to the finite size of both neuronal populations.

2.3.3. Two state Active-Refractory Markov model
The goal is to derive a Markov model the parameters of which
can be interpreted in terms of neural dynamics, and that captures
the finite size effects. The model should also capture the proper-
ties of the spiking network simulation on the level of mean-field
as well as the transient fluctuations. We came up with a two-
state Markov model, where each neuron is assumed to generate
its spikes independently of the other neurons, given the input
from the rest of the network. Moreover, it is assumed that each
neuron’s membrane potential falls into one of two classes: close
to threshold (active state) or far away from threshold (refractory
state). Hence, we call this process the “Active-Refractory Markov”
(ARM) model. A schematic of the neuron model is depicted in
Figure 2. Transitions from the active to the refractory state can be
of two different types. Either the membrane potential of a neuron
decays due to the membrane leak [Equation (1)], or the neuron
receives inhibitory input spikes, or the neuron fires a spike itself
and the membrane potential is reset. The former is described
by the β branch; the latter is due to the γ branch in the model
(Figure 2). More specifically:

• α is the rate of transition from refractory to active state.
• β is the rate of transition from active to refractory state without

any spike emission.
• γ is the rate of transition from active to refractory state due to

spike generation and the reset afterwards.

In general, α, β, and γ are nonlinear functions of the state (spike
counts). In our model, it turns out that α is an exponential
function of a linear combination of spike counts; β and γ are
constants estimated from the data. Note that the definition of
a state in the ARM model deviates from the definition in the
Markov chain model described in the previous section. In the lat-
ter, states are just spike counts, and transition probabilities are
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A B
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FIGURE 1 | Markov model simulation compared with a spiking

neuronal (SNN) simulation. (A) Autocorrelation function of the excitatory
and inhibitory populations with a temporal resolution of 0.01 ms. Inhibition
shows faster dynamics and shorter memory. (B) Vector field of one
realization of the Markov chain with all probabilities for state transitions
inferred from the original simulation of the spiking network. (C) Power
spectrum of the excitatory and inhibitory population signal (PSTH) of SNN
(blue curves), and generated by a simulation of the Markov model (red

curves) corresponding to a spiking network simulation with vreset = 0 mV.
The low frequency dynamics are not very well captured by the Markov
model; however, the overall shape of the spectrum, as well as the
frequency beyond which the power drops, are well preserved. There are
several peaks in the low frequency regime, corresponding to slow network
oscillations. (D) Power spectral density for a simulation with
vreset = 10 mV. In contrast to the case of stronger reset, (C), there are
fewer peaks in the low frequency range.
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FIGURE 2 | Two state Active-Refractory Markov (ARM) model. The
membrane potential of such a neuron is either close to threshold [active
state (A)] or far from threshold [refractory state (R)]. Spikes are generated
by transitions in the γ branch. β is mainly determined by the leak in the
membrane potential, and α causes transitions from the refractory to the
active state. In general, the transition rates could be functions of spike
counts; however, in the ARM model in this study, α is an exponential
function; β and γ are constants. Neurons are independent of each other;
therefore, the noise model has a binomial distribution, and is state
dependent.

also defined in terms of spike counts. In the ARM model, how-
ever, the actual states are the occupation numbers of the active
and refractory pools. These can neither be directly observed nor
inferred from numerical simulations of the spiking neuronal net-
work (SNN), but for our analysis we found a way work around
this problem. All neurons in the network under study have the
same in-degree and, consequently, share the same input statis-
tics. Therefore, the transition rates are assumed to be identical for
excitatory and inhibitory neurons. Neurons are assumed to make
their state transitions, in particular spike firing, independently of
each other, given their inputs.

The network is comprised of an excitatory and an inhibitory
population. A population of size N will have A neurons in
the active state and N − A neurons in the refractory state.
Considering identical and independent transition rates for all
neurons, our approach was to take neurons out of a state based on
binomial distributions with the number of neurons in each state
corresponding to the occupation numbers. The transition proba-
bility is given by multiplying the transition rate with dt, assuming
that this is a small number. This results in the following stochastic
description of the system

�A(t) = A(t + dt) − A(t) = �A+(t) − �A−(t) (2)

In equation (2), �A+(t) and �A−(t) are the increment and
decrement from the active pool A that indicate the number of
incoming neurons from the refractory pool, and the number of
outgoing neurons to the refractory pool, respectively. �A−(t) has
a binomial distribution with parameters A(t) and (β + γ )dt as
the number of available neurons and the probability of selection,
respectively. Therefore,

p
(
�A−(t) = x

) =
(

A(t)

x

) (
(β + γ )dt

)x (
1 − (β + γ )dt

)A(t)−x

(3)

where
(A(t)

x

) = Cx
A(t) is the binomial coefficient. In this model,

the spike count S is determined by the number of neurons in the
active state and the transition rate γ in two steps: First, the total
number of outgoing neurons from the active pool is calculated
from a binomial distribution with probability (β + γ )dt. This
quantity is exactly equal to �A−(t). Second, from �A−(t), the
neurons that are actually firing a spike are drawn with another
binomial distribution with probability γ

γ+β
. Therefore,

p (S(t) = z) = C z
�A−(t)

(
γ

γ + β

)z (
β

γ + β

)�A−(t)−z

(4)

A similar expression as the one given in equation (3), a bino-
mial distribution with rate α, describes the number of incoming
neurons to the active pool at time t.

p
(
�A+(t) = y

) = C
y
N−A(t)(αdt)y(1 − αdt)N−A(t)−y (5)

With A neurons in the active state and N − A neurons in the
refractory state at time t, the dynamic equation describing the
expected value of the dynamics of A is

d

dt
E[A(t)] = α(N − E[A(t)]) − (β + γ )E[A(t)] (6)

It is important to point out that the number of neurons in the
active state, A(t), is not observable, as we record only spikes.
To describe the dynamics of the network it is, therefore, easier
to describe the temporal dynamics in terms of observables, like
the number of spiking neurons S(t). As mentioned before, S is
the integer number of spikes generated in the γ branch, where
E[S] = E[A]γ dt. It is straightforward to rewrite equation (6) as
a function of S and get an equation describing the temporal
dynamics of the spike counts

d

dt
E[S(t)] = α(Nγ dt − E[S(t)]) − (β + γ )E[S(t)] (7)

For better readability, we will drop the E[ . ] operator that indi-
cates the expected values of A and S. As all neurons are assumed
to have the same membrane potential dynamics, determined by
equation (1), and receive the same number of inputs regardless
of their identity, the two populations have identical transition
rates and therefore equation (7) holds for both populations. The
only difference between the two populations, however, is the
total number of neurons included in each of them. We denote
the number of excitatory neurons by Ne and the number of
inhibitory neurons by Ni. Excitatory and inhibitory spike counts
generated at time t are given by Se(t) and Si(t), respectively. A
nonlinear regression analysis of equation (7) applied to data from
a spiking network simulation shows that α is an exponential
function of recent spike counts, and that β and γ are well approx-
imated by constant rates (see the Result Section for more details).
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Therefore, the two-dimensional mean-field has the following
dynamics

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ṡe(t) = exp (c0 + c1Se(t) + c2Si(t)) (Neγ dt − Se(t))

− (β + γ )Se(t)

Ṡi(t) = exp (c0 + c1Se(t) + c2Si(t)) (Niγ dt − Si(t))

− (β + γ )Si(t)

(8)

All the unknown parameters of the ODE system (8) can be esti-
mated from the vector field extracted from simulated data. For
this purpose, the regression analysis was performed with Python,
using general purpose least-square optimization available in the
SciPy library (Jones et al., 2001).

The exponential shape of α can be qualitatively justified.
As pointed out in previous studies (Brunel and Hakim, 1999;
Ricciardi et al., 1999; Brunel, 2000), the time dependent distri-
bution of the membrane potential of a typical integrate and fire
neuron, under the assumption of stochastic input and small PSPs,
follows the Fokker-Planck equation with a drift and a diffusion
term. In general, these two terms are functions of the recurrent
activity of the network and therefore result in a nonlinear partial
differential equation. However, under the assumption of Gaussian
white noise input that is independent of the activity of the net-
work, the steady state solution of equation (9), with appropriate
boundary conditions, characterizes the stationary distribution
of the membrane potential of a typical leaky integrate-and-fire
(LIF) neuron. The dynamics of the distribution of the membrane
potential is therefore

τ
∂

∂t
p(v, t) = − ∂

∂v

[(
−v + τ

∑
k

rk(t)Jk

)
p(v, t)

]
(9)

+ 1

2

[
τ
∑

k

rk(t)J2
k

]
∂2

∂v2
p(v, t)

= − ∂

∂v

[
( − v + μ)p(v, t)

]+ σ 2

2

∂2

∂v2
p(v, t)

where rk(t) is the firing rate of the pre-synaptic source k and Jk

is the corresponding PSP to source k. μ and σ are the first and
second moments, respectively, of the external input to the neu-
ron. Equation (9) is based on the conservation of the probability
flux of the membrane potential and could be rewritten in the
following form:

τ
∂

∂t
p(v, t) = − ∂

∂v
�(v, t), (10)

where �(v, t) represents the probability flux and shows the prob-
ability mass crossing any arbitrary v per unit of time t. The
stationary time independent solution of p(v) without consider-
ing refractoriness and with appropriate boundary conditions at
threshold θ , vreset and v = −∞ is (Gerstner and Kistler, 2002)

p(v) =
⎧⎨
⎩

c1
σ

exp
(
− (v − μ)2

σ 2

)
v < vreset

c2
σ

exp
(
− (v − μ)2

σ 2

) ∫ θ

v exp (x − μ)2

σ 2 dx vreset < v < θ
(11)

Intuitively, active and refractory states of a neuron are linked to
high and low membrane potentials, respectively. The probabil-
ity to encounter a potential exceeding a certain value, therefore,
should be related to the rate α that describes a transition from
refractory to active in the ARM model. The transition rate α,
therefore, is proportional to the time dependent flux of the mem-
brane potential crossing the border between the active and the
refractory state. For simplicity we can approximate the time
(state) dependent flux with the steady state flux plus some fluc-
tuations. These fluctuations are determined by the spike counts
of the activity: the larger the excitatory spike counts and the
smaller the inhibitory spike counts are, the larger the probabil-
ity flux crossing the border between the active and the refractory
state is. As in equation (10), � is related to the voltage inte-
gral of p(v, t), the time dependent flux will be proportional to
the local behavior of the Cumulative Density Function (CDF)
of the membrane potential distribution. In our Result section,
it is argued that for a wide range of the membrane potential
between vreset and θ , the stationary Cumulative Density Function
(CDF) is locally well approximated by an exponential func-
tion, matching the functions we saw in numerical simulations
of SNNs based on the LIF neuron model. A formal derivation
of the link between the LIF and the ARM model, however, is
mathematically involved and beyond the scope of the present
paper.

3. RESULTS
In this section, numerical results from the simulation of large
but finite balanced random networks are illustrated, which all
imply either the nonlinear dynamics of interactions, or the
non-Gaussian and state dependent nature of the self-generated
noise. A comparison between the spiking network simula-
tion results and simulation of the Active-Refractory Markov
(ARM) model is made to show the limits and strengths of the
model.

3.1. MARKOV CHAIN INFERRED FROM TIME SERIES
A numerical study of the network shows that with a time bin of
0.1 ms the most essential features of the system under study are
recovered by a Markov chain model where the probabilities for
state transitions are all extracted from the data. The vector field
obtained from the spike counts (Figure 1B) and the power spec-
tral density of both populations modeled with a Markov chain
(Figure 1D) are similar to those obtained from the simulation of
the spiking network.

The autocorrelation function (ACF) of the excitatory and
inhibitory spike counts (Figure 1A) reflect the memory of the
system. It has been reported previously (Tetzlaff et al., 2012),
and is confirmed again in our study, that the time constant
of the decay is smaller for the inhibitory population, although
the input to excitatory and inhibitory neurons are statisti-
cally the same. This behavior was hypothesized to be related
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to the negative feedback contribution of the inhibitory pop-
ulation in the large-scale dynamics of the network (Tetzlaff
et al., 2012). To examine the Markovian nature of the dynam-
ics, a good choice for the time bin of the histograms is
the point where the autocorrelation has its first zero-crossing.
For a simulation with a temporal resolution of 0.01 ms, this
point is roughly 0.07 ms for the inhibitory population and
0.20 ms for the excitatory population, according to Figure 1A.
Since a unique time scale for the model and simulations
is needed, we chose 0.1 ms to construct the PSTH of both
populations.

The low frequency power spectra of the populations are not
very well captured by the Markov model. This may be caused by
the fact that there is a dependence on the past spiking activity
of the two populations, which cannot be reflected by the Markov
process employed here. We wanted to find out which features of
the system are nevertheless recoverable by a Markov process. The
low frequency behavior of the system depends on the distance
between vreset and the spiking threshold θ (Figures 1C,D). The
bigger this distance is, the more peaks in the low frequency part

of the system appear. Refractoriness can also change the shape of
the power spectrum in these frequency ranges (Franklin and Bair,
1995; Mar et al., 1999; Spiridon and Gerstner, 1999). It is obvious
that a Markov process due to its lack of memory cannot capture
this phenomenon.

3.2. TRANSITION PROBABILITIES OF THE ACTIVE-REFRACTORY
MARKOV (ARM) MODEL

All neurons in the network under study are statistically the
same. Therefore, identical transition probabilities α, β, and γ

were imposed for excitatory and inhibitory neurons. A nonlin-
ear regression to estimate the parameters of equation (8) given
the excitatory and inhibitory spike counts and their temporal
derivatives from the time series results in an exponential link
function for α. The function β exhibits a slight negative depen-
dency on the excitatory spike counts (Figure 3C-dots). Ignoring
this does not visibly affect the simulation results of the model
(data not shown). Therefore, it was assumed to be a constant
parameter. An exponential function for α and constant parame-
ters for β (solid lines in Figure 3) and γ result in c0 = −0.046,

A B

C D

FIGURE 3 | Transition probabilities of the ARM model. (A,B) α as a function of excitatory and inhibitory spike counts (dots) and an exponential fit to the data
(solid lines). (C,D) β as a function of excitatory and inhibitory spike counts (dots) and a constant function (solid lines) fitted to the data.
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c1 = 0.032, c2 = −0.152, β = 7.78 and γ = 0.325 (all quanti-
ties in spikes/ms) as the estimated parameters of the model in
equation (8). Interestingly, c2, the coefficient of the inhibitory
spike counts is roughly 5 times bigger in amplitude compared
with c1. This was expected since IPSP = −g EPSP. In the stochas-
tic implementation of the ARM model, the transition rate α is
a function of random variables Se and Si. Therefore, the ARM
model can be interpreted as a type of “doubly stochastic” point
process.

As mentioned in the Methods Section, for a wide range of
membrane potentials v the CDF of the membrane potential can
be approximated by an exponential function (Figure 4B). For val-
ues of the membrane potential close to threshold, however, the
CDF does not match the fitted exponential function very well.
This sub-exponential behavior is also observed in the data (dots in
Figures 3A,B). This similarity suggests that a better approxima-
tion for α might come from the integral of the analytical solution
of equation (9), but a formal mathematical analysis of this idea is
beyond the scope of this paper. Moreover, β can be assumed as
the leak term in the dynamics of leaky integrate and fire model
due to its role in taking the value of the membrane potential away
from the membrane threshold when there is no other inputs to
the neuron. Inhibitory inputs in general can influence this param-
eter as well, however, for the sake of simplicity, we assumed it to
be a constant. γ is a constant rate determining the number of
spiking neurons at any given time interval dt. This term is pro-
portional to the outgoing probability flux from the threshold θ in
equation (11).

In comparison to the well-known Wilson-Cowan model
(Wilson and Cowan, 1972), the ARM model assumes an expo-
nential, instead of a sigmoidal, function as a transfer function
for low input level. The reason is that in the balanced network,
the firing rates of the neurons are low and therefore the activ-
ity of the populations are far from saturation. The ARM model
can be considered as a special case of Wilson-Cowan model
that was suggested for the dynamics of fluctuations around the

mean firing rates of the populations for time-dependent inputs.
The advantage of our model is that it can generate the statistics
of the noise from the mean-field dynamics of the system in a
self-consistent way.

3.3. STATE SPACE ANALYSIS OF SELF-GENERATED NOISE
Each pair of excitatory and inhibitory spike counts that are
observed in the same time bin define a state in the state space.
Spiking network simulations show that the future evolution of
states during a particular trajectory of the system is highly depen-
dent on the current state of the network. Therefore, the increment
or decrement of the spike counts, as well as the derivative esti-
mated from this (which are basically the difference between the
spike counts at successive points in time divided the time inter-
val 0.1 ms) are state dependent (Figures 5A,B). For each state, the
distribution is heavy-tailed (positively skewed) and has a higher
variance in excitation (compare the color-bars of Figures 6A,B).
For a particular value of inhibitory spike counts, the variance
increases as excitatory spike counts increase. Also, for a partic-
ular value of excitatory spike counts, increasing inhibitory spike
counts results in less variability of the derivative of the spike
counts for both excitatory and inhibitory populations. In other
words, the more net excitation is in the system, the higher is the
variance of the derivatives of the population spike counts. This
statistical property of the network dynamics indicates that the
noise model cannot be that of additive Gaussian white noise, as
otherwise the variability in derivatives would be identical for the
entire state space. The reason is that for any stochastic system
governed by an equation of type ẋ = f (x) + ξ , if the variance
of ẋ is the same for the entire state space, ξ could be con-
sidered as an additive white noise where the variance of the
noise ξ is not state dependent. Otherwise, the noise term has to
be state dependent, or non-additive. Multiplicatively interacting
point processes are an explicit model for the interaction between
neurons (Cardanobile and Rotter, 2010), with non-additive and
non-Gaussian noise.

A B

FIGURE 4 | Probability Density Function (PDF) and its cumulative give a

hint for state probability transition α. (A) Stationary PDF of the membrane
potential of a leaky integrate and fire neuron. The value of the membrane
potential that separates the active from the refractory state is somewhere

between vreset = 10 mV and θ = 20 mV. (B) Cumulative Density Function
(CDF) of the stationary distribution of the membrane potential. For a wide
range of membrane potential values the CDF is well approximated by an
exponential function of v .
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A

C

B

D

FIGURE 5 | State dependent distribution of the change (increments) in

spike counts, (A) for the excitatory population, (B) for the inhibitory
population. Spiking network simulation (blue) compared with a realization
of a model (red) show that the distribution of increments in spike counts
are captured with a high accuracy for the inhibitory population. For the

excitatory population the distributions of the increments in spike count in
the model are symmetric. (C,D) Overlap between the distribution of the
increments in the spiking network simulations and a stochastic
implementation of the model for the (C) excitatory and (D) inhibitory
activity.

In the ARM model the transition probabilities are generally
state dependent. Therefore, each state has a different distri-
bution of the spike rate increments (derivatives). The model
shows the same pattern of state dependent variance, however,
the variance is not as high as that of spiking network simula-
tions (Figures 6C,D). Particularly, for the excitatory spike counts
the variance generated in the model is smaller by a factor of 10
(Figures 6A,C). However, this fact does not affect the distribution
of the spike counts in the populations drastically (Figure 9) and
the normalized correlation functions (Figure 8) are still recovered
with a high accuracy.

Figure 5 shows that for some states in the state space, the
distribution of the derivatives of the spike counts is reproduced
by the ARM model with very high fidelity. Specifically for exci-
tation, however, the model does not seem to generate enough

variability in the excitatory spike counts. In Figures 5C,D the
overlap between the distributions of the derivatives generated
from SNN and ARM in the entire state space are represented by a
number between 0, indicating no overlap, and 1, corresponding to
a complete overlap, respectively. To calculate the overlap, first the
state dependent distribution of the derivatives both for the model
and the simulation data were normalized. Then the two distribu-
tions were compared, and for each possible value of the derivative,
the minimum between the two distributions was determined. The
integral over the minima is a number between 0 and 1 corre-
sponding to the overlap. It is clear that the performance of the
model in terms of variability of the inhibitory activity is very good
(Figure 5D), however, the model is not as good in generating
large enough variability in the derivative of the excitatory pop-
ulation. This might be related to the larger number of excitatory
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A B

C D

FIGURE 6 | State dependent variance of the derivatives of spike counts

in small time bins of size 0.1 ms. (A) Variance of the spike count derivatives
for the excitatory population in a SNN. As the inhibitory spike counts
decrease, the variance of increments increases. As a function of excitatory
spike counts, the variance increases. (B) Variance of spike count derivatives
for the inhibitory population in a SNN; the same pattern with a lower variance

is observed in the case of inhibition. (C) Variance of spike count derivatives
for the excitatory population in the stochastic implementation of the ARM
model. The same pattern as (A) is observed but with a 10 times reduced
variance. (D) Variance of spike count derivatives for the inhibitory population
in the ARM model. The scale of the state dependent variance of noise is the
same as in (B).

neurons compared to inhibitory ones, and therefore the bigger
influence of the pairwise correlations among excitatory neurons
that is ignored in the ARM model. The ARM model is based on
the assumption that neurons, given the network is in a certain
state, perform spike transition independently. This leads us to use
binomial distributions to describe the transitions between the two
neuronal states. This results in a linear scaling of the variance with
the population size. As shown in Figures 6C,D (note the different
scales of the color bars), the variance of the derivatives in both
populations differ by a factor of 4, which is exactly the ratio of
the excitatory and inhibitory population sizes. However, in the
spiking network simulation, the variance of the derivatives for the
excitatory population is much bigger than the inhibitory popu-
lation (Figures 6A,B). We conclude that due to the linear rela-
tionship between the variance and the population size, the ARM
model systematically underestimates the variance of the activity
for the larger subpopulation in the network. This is a drawback

of the model and in the discussion section we will suggest ways
to overcome this problem. In the next section it is shown that
the portion of the state space visited in a stochastic simulation of
the model is less spread, and we attribute this fact to the reduced
variability in the increments of the excitatory spike counts in the
model.

3.4. NONLINEAR ISOCLINES
The state space of the system reconstructed from the simulated
data (vector field shown in Figure 7) is a good representation
of the mean-field dynamics that represents smooth transition of
the average fluctuations toward the fixed point. Starting from
an arbitrary initial condition in the state space, the mean-field
dynamics leads the trajectory to a stable fixed point. However, due
to recurrent activity and the finite size of the network, the trajec-
tory driven by the mean-field is continuously perturbed and the
result is a quasi-stochastic signal that only on average follows the
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A

B

C

FIGURE 7 | Nonlinear isoclines and dynamic flow (vector-field) in the

state space of excitatory and inhibitory spike counts. (A) Left: Mean of
the excitatory spike count derivatives; three levels of contour lines, −200, 0,
200 are shown in black. The isoclines are clearly nonlinear. Right: Mean of the
inhibitory spike count derivatives; the contour lines are shown for −50, 0, 50.
For inhibition, the nonlinearity is not dominant. (B) Mean of the derivatives of
the excitatory and inhibitory spike counts in the ARM model. The isoclines

are similar to those in a spiking network simulation. (C) Vector field extracted
from a numerical simulation of spiking neuronal network (SNN; left) and
simulation of the ARM Markov model (ARM); (middle: analytical model, right:
stochastic simulation of the model). Parameters of the model were chosen
such that the vector fields on the left and in the middle are identical. There is
a good match between the vector fields and the nullclines in the simulation
and in the model.

mean-field dynamics. In other words, the vector field describes
how a trajectory evolves on average.

The vector field has one component for each population
representing the mean increment (or derivative) of the spike
counts, given the two-dimensional state of the joint popula-
tion. The excitatory and inhibitory components of the average

state dependent derivatives are shown in Figure 7A. Isoclines in
the state space represent contour lines of a particular value of
the derivative. In Figure 7A, the isoclines corresponding to val-
ues −200, 0, 200 of the excitatory spike count derivative, and
the −50, 0, 50 isoclines for the inhibitory spike count deriva-
tive are depicted in black. The inhibitory isoclines seem to be
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a linear function of excitatory and inhibitory spike counts. The
isoclines for the derivatives of the excitatory spike counts are
non-linear with a negative dependency of inhibition on exci-
tation when there are only few excitatory spikes and relatively
more inhibitory spikes are available. The slope of the dependency
becomes positive when the number of excitatory spikes increases.
The nullclines (0 isocline) of the system are the solutions of the
two dimensional mean-field equations. An immediate conclusion
from the shape of the nullclines is that the dynamics of a finite size
network of excitatory and inhibitory neurons is nonlinear. More
theoretical evidence for the nonlinearity of the dynamics, based
on the system characteristic equation analysis is provided in the
Supplementary Material.

The ARM model with parameters estimated form the vector
field of the spiking network simulation reproduces the flow with
very high fidelity (Figure 7C, middle). The stochastic implemen-
tation of the ARM model generates a comparable vector field with
a similar shape of the nullclines (Figure 7C, right). However, the
spread of the excitatory spike counts is reduced and therefore,
compared to the spiking network simulation results, the vari-
ance of the excitatory spike counts is smaller (Figure 9B). The
low variance of the excitatory spike counts may be explained by
the state dependent distribution of the derivatives of the exci-
tatory spike counts which the model generates (Figure 5A, red
curve compared to the blue). In comparison with the spiking
network simulation, the variance of this distribution is reduced.
We conjecture that if the excitatory spikes are not only gener-
ated from a binomial distribution, but are also correlated with
the recently generated inhibitory spike counts, the variance of this
distribution will increase. Another way of generating excitatory
spike counts from the occupation number would be to consider
the two dimensional log-normal distribution of the spike counts
in the state space.

3.5. CORRELATION FUNCTIONS OF THE TWO POPULATIONS
The balanced random network with stationary input is a highly
recurrent system. A high correlation between excitation and
inhibition nevertheless results in a decorrelated input to sin-
gle neurons, because the recurrent inhibitory input cancels
the effect of recurrent excitation (Renart et al., 2010). In an

inhibition-dominated network, this provides an input to each
neuron such that the mean membrane potential is below thresh-
old and only fluctuations of the input cause threshold crossing
and therefore result in a very low rate and irregular spiking activ-
ity of a neuron in the network. The high correlation between
excitation and inhibition manifests itself in the cross-correlation
between the spiking activity of the excitatory and inhibitory pop-
ulation (Figure 8C). The ARM model is capable of producing a
high correlation function between excitation and inhibition, and
the time scale of the correlation function is the same as for the
network simulations.

The autocorrelation function of the excitatory and inhibitory
population activities in the simulation of the spiking neuronal
network has a very sharp decay in the range of the time
scale selected for the Markov model (0.1 ms). For the excita-
tory population, the autocorrelation is close to zero after 0.2 ms
and the ARM model reproduces the same correlation function
(Figure 8A). We conclude that the model is able to capture the
temporal dynamics of the excitatory population on such a short
time scale. The autocorrelation of the inhibitory spiking activ-
ity decays faster and exhibits a small undershoot after 0.1 ms.
The ARM model shows the same time-scale of correlation decay,
however, the undershoot is more pronounced (Figure 8B). The
shorter time scale of the inhibitory auto-correlation function
compared to the excitatory one is also represented in the power
spectral density of the excitatory and inhibitory populations,
illustrated in Figures 1C,D. The excitatory population concen-
trates most of its power in a relatively narrow low frequency band
compared to the inhibitory population.

3.6. HEAVY TAILED DISTRIBUTION OF SPIKE COUNTS
Some previous studies of the temporal dynamics of interacting
populations assume a Gaussian distribution of the activity around
the fixed point solution of a low-dimensional system (Kriener
et al., 2008; Tetzlaff et al., 2012; Helias et al., 2013), however,
our numerical study shows that a log-normal distribution pro-
vides a good fit to the spike counts observed in the the spiking
neuronal network (SNN) simulation (Figure 9A). Note that the
population spike counts are bounded from above (due to the
finite size of the system), a property that is not reflected by the

A B C

FIGURE 8 | Autocorrelation and crosscorrelation functions of the

population activities. (A) ACF for the excitatory population in spiking
network simulation (blue) and ARM model (red). (B) ACF for the

inhibitory population. (C) CCF between the excitatory and inhibitory
populations. The labeling is the same as in (A). The time-lag is in
unites of 0.1 ms.
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A

B

FIGURE 9 | Distribution of spike counts in short time bins (bin size

0.1 ms). (A) For spiking network simulation, (B) for stochastic implementation
of the ARM model. In both cases a log-normal fit (red curves) to the data (blue

histograms) provides a good approximation. The insets in both panels show
the distribution of the logarithm of the spike counts in blue and the maximum
likelihood estimate of a log-normal distribution fit to the data on a log-scale.

log-normal distribution. Nevertheless, it was found to provide a
good approximation for the range of data actually observed in
our network simulations. Beyond the upper bound, the proba-
bility of spike counts is zero and the log-normal distribution is
not valid. Therefore, strictly speaking, the distribution of such
a bounded random variable is not heavy-tailed but we use this
term for the positively skewed distribution of spike counts. The
parameters μ and σ of the fitted log-normal distribution are
3.214, 0.664 and 1.938, 0.582 for the excitatory and inhibitory
spike counts, respectively. The ARM model with the parameters
extracted from the mean-field flow which was reconstructed from
simulated data can capture this statistical property of the system
(Figure 9B). The corresponding parameters of the ARM model
are 3.405, 0.405 and 2.036, 0.539 for the excitatory and inhibitory
spike counts, respectively. A log-normal distribution fits to the

distribution of the spike counts generated in spiking network sim-
ulation and in the stochastic implementation of the ARM model
very well, much better than possible alternative right-skewed dis-
tributions (gamma distribution, negative binomial distribution;
data not shown). Insets of Figure 9 show a fitted normal distri-
bution to the envelope of the distribution of the logarithm of
the spike counts. The fact that spike counts are integer numbers
needs to be taken into account in the fitting process. We conclude
from these results that the spike counts of the population activ-
ity embedded in a network do not follow Poisson statistics, as the
mean and the variance of the spike counts are not identical.

A log-normal distribution of activities in a different context,
when there are inhomogeneous degree distributions or other
quenched noise in the system, have been reported in different
studies (Roxin et al., 2011; Mizuseki and Buzsáki, 2013; Buzsáki
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and Mizuseki, 2014). Outside the neuroscience literature it has
been claimed that log-normality could be an emergent feature
of competition among subgroups of individuals (Halloy, 1998;
Halloy and Whigham, 2005). For a balanced random network
with the same in-degree for all neurons, however, to the best
of our knowledge, it is the first time that this statistical behav-
ior is reported. We believe that this emergent feature is tightly
related to the large-scale dynamics of the interacting excitatory
and inhibitory populations. The state dependence of the transi-
tion rates, and the doubly stochastic nature of the Markov system
that follows from it, might provide a formal explanation for this
result.

3.7. UNIVERSALITY IN BALANCED NETWORKS OF DIFFERENT SIZE
The network under study is a strongly connected network with
identical in-degrees for all neurons. This implies that each neu-
ron receives inputs from a fixed fraction of each population in the
network. To keep the mean and the variance of the activity in the
network limited, when the size N of the network tends to infinity,
we scaled the synaptic weights by 1√

N
. We studied the network

size effect on the variance of fluctuations and the nullclines of the
reduced dimension system for 3 different networks of total size
7500, 12,500, and 20,000 neurons where in all these cases 20%
of the neurons were inhibitory. The corresponding EPSP ampli-
tude was 0.13, 0.1, and 0.08, respectively. To see whether there
is any universal feature in the population dynamics of such net-
works, we normalized the spike counts of each population by the
size of the population. This helps us to study dynamics of the
fraction of the active neurons irrespective of the size of the net-
work. To check the size invariance property of the ARM model,
we rescaled equation (8) by the corresponding population size for
the excitatory and inhibitory population. Introducing new vari-
ables Xe = Se

Ne
and Xi = Si

Ni
, equation (8) could be rewritten in

the following form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẋe(t) = exp
(
c0 + c′

1Xe(t) + c′
2Xi(t)

) (
γ dt − Xe(t)

)
− (β + γ )Xe(t)

Ẋi(t) = exp
(
c0 + c′

1Xe(t) + c′
2Xi(t)

) (
γ dt − Xi(t)

)
− (β + γ )Xi(t)

(12)

In equation (12), the coefficients c′
1 and c′

2 depend on the pop-
ulation sizes. The variables X are confined between 0 and 1 and
comparing the dynamics of the networks with different sizes is
reduced to a comparison between transition rates α, β, and γ .
In our study, we were not able to identify an exact relationship
between these parameters and the single neuron and connectiv-
ity parameters. However, Figure 10 shows that these parameters
change such that the equation is invariant to network size.

As illustrated in Figure 10, the nullclines have the same shape
irrespective of the size of the network, but the variability that is
reflected in the total visited area of the state space decreases as
the network size increases. The suggested active refractory model
can reproduce the vector field of the spiking network simulation
for different network sizes, provided that the parameters of the
model are correctly estimated. Therefore, our conclusion is that

the nonlinearity in the interaction between populations for sta-
tionary input and the heavy-tail (positively skewed) distribution
of the activity are both universal properties of strongly connected
networks of finite size.

3.8. IS THE STATIC NONLINEAR TRANSFER FUNCTION RESPONSIBLE
FOR THE NONLINEAR DYNAMICS?

Some studies of network dynamics assume that the stationary
input-output transfer function of a neuron could provide a good
description even for the time dependent activity of the network
(Ledoux and Brunel, 2011; Pernice et al., 2012; Tetzlaff et al.,
2012; Ostojic, 2014). The firing rate of a neuron in these models
is typically approximated by the differential equation

τ ṙi(t) = −ri(t) + F(r(t)) (13)

where F is the static nonliner function and r is the vector of the
firing rate of other neurons in the network. This model, however,
can be a good approximation for the temporal dynamics of the
network only at large time scales, when the network activity is
filtered over time and fluctuations have relatively low amplitude.
Under these conditions, a linear approximation of the dynamics
does provide a good match with the data. In our study, how-
ever, the time scale was chosen based on the time scale of the
autocorrelation function of the network activity such that a wide
range of frequencies contributes to the fluctuations. For dt =
0.1 ms, we demonstrate that the neural static nonlinearity can-
not follow the delicate nonlinearity of the isoclines (Figure 11A)
and the log-normality of the spike counts (Figures 11B,C). The
nullclines of this model, after transforming the rates to spike
counts, are almost linear functions of the respective spike counts
(Figure 11A). Comparing the cumulative distributions of the
spike counts generated from SNN, ARM and the input-output
nonlinearity in equation (13) illustrates the discrepancy between
the latter and the former. In fact, assuming that the instantaneous
rates are equal to the stationary rates results in an overdispersed
spike count distribution that does not match with that of SNN.
Therefore, this assumption is obviously not correct for small time
bins. These results show that system (13) is not valid on small
time scales. On the other hand, as shown in the previous sections,
the ARM model reproduces statistics and dynamics similar to the
SNN data.

4. DISCUSSION
In this study, we highlighted some properties of the large scale
dynamics of finite-size balanced random networks in the inhibi-
tion dominated regime. It was shown that a linear system with
additive Gaussian white noise cannot capture the statistics and
dynamics of the two neuronal populations, and a more sophisti-
cated model that represents the nonlinearity of the interactions
and the statistics of the activity in a self-consistent way was sug-
gested. We showed that a two state Markov process that the
states of which reflect the coarse-grained membrane potential of a
neuron, along with appropriate state-dependent transition prob-
abilities, can reproduce the dynamics and statistics of a finite size
network in the stationary balanced state in a satisfactory way. The
state-dependent transition probabilities were all inferred from the
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A B

FIGURE 10 | Finite size effect on the nullclines of the normalized activity of the two populations in SNN. (A) Null-cline for the excitatory population for
networks of size 7 500, 12 500, 20 000. (B) Corresponding nullclines for the inhibitory population for the same network sizes as in (A).

A B C

FIGURE 11 | Statistics and dynamics of equation (13). (A) Flow of the two-dimensional system with almost linear null-clines. (B,C) CDF of the spike
distributions for SNN, ARM and equation (13) for the inhibitory (B) and the excitatory (C) population.

numerical simulation of a spiking network of leaky integrate-and-
fire neurons with stationary input. The approach was based on a
reconstruction of the mean-field dynamics flow. The determin-
istic dynamics was complemented by a state-dependent stochas-
tic component, assuming independent spiking in all neurons.
This essentially leads to a binomial noise model, approximating
Poisson statistics in very small time bins. On the level of the mean-
field, the Active-Refractory Markov (ARM) model resembled the
vector field extracted from the data with high fidelity. The pop-
ulation correlation functions of the spiking network simulation
and the stochastic implementation of the model shared the same
dynamical behavior.

We do not claim that the temporal dynamics of the finite size
system is Markovian but a Markov model provides a good approx-
imation. In general, the transition probabilities of the model
depend on an unbounded history of the network activity (Cessac,
2011). However, we showed that a Markov model with a care-
fully chosen time scale is able to reflect some major statistical and
dynamical properties of a balanced random network with fixed

in-degrees. In the first part of the paper we explored the Markov
properties of the network dynamics, and the size of time bins
was chosen based on the similarity between the power spectra
of a Markov model and the spiking network simulation. Then,
we specifically considered a two-state Markov model for each
neuron and estimated the state dependent transition probabili-
ties from the simulated data. A self-consistent description that
also accounts for the fluctuations of the finite-size system was
obtained.

As outlined in detail in the Results section, there is a distinct
similarity between the mean-field equations derived from the
ARM model and the well-known Wilson-Cowan model (Wilson
and Cowan, 1972) for the joint dynamics of excitatory and
inhibitory neuronal populations. In the Wilson-Cowan model,
the population response function, which gives the expected pro-
portion of active neurons in a population as a function of
the overall excitation in the system, derives from a cumulative
unimodal density function and therefore typically has a sigmoidal
shape. Using the Fokker-Planck equation to obtain the stationary
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distribution of the membrane potential and neglecting the abso-
lute refractory time, a unimodal distribution will emerge. As
discussed in this paper, the integral of the density function gives
the transition probability from the refractory to the active state,
the rate α in our model, as it reflects the local probability flux
between the refractory and the active state. The local behavior of
this function, for a wide range of the membrane potential between
the threshold and reset, is well approximated by an exponential
function and this approximation is quite good in comparison
with spiking network simulations. A more precise result might
come out if the CDF of the solution of equation (9) with free
parameters is used for α. As shown in Figure 4, the CDF is a
sigmoid function due to its unimodality. It is important to men-
tion that the parameters of the model do not directly come from
the CDF, but they should be estimated from the simulated data.
An exponential function for the monotonically increasing CDF
provides a good approximation for a wide range of network
parameters and external input levels, as long as the network activ-
ity is asynchronous and irregular. Another comparison between
the two models could be done on the kernel that is applied on the
total excitation level in the network. In Wilson and Cowan (1972)
an exponential kernel was used, which is justified by the impulse
response of a leaky integrate and fire neuron.

The self-consistent noise model is an important feature of the
model suggested in this article. The noise distribution is specific
for each state, due to a deterministic dependency of the transi-
tion rates on the most recently generated spikes. Surprisingly, the
state-dependent noise is such that it creates a strongly skewed dis-
tribution of the spike counts, similar to what is observed in the
numerical simulations of spiking networks. The variance of the
fluctuations generated by the model is, however, slightly smaller
than the variance of the spike counts in the spiking network sim-
ulations. This is probably caused by the symmetric and relatively
narrow state-dependent distribution of the noise in the excitatory
population (Figure 5A). As mentioned in the result section, this
problem is due to the assumption of independent spiking of indi-
vidual neurons in each pool, implying the emergence of binomial
distributions to describe the size of the neuronal populations that
undergo a transition. As the variance of the outcome will be pro-
portional to the total number of available neurons in each state,
the variance of the increments will be directly proportional to the
population size. One way of coping with this problem would be
to create a correlation between the noise distributions in the two
populations. Another way would be to consider the spike count
distributions of the excitatory population given the spike counts
of the inhibitory one. This way the heavy tail (positively skewed)
distribution will come out automatically.

The nonlinear isoclines of the vector field provide strong
evidence for a nonlinear interaction between the two neuronal
populations. In particular the nullcline of the excitatory popu-
lation exhibits very nonlinear behavior in the regime of small
spike counts. Close to the fixed point of the flow, the excitatory
nullcline changes direction. This property of the network can
only be explained by a nonlinear model. It was already shown by
Wilson and Cowan (1972) that different shapes of the nullclines
emerge due to the asymmetry between excitation and inhibi-
tion, and because of their different signs in the argument of the

population response function. In our model, however, the param-
eters of the two differential equations are the same, but different
signs of the coefficients of the excitatory and inhibitory spike
counts are enough to yield different shapes of the nullclines. A
similar shape of the nullclines was in fact obtained in a model
of the thalamo-cortical response transformations in the Barrel
cortex of rodents (Pinto et al., 2003). We also checked whether
the shape of the nullclines is invariant with regard to the size of
the network. To compare the nullclines of networks of different
sizes, however, it was necessary to normalize the activities of both
populations. After normalization, the nullclines of networks with
different sizes were almost identical, and it seems justified to claim
that the nonlinear interaction is a universal property of strongly
connected balanced networks. Since our method is based on the
reconstruction of the dynamic flow, we conclude that our model
can successfully capture the dynamics due to its size-invariance
property.

It has been shown in van Vreeswijk and Sompolinsky (1996,
1998) that balanced random networks are extremely fast in fol-
lowing the temporal dynamics of an external input. This means
among other things that the power spectral density of “sponta-
neous” network activity has a very broad frequency range and,
as a result, the autocorrelation functions of the populations
decay sharply. Our suggested model was successful in repro-
ducing this fast temporal dynamics. Experimental evidence and
theoretical studies suggest that dynamic responses of neocor-
tical neurons are much faster when multiplicative input noise
is imposed, compared to the case of additive noise (Lindner
and Schimansky-Geier, 2001; Silberberg et al., 2004; Boucsein
et al., 2009). We hypothesize that the multiplicative nature of
the self-generated noise in balanced random network could also
contribute to fast neuronal responses and sharp autocorrelation
functions. Furthermore, an emergent property of balanced net-
works in the asynchronous irregular state is the high correlation
between excitatory and inhibitory population activity, which was
also successfully retrieved by our model. This is due to the fact
that the same mean-field provides input to both populations.
In other words, log (α) is a linear function of excitatory and
inhibitory activity at any given point in time, with a positive
weight for excitation and a negative weight for inhibition. This
type of dependency makes a major contribution to correlating
excitatory and inhibitory spike counts.

Recently, some studies have featured heavy-tail distributions
of various phenomena in the brains of different species, sup-
posedly a robust and important aspect of cortical computation
(for a review see Buzsáki and Mizuseki, 2014), often approx-
imated by log-normal distributions. Neurons in the auditory
cortex (Deweese and Zador, 2008) and in the hippocampus and
enthorinal cortex (Mizuseki and Buzsáki, 2013) of rats exhibit a
log-normal distribution of firing rates. In Mizuseki and Buzsáki
(2013) it is also shown that during the bursting activity state
of the network, the fraction of all recorded neurons that fire a
spike, for either stimulus-evoked or spontaneous activity, display
a log-normal distribution. This, in turn, might be attributed to
the log-normal distribution of the synaptic weights. Similarly,
high density micro-electrode recordings of the human brain dur-
ing sleep, in combination with a separation of excitatory and
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inhibitory cellular activities based on the spike wave-forms, has
shown a log-normal distribution of firing rates (Peyrache et al.,
2012). A theoretical study (Roxin et al., 2011) has shown that
for a randomly connected network of excitatory and inhibitory
LIF neurons with a random number of external inputs for each
neuron and random synaptic efficacies, using an exponential f -I
curve to describe the single neuron dynamics and a Gaussian dis-
tribution of inputs to each cell, a log-normal distribution of neu-
ral firing rates arises. In our study, however, all neurons had the
same statistical inputs without any quenched variability, resulting
in identical firing rates for all neurons in the network. However,
the distribution of the spike counts for a large simulation time
with small time bins was shown to be well fitted by a log-normal
distribution. The suggested model was also able to represent this
emergent statistical property of the network. This might emerge
due to the exponential dependency of the transition probabil-
ity α with suitably chosen parameters. In the theory of complex
systems, the log- normal distribution is considered to be a uni-
versal statistical property of many natural systems (Halloy, 1998;
Halloy and Whigham, 2005; Kobayashi et al., 2011). In particular,
Kobayashi et al. (2011) showed that if the history of each compo-
nent of the system defines its present state, log-normality becomes
emergent. This could be tested on a network of multiplicatively
interacting point processes that mimic the behavior of LIF neu-
rons (Cardanobile and Rotter, 2010, 2011). However, a rigorous
analysis shows that the Gibbs distribution is a unique invariant
probability measure of the system under stationary input (Cessac,
2011). It might be interesting to investigate the underlying reason
for the emergence of the log-normal distribution analytically.

We would like to stress once more the importance of choos-
ing the right time scale for the ARM model. Due to the Markov
assumption, the time bin must be chosen such that the influ-
ence of the past activity of the network on the transition rates
(its memory) is minimal. This time scale is typically small, and
we observe that a wide range of the power spectrum of the spik-
ing activity is preserved. We conclude that the time dependent
dynamics of the network is quite accurately captured. It was also
shown in our paper that the typical input-output static nonlin-
earity of a neuron is neither suited to reproduce the nonlinear
activity of the network, nor the log-normal distribution of the
spike counts.

Markov models have been suggested before as models of the
temporal dynamics of finite size networks (Soula and Chow, 2007;
El Boustani and Destexhe, 2009; Cessac, 2011; Buice and Chow,
2013a). In Soula and Chow (2007), an approach similar to ours
was proposed assuming a statistically homogeneous network of
excitatory neurons. The difference to our work is that an active
neuron is by definition a neuron that emits a spike, therefore only
one transition probability from the silent to the active state is
needed. This probability is proportional to the steady-state firing
rate of the neuron. Also, a full-blown theoretical framework was
introduced to calculate the first and second moment of fluctua-
tions in the network. Our model, however, is different in the sense
that the interaction between the excitatory and inhibitory popula-
tion is taken into account, and that a high correlation between the
activities of the two populations is preserved. Moreover, a heavy-
tail distribution of the activity emerges as a result of the dynamical

interaction between excitation and inhibition. However in Soula
and Chow (2007) the distribution of the single population activ-
ity is symmetric due to the lack of inhibitory population. Our
model on the other hand considers a neuron in the active state
if its membrane potential is above some unspecified value of the
membrane potential between threshold and rest. It takes the effect
of leak into account by assuming a potential transition from the
active to the refractory state without emitting a spike. El Boustani
and Destexhe (2009) followed the same approach in continuous
time for a sparse random network of excitatory and inhibitory
neurons. Assuming quasi-stationarity, they derived the first two
moment equations of the activity using the static input-output
transfer function of a typical neuron in the network. However,
Poisson statistics for each neuron was assumed and the transi-
tion function was calculated based on the mean activity of the
network; therefore, the resultant distribution of the activity was
Gaussian.

The main underlying assumption of the ARM model is the
two-state Markovian single-neuron dynamics. For an appropriate
choice of the time step, it was shown in the present study that the
statistics and dynamics of recurrent networks of leaky integrate-
and-fire neurons can be captured by the model. However, we
neglected the role of absolute refractoriness in the dynamics of
the membrane potential. Refractoriness shapes the low frequency
range of the population dynamics (Mar et al., 1999; Spiridon
and Gerstner, 1999). It could be modeled by introducing a chain
of refractory states and thereby, increasing the dimensionality of
the model (Toyoizumi et al., 2009). In the ARM model, abso-
lute and relative refractoriness together, effectively, will have a
wide distribution (for a relevant study, see Deger et al., 2010).
Another aspect of our study is that synaptic transmission delays
were neglected in the model as well as in our network sim-
ulations. In general, the transition probabilities depend on an
unbounded past (Cessac, 2011) and delayed feedback makes the
system non-Markovian (Vidybida and Kravchuk, 2013). It might
be interesting to investigate whether a delayed α rate operating on
the current pool of refractory neurons can represent the dynamics
of the spiking network simulations. Furthermore, the important
assumption of the ARM model is that all neurons statistically
behave the same, because they all have the same in-degree. This
allows us to reduce the dimensionality of the large scale dynamics
and come up with a simple two state stochastic model of the sys-
tem. If there is any inhomogeneity in the system, this model will
not be a good candidate. Maybe for a network with homogeneous
subpopulations, each component could be modeled by the ARM
presented in this paper, with suitable parameters.

Population density methods are promising approaches for
dimensionality reduction in dynamic networks. Including finite-
size effects and correlations in the model, however, is a chal-
lenge. Deterministic density equations describing the temporal
dynamics of finite-size networks were derived by using an eigen-
function expansion of the Fokker-Planck equation (Mattia and
Del Giudice, 2002, 2004). Using a stochastic and deterministic
approach, Buice and Chow recently suggested a mean-field equa-
tion and moment hierarchies of a density equation to obtain
corrections arising from the finite size of the system and from cor-
relations which are basically due to heterogeneities in the system
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(Buice and Chow, 2013a). For a homogeneous network, using the
effective action approach of field theory (Buice and Chow, 2013c)
and system size expansion around the mean-field density func-
tion (Buice and Chow, 2013b), they derived moment equations
leading to the dynamics of mean and covariance in the network.
Our suggestion for future exploration of the field is that a non-
linear set of Fokker-Planck equations for each population might
be recast in the form of ARM model suggested in this paper.
The more general model will have nonlinear and state dependent
transition parameters that could be analytically derived and the
stochastic behavior will emerge as a result of the finite size of the
system.

Finally, to extend the model to cover the more general case of
non-stationary and time dependent input, it is necessary to inves-
tigate the precise role of the external input in the ARM model.
There are at least two possibilities: it could either be reflected in γ ,
or it could be included in the transition rate from the refractory to
the active state, α. We suggest that the same data analysis method
that we applied in this study might also help in determining the
role of external time-dependent input in the model. Furthermore,
it is possible to test whether this model can capture the dynam-
ics of more than two interacting populations. However, this will
be more challenging, as the dynamics of these type of networks
are not necessarily stationary in time. Particularly, under certain
conditions, switching dynamics between populations might arise
(Litwin-Kumar and Doiron, 2012).
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APPENDIX
A.1. PROPERTIES OF A LINEAR SYSTEM WITH GAUSSIAN NOISE
In this section we highlight the main properties of a lin-
ear system and we will show that the temporal dynamics
of finite size networks does not suggest a linear model. To
demonstrate this, we consider a general two-dimensional lin-
ear system and will use two sources of Gaussian white noise
to drive the excitatory and the inhibitory population. Then,
we will discuss the features of this model due to the lin-
ear nature of the system and those which emerge due to
the external drive. We assume in the following that ye(t)
and yi(t) represent the instantaneous firing rates of the exci-
tatory and inhibitory population. We consider an arbitrary
communication delay in population interactions, which need
not to be identical. Without loss of generality, we assume
zero initial conditions for both populations. A coupled two-
dimensional linear system in its general form is represented in the
following way

ẏe(t) = aeeye(t − d) + aeiyi(t − d) + aeIe(t)

ẏi(t) = aieye(t − d) + aiiyi(t − d) + aiIi(t) (A1)

Taking the Laplace transform of the above equation results
in

sYe(s) = aeee−sdYe(s) + aeie−sdYi(s) + aeIe(s)

sYi(s) = aiee−sdYe(s) + aiie−sdYi(s) + aiIi(s) (A2)

which in matrix form is

[
Ye(s)

Yi(s)

]
=
[

aeee−sd − s aeie−sd

aiee−sd aiie−sd − s

]−1 [−aeIe(s)

−aiIi(s)

]

= 1

G(s)

[
aiie−sd − s −aeie−sd

−aiee−sd aeee−sd − s

][−aeIe(s)

−aiIi(s)

]
;

(A3)

where

G(s) =
(

aiie
−sd − s

) (
aeee−sd − s

)
+ aieaeie

−2sd

is called the characteristic equation of the linear system and
appears in the denominator of both Ye(s) and Yi(s). The peaks
in the power/amplitude spectra show the location of the zeros of
the characteristic equation of the system. Therefore, the poles of
the two components are identical and result in the same location
of peaks in the power spectrum of ye(t) and yi(t). This statement
is true in the more general case, when the inputs are different
and non-Gaussian, since the two inputs play a role in shaping
the power spectrum of both signals. The conclusion that we draw
from this analysis is that if the power or amplitude spectra of two
mutually interacting signals do not have the same peaks, then the
interaction between them cannot be linear.

Equation (A3) shows that a coupled system as such behaves
like a low-pass filter and for white noise input, the output would
just be a filtered version of the noise. Since the distribution of the
input is symmetric about its mean, the distribution of the output
is also symmetric. Therefore, a non-symmetric distribution of the
output must be interpreted as either a sign of nonlinearity of the
system or the non-Gaussian nature of the input.

A.2. NON-IDENTICAL POLES IN THE AMPLITUDE SPECTRUM OF
EXCITATORY AND INHIBITORY SPIKE COUNTS

A balanced network of excitatory and inhibitory population,
with the same characteristics of the network introduced in the
Methods section, but with a synaptic delay of 1.5 ms and the total
simulation time of 100 s, was simulated. The amplitude spectra
of the excitatory and the inhibitory population are illustrated in
Figure A1. In the low frequency regime of the dynamics, the peaks
of the excitatory and inhibitory amplitude spectra are identical.
However, for the high frequency part of the spectra the locations
of the poles of the two populations are slightly shifted with respect
to each other. This fact shows that the dynamics of the system
that describe the temporal activity of the population interactions
cannot be linear.
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FIGURE A1 | Amplitude spectral density of spike counts with a bin

size of 0.1 ms and d = 1.5 ms. The entire spectrum of excitatory spike
counts in bins of 0.1 ms is plotted in blue. The power spectrum of
inhibitory spike counts under the same condition is plotted in red. Due to
less number of neurons in the inhibitory population, its amplitude is lower

than that of excitation. Dashed lines are plotted at frequencies
corresponding to the peakes in the power spectra. For low frequencies,
the peaks of the two spectra are the same. In the high frequency range
the peaks in the amplitude spectrum of the inhibitory spike counts are
slightly shifted with respect to those of excitatory ones.
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