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1. INTRODUCTION

Animals are able to discover the minimal number of actions that achieves an outcome (the
minimal action sequence). In most accounts of this, actions are associated with a measure
of behavior that is higher for actions that lead to the outcome with a shorter action
sequence, and learning mechanisms find the actions associated with the highest measure.
In this sense, previous accounts focus on more than the simple binary signal of “was the
outcome achieved?”; they focus on “how well was the outcome achieved?” However,
such mechanisms may not govern all types of behavioral development. In particular, in
the process of action discovery (Redgrave and Gurney, 2006), actions are reinforced if
they simply lead to a salient outcome because biological reinforcement signals occur too
quickly to evaluate the consequences of an action beyond an indication of the outcome’s
occurrence. Thus, action discovery mechanisms focus on the simple evaluation of “was
the outcome achieved?” and not “how well was the outcome achieved?"” Notwithstanding
this impoverishment of information, can the process of action discovery find the minimal
action sequence? We address this question by implementing computational mechanisms,
referred to in this paper as no-cost learning rules, in which each action that leads to
the outcome is associated with the same measure of behavior. No-cost rules focus on
“was the outcome achieved?” and are consistent with action discovery. No-cost rules
discover the minimal action sequence in simulated tasks and execute it for a substantial
amount of time. Extensive training, however, results in extraneous actions, suggesting
that a separate process (which has been proposed in action discovery) must attenuate
learning if no-cost rules participate in behavioral development. We describe how no-cost
rules develop behavior, what happens when attenuation is disrupted, and relate the new
mechanisms to wider computational and biological context.

Keywords: action discovery, reinforcement learning, intrinsic motivation, optimal control, redundancy, dopamine

As with many tasks, Thorndike’s puzzle box has massive

Animals are capable of executing a huge variety of move-
ments and behaviors, to which we refer collectively as actions.
Importantly, animals are able to discover the actions, including
sequences of actions, that affect the environment and prefer-
entially recruit them in order to explore the environment and
accomplish tasks. This process is often studied using the proto-
cols of operant conditioning (Thorndike, 1911; Skinner, 1938),
in which the animal, free to execute many actions, receives a bio-
logically rewarding outcome if it executes a particular action or
sequence of actions. For example, in Edward Thorndike’s clas-
sic experiments (Thorndike, 1911), a hungry cat was placed in
a “puzzle box” and could escape to get food only after it had exe-
cuted one or several actions, such as pressing a lever and pulling a
string. When first placed in the box, the cat would execute many
actions, most of which did not affect the box’s door, until it hap-
pened to press the lever and then pull on the string, after which
the box’s door opened. With repeated trials, the cat executed fewer
of the irrelevant actions, and executed only the actions that led to
the door opening.

redundancy in that the outcome can be achieved in many ways
(such as by executing irrelevant actions as well as the actions
that open the door). Animals resolve this redundancy to a large
extent—they are able to achieve the outcome without executing
more actions than necessary. We refer to such behavior as the
minimal number of actions that achieves an outcome, or, sim-
ply, the minimal action sequence. Animals are able to discover
the minimal action sequence through their own interactions
with the environment rather than just from external instruction.
How this behavior is learned has been (and is still) the focus of
much research in psychology and neuroscience (e.g., Staddon and
Cerutti, 2003; Pearce, 2008; Balleine et al., 2009) and, because it
describes how learning agents learn from their own experiences,
artificial intelligence, and robotics (e.g., Sutton and Barto, 1998;
Hart, 2009; Konidaris, 2011).

How are animals able to discover the minimal action sequence?
In other words, by what mechanisms do animals discover and reli-
ably execute the minimal action sequence rather than any of the
many other action sequences that also achieve the outcome? The
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achievement of the outcome itself is one obvious signal that can
be used to determine if a particular action sequence has achieved
the outcome. In addition, in most previous accounts, actions are
further evaluated in that actions are associated with a measure
of behavior that is higher for actions that lead to achieving the
outcome with a smaller total number of actions, and learning
mechanisms adjust the tendencies to select actions so as to max-
imize that measure of behavior. Thus, shorter action sequences
that achieve the outcome are preferred because they are deter-
mined to be “better” than longer action sequences that achieve the
outcome, and the minimal action sequence is the “best” or “opti-
mal” with respect to that measure of behavior. In other words,
most previous accounts are concerned not with just the simple
evaluation of “was the outcome achieved?”; rather, they are con-
cerned with “how well was the outcome achieved?” where “how
well” is in reference to the measure of behavior the learning rule
maximizes.

A commonly used computational framework with which to
study animal learning processes is a class of optimal control meth-
ods called computational reinforcement learning (RL) (Bertsekas
and Tsitsiklis, 1996; Sutton and Barto, 1998). RL is inspired in
part by animal learning (particularly Thorndike’s Law of Effect,
Chapter 5 of Thorndike, 1911), and neuroscience research in the
1990s (Ljungberg et al., 1992; Schultz et al., 1993) and subsequent
research reveal RLs ability to describe biological learning pro-
cesses (Houk et al., 1995; Schultz et al., 1997) (see also Shah, 2012
or Niv, 2009 for reviews relating RL with psychology and neuro-
science). In RL, a learning agent discovers behavioral policies that
maximize a measure of behavior that is a function of numerical
signals—usually referred to as “reward signals”—delivered by the
environment. Typically, a positive numerical signal is delivered
when the learning agent achieves the outcome of interest (sim-
ulating the biologically rewarding outcome the animal receives
when it accomplishes an operant conditioning task), addressing
the question “was the outcome achieved?” In addition, the ques-
tion “how well was the outcome achieved?” is usually addressed by
incorporating one or both of the two following types of cost. The
first type of cost is that every executed action incurs an explicit
action cost in the form of a negative numerical signal (represent-
ing quantities we presume the animal encodes internally that it
seeks to minimize, such as muscular effort Pedotti et al., 1978;
Fagg et al., 2002; Todorov and Jordan, 2002; Shah et al., 2004).
If each executed action incurs a similar explicit cost, the mini-
mal action sequence incurs the fewest negative numerical signals.
The second type of cost is that the magnitudes of the numerical
signals—in particular, the magnitude of the positive numerical
signal delivered when the outcome is achieved—decreases with
temporal delay. This temporal discount has often been studied
in experimental psychology and behavioral economics by pre-
senting an animal with a choice of two actions: one leads to a
rewarding outcome after a short delay, the other after a long
delay (Samuelson, 1937; Chung, 1965; Logan, 1965; Green and
Myerson, 2004). If the two actions lead to an outcome of the same
magnitude of reward (such as the same amount of food), the ani-
mal is more likely to choose the action associated with the short
delay. The temporal delay is thought to add an implicit cost by

decreasing the perceived magnitude of the reward. If each exe-
cuted action takes a similar non-zero amount of time to execute,
the positive numerical signal upon achieving the outcome is tem-
porally discounted the least with the minimal action sequence.

A learning agent using RL rules modifies its behavior through
its own interaction with the environment (executing actions and
observing the consequences). Model-free or direct RL methods use
experience exclusively, while other types of RL methods also use
models of the environment to behave or modify behavior (Sutton
and Barto, 1998; Daw et al., 2005). We focus on model-free meth-
ods in this paper. The RL rule generates reinforcement signals
based on an error in prediction of the measure of behavior. If an
action’s consequences result in a higher measure of behavior than
expected, reinforcement signals that compare the experienced
measure with the expected measure increase the tendency to select
that action (the action is reinforced), and decrease the tendency if
the consequences result in a lower measure than expected. When
that measure of behavior is expressed as described in the previous
paragraph, an action that leads to achievement of the outcome
with a shorter action sequence is considered to be “better” than
other actions that also achieve the outcome and the tendency to
execute it is greater than the tendency to execute other actions (it
is preferred). Thus, RL rules using that measure of behavior focus
on “how well was the outcome achieved?”

While mechanisms that use such measures of behavior may
account for many types of behaviors, such as acting to maximize
rewards received, they may not apply to all types. In particular,
Redgrave et al. (Redgrave and Gurney, 2006; Redgrave et al., 2008,
2011, 2013; Stafford et al., 2012; Gurney et al., 2013) discuss how
the unexpected occurrence of a salient outcome causes the animal
to repeat preceding actions, even if the outcome is not biologically
rewarding (see also Horvitz, 2000; Barto et al., 2004). With con-
tinued repetition, the animal discovers the actions that achieve
the outcome and represents them as a single action in a process
referred to as action discovery. Importantly, however, the process
of action discovery is thought to be driven by the unexpected
occurrence of the outcome. As described in detail in Redgrave and
Gurney (2006), biological reinforcement signals in action discov-
ery occur too quickly to evaluate behavior beyond an indication
of the outcome’s occurrence—learning mechanisms in action
discovery may be driven by a prediction error regarding the out-
come’s occurrence, but not an error in prediction of a measure of
behavior that is higher for actions that lead to achievement of the
outcome with a shorter action sequence. In other words, action
discovery is thought to be driven by mechanisms that focus on the
simple binary signal of “was the outcome achieved?” and not by
the continuous signal of “how well was the outcome achieved?”
(Action discovery is considered to be part of broader class of
intrinsically motivated behavioral development, Barto et al., 2004,
2013b; Redgrave and Gurney, 2006; Oudeyer and Kaplan, 2007;
Schmidhuber, 2010; Barto, 2013; Gurney et al., 2013. Also, some
neuroscience research suggests that processes that adjust behav-
ioral tendencies and processes that evaluate behavior in terms of
measures to be maximized may be mediated by different brain
systems, Berridge and Robinson, 1998; Berridge, 2007; Berridge
et al., 2009).
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If action discovery does not focus on “how well was the
outcome achieved?” how can the minimal action sequence be
discovered in action discovery? Here, we describe a computa-
tional mechanism by which this can occur. We implement no-cost
learning rules, based on canonical RL rules (Sutton and Barto,
1998), that do not use either of the two types of cost described
above. If the outcome is achieved, no-cost learning rules gener-
ate reinforcement signals that increase the tendency to execute
every action that was executed en route to the outcome, but at
a rate that decreases with temporal distance from the outcome.
Importantly, in no-cost rules, actions that lead to achievement
of the outcome are each associated with the same measure of
behavior (indicating that the outcome was achieved) as opposed
to a measure of behavior that is higher for actions that lead to
achievement of the outcome with a smaller number of actions.
No-cost rules focus on the simple evaluation of “was the outcome
achieved?” as opposed to “how well was the outcome achieved?”
They represent a possible computational mechanism by which the
minimal action sequence can be developed that relies on different
types of information and processes than previous accounts and is
consistent with the process of action discovery.

Recent modeling work (Chersi et al., 2013) has shown that
learning rules similar to the no-cost rules we describe in this paper
can be used to discover the minimal action sequence. However,
they use networks of spiking neurons to investigate neural mech-
anisms of goal-directed and habitual control and do not directly
address the questions we raise in this paper. From the presented
results, it is not clear if the learning rule can reliably discover the
minimal action sequence if there is massive redundancy, i.e., if
a very large number of action sequences of varying lengths can
achieve the outcome.

Here, we simulate artificial agents using no-cost learning rules
acting within discrete-state discrete-action environments in tasks
in which there is massive redundancy and the outcome depends
on sequences of more than a few actions. Discrete-state discrete-
action environments and tasks are commonly used to describe
and evaluate RL algorithms (Sutton and Barto, 1998). The no-cost
rules we implement are able to discover and execute, for a tempo-
rary yet substantial amount of time, the minimal action sequence.
This behavior can be described as optimal with respect to a mea-
sure of behavior that is influenced by explicit action costs and/or
temporal discounting of numerical signals, but it emerged “for
free” without taking these types of cost into account. We go on to
describe how such behavior arises from no-cost rules.

Behavior under no-cost rules consists of the minimal action
sequence for a substantial period of time; however, if actions con-
tinue to be reinforced according to no-cost rules for an extended
amount of time, extraneous actions are developed—because any
action that leads to achievement of the outcome is associated with
the same measure of behavior in no-cost rules, behavior does
not converge with extended training. Thus, stable behavior with
no-cost rules requires that reinforcement signals be attenuated
with a separate process as learning progresses with a separate pro-
cess. Interestingly, the reinforcement signals, mediated by phasic
dopamine neuron activity (Wickens et al., 2003) in biological
operant learning, also appear to undergo attenuation (Ljungberg
et al., 1992; Schultz et al., 1993, 1997) and a similar process has

been proposed in action discovery (Redgrave and Gurney, 2006;
Redgrave et al., 2008, 2011, 2013). According to action discov-
ery, reinforcement signals, mediated by phasic dopamine neuron
activity, are attenuated by a separate process that is contingent
on the ability to predict the occurrence of the outcome. In the
work presented here, we do not seek to model the separate pre-
diction process underlying reinforcement attenuation but, rather,
we examine resulting behavior if the attenuation were disrupted
(e.g., due to disorders in prediction or reinforcement functions).
We discuss the significance of this process and no-cost learning
rules in relation to other theories of reinforcement attenuation,
namely, descriptions of phasic dopamine neuron activity in terms
of an error in prediction of a measure of behavior that is different
for different actions (Houk et al., 1995; Schultz et al., 1997), in the
Discussion section. Elements of this work have been presented in
poster format (Shah and Gurney, 2011).

2. METHODS

2.1. ENVIRONMENT

We subject learning agents to tasks in discrete-state discrete-
action environments (Figure 1) in which a “state” is an abstract
representation of the current situation or context from which to
take an action, and an “action” causes a transition from one state
to another. The environment is Markov: the effect of an action
depends only on the current state and not on previous states vis-
ited. Such environments can be represented in different ways. A
typical representation used to demonstrate and evaluate RL algo-
rithms is the grid-world environment (Figure 1 top row) (Sutton
and Barto, 1998), in which states are visually represented in a
spatial grid, states that can be reached from each other with one
action are placed next to each other, and the effects of an action
are analogous to movements in the grid-world. Thus, states that
can be reached from each other with a small number of actions are
placed closer together than states that require a larger number of
actions to be reached from each other. By using such a represen-
tation, a behavioral trajectory that follows “the minimal action
sequence” from one state to another is readily apparent as the
shortest trajectory when visually illustrated. Although the grid-
world representation suggests a maze to test navigational abilities,
it is misleading to think of it in this way. It merely provides a visu-
ally accessible representation of an abstract sequential decision
task. Using Thorndike’s puzzle box as an example, suppose that
the cat scratched itself, pulled the chain, pawed at the door, bat-
ted the wall, licked its paw, and then pressed the lever to open the
door. This sequence of actions would be represented as a longer
trajectory than if the cat only pulled the chain and pressed the
lever to open the door.

In addition, the tasks we simulate are episodic (Sutton and
Barto, 1998) in that experiences are clearly segregated into sub-
sequences referred to as “episodes” or “trials,” analogous to trials
in most types of operant conditioning experiments (Thorndike,
1911; Skinner, 1938). In simulations, the end of one trial is fol-
lowed by the beginning of the next trial, time steps refer to the
time step within a trial, and experiences generated during a trial
influence learning during the current trial but not previous trials.
Also, in our simulations, trials are not of a fixed length. Rather, as
explained below, a trial terminates when a particular goal state is
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FIGURE 1 | lllustrations of the environments we use. Each “state” is
represented as a small square or rectangle within the environment. Actions
can be executed that transition the agent from one state to another (see
text). In all environments, the state colored blue (labeled s°) is the starting
state and the state colored red (s°) is the goal state and represents
achievement of the outcome. In the grid-world (top left), states labeled s'
and s? are referred to in the text. In the grid-world with obstacles, transitions
into obstacle states (highlighted in green and with a “x ") are prevented. In
both grid-worlds, four cardinal and four diagonal actions are available from
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each state; actions are deterministic. In warped-world 1 (bottom left), only
four cardinal actions are available. Because states are not aligned vertically,
actions to the north or south stochastically transport the agent into one of the
two states that overlap the current state, weighted by the relative amounts
the states overlap the current state (see Supplementary Material for details).
In warped-world 2, four cardinal and four diagonal actions are available, but
actions between “big” and “small” states are different than actions between
big and big states and actions between small and small states (see
Supplementary Material for details).

reached or when a maximum number of time steps has elapsed (a
“time-out”). As discussed in Sutton and Barto (1987), this explicit
segregation is a simplification as animal learning processes may
not incorporate mechanisms that are dependent on the concept
of an episode or trial. An effect similar to an explicit segrega-
tion can be accomplished by providing an explicit indication at
the start of a trial (as is often the case in experimental tasks)

or by imposing a lengthy delay between trials (as, for example,
Izhikevich, 2007 does in simulation), but the explicit segrega-
tion of the episodic task framework is mathematically simpler
(Sutton and Barto, 1998) for our purposes. Episodic tasks are
commonly used in RL models of human and animal tasks (e.g.,
Daw et al., 2005; Shah and Barto, 2009; Gldscher et al., 2010;
Knox and Stone, 2012) and to assess artificial learning algorithms
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in general (e.g., Sutton and Barto, 1998; Konidaris and Barto,
2009).

In the basic grid-world task (Figurel top left), states are
arranged in a 12 x 12 grid. At the beginning of each trial, the
current time step, t, is set to 1 and the agent is placed in a fixed
starting state, s°, highlighted in blue in Figure 1. At each time step,
the agent chooses an action, a, from the set of possible actions:
four cardinal and four diagonal actions in the grid-world. Action
effects are deterministic, and actions that would cause a transition
off the grid result in no change in state. The trial terminates if the
agent transitions into state s° (highlighted in red), which signifies
the achievement of the outcome, or after 115 time steps in the
grid-world environments. This somewhat arbitrary “time-out,”
about 10% x number of states x number of possible actions,
allows for massive redundancy in that there is a very large num-
ber of action sequences of varying lengths that can reach s° from s°
within the time-out. (In contrast, if the time-out were the same as
the minimal number of actions that could achieve the outcome,
the task would be non-redundant: only behavior that uses the
minimal number of actions to achieve the outcome could achieve
the outcome within the time-out). T refers to the last time step of
a trial and is always > the minimal number of actions it takes to
achieve the outcome and < the time-out. In addition, a numerical
signal, 7y, is delivered at each time step (this signal is different in
with-cost vs. no-cost measures of behavior, as described below).

The grid-world with obstacles (Figure 1 top right) is the same
as the grid-world except that transition into obstacle states (green
squares with a “x”) is prevented. The obstacles prevent a spatially
direct trajectory from s° to s°. In the grid-world without obsta-
cles, short-length trajectories are easily reached from each other,
so the chances of getting stuck in a local minimum are not high.
We use the grid-world with obstacles to examine behavior in envi-
ronments in which some short-length trajectories (i.e., above and
below the obstacles) are not easily reached from each other, in
which case the chances of getting stuck in a local minimum have
increased.

While these tasks are not strictly navigation tasks, they can
serve as abstract representations of tasks with some underly-
ing geometric structure. To examine how behavior developed
under different learning rules may be interpreted in such cases,
we examine behavior in two spatially “warped” environments as
well. In warped-world 1 (Figure 1 bottom left), the number of
states along the horizontal dimension is larger at higher verti-
cal locations than that at lower vertical locations. Thus, states
do not represent the underlying spatial geometry uniformly, e.g.,
states at higher vertical locations represent a smaller spatial area
than states at lower vertical locations. Also, only the four cardinal
actions are available. Because the states are not aligned verti-
cally, the effects of actions north and south in warped-world 1
are stochastic (see Figure caption and Supplementary Material
for details). In warped-world 2 (Figure 1 bottom right), “small”
states, which are in the middle and lower areas of the environ-
ment, represent smaller spatial areas than do “big” states, which
are in the outer areas of the environment. Cardinal and diagonal
actions are available; actions between small and big states have
slightly different effects than do actions from big to big states or
actions from small to small states (see Supplementary Material for

details). The time-outs for warped-worlds 1 and 2 are 276 and 286
steps, respectively.

We use the warped-worlds to examine possible ways by which
spatially indirect behavior can be accounted if overall behavior
was observed but the underlying representations of states and
actions were not known. One possible account of spatially indi-
rect behavior is that the state representation is spatially uniform
(as in grid-worlds), the animal assigns a higher cost to particu-
lar actions made a particular locations, and behavior is developed
with a learning rule that incorporates explicit action costs. For
example, a behavioral trajectory that travels east and then north
may be taken as evidence that trajectories that travel north and
then east are more costly, or that horizontal actions executed at
higher vertical locations are more costly than horizontal actions
executed at lower vertical locations. Similarly, trajectories that
avoid the center of an environment may be taken as evidence that
trajectories that go through the middle of the environment incur
greater action costs.

We suggest that spatially indirect behavior can also be
accounted for with mechanisms that do not incorporate explicit
action costs. Instead, such behavior may emerge from nonuni-
form representations of the environment already in place through
prior experience and developmental processes. Spatial represen-
tation and cognition is a topic of much current research (Moser
et al., 2008; Chen et al., 2014; Willis et al., 2014) and nonuniform
representations occur in many central nervous system struc-
tures involved with different modalities (van Essen et al., 1984;
Curcio et al., 1990; Kurtzer et al., 2006; Graziano and Aflalo,
2007; Scott, 2008; Lillicrap and Scott, 2013). We use the warped-
worlds to examine behavior resulting from mechanisms that do
not incorporate explicit action costs if the state representation is
nonuniform in the spatial domain.

2.2. WITH-COST vs. NO-COST MEASURES OF BEHAVIOR

A measure of behavior, often referred to as the return in RL
(Sutton and Barto, 1998), is determined by r¢, the numerical sig-
nal delivered at each time step. The return at time ¢ of a trial
is the sum of these signals from ¢ + 1 to the end of trial: R, =
ZiT:t 417> where T indicates the last time step of a trial. (Recall
that t = 1 at the beginning of a trial and, because a trial termi-
nates when s° is achieved, T depends on the number of actions
taken during the trial, and T will always be less than or equal to
the time-out). We differentiate with-cost and no-cost measures of
behavior by the information communicated by r.

2.2.1. With-cost measures

Under with-cost measures of behavior, r; is used to associate dif-
ferent actions with different measures of behavior if they lead to
achievement of the outcome with different numbers of actions.
r¢ is an explicit action-dependent negative numerical signal (a
“cost”) of —1 if a cardinal action was selected at time ¢ and —+/2 if
a diagonal action was selected (e.g., Sutton and Barto, 1998; Shah
and Barto, 2009). Transition into s° delivers a positive numer-
ical signal of r, = +20 instead of the action-dependent cost.
Because R; is the sum of action-dependent costs (and 7, if s° is
achieved), R; can take on a range of values: R; is different for
each t and is lower for ¢ earlier in the trial. In the grid-world,
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the action sequence from s’ to s° that is associated with the high-
est return follows the spatially direct trajectory (dashed line in
Figure 1), which is also the minimal action sequence. Longer
action sequences are associated with a lower return because more
negative signals contribute to the return. In this way, the with-cost
measure of behavior is often different for different actions selected
from a particular state or different action sequences and can be
used in learning rules that focus on “how well was the outcome
achieved?”

We note that the return can also be expressed as R; =
ZiT=t+1 Y= 1r; (Sutton and Barto, 1998), where y captures
the effect of temporal discounting: if 0 < y < 1, then numer-
ical signals delivered with a long delay (+ + delay) will have
less weight on R; than signals delivered with a short delay. For
example, if r; = r, = 420 if the outcome is achieved but r, = 0
otherwise, and y < 1, then the return will be less if the outcome
is achieved after a larger number of actions than if the out-
come is achieved after a smaller number of actions. As described
in the Introduction, temporal discounting can also be thought
of as a type of cost. Because explicit action costs and tempo-
ral discounting have similar effects on the return—longer action
sequences that achieve the outcome are associated with a lower
measure of behavior than shorter action sequences that achieve
the outcome—we include only explicit action costs in this paper
for simplicity, i.e., if y were included in the equations, y would be
setto 1.

2.2.2. No-cost measures

Under no-cost measures of behavior, r, = 0 at every time step
except if s° is reached, at which point r; = r, = 420 (and, as
above, there is no temporal discounting of r;). Thus, under no-
cost measures of behavior, R; can take on only two values (0 or
1, = +20) and is the same for every ¢ during the trial: 0 if s® was
not achieved during the trial, and r, = +20 if s° was achieved
during the trial. In this way, the no-cost measure of behavior is
the same for any action sequence that achieves the outcome and
can be used in learning rules that focus on “was the outcome
achieved?”

2.3. ACTION SELECTION

The tendency to select action a when in state s is represented by
Q(s, a). Actions are selected stochastically according to their rela-
tive tendencies (via a “softmax” function, as described in Sutton
and Barto, 1998):

es.a)/T

p(s,a) = ————,
ZzAzl eQ(Sa“i)/T

(1)
where p(s, a) is the probability of selecting action a from state s
and t (= 1.5) controls the stochasticity. Initial Q(s, a) are set to
zero. Learning rules described below modify Q(s, a) for each vis-
ited state and action based on experience. If the tendency to select
an action is increased (if Q(s, a) increases), that action is said to
be reinforced.

2.4. MONTE CARLO AND TEMPORAL DIFFERENCE LEARNING RULES
We implement several learning rules expressed in the form of one
of two types of RL rules (Sutton and Barto, 1998) that modify

Q(s, a) based on experience. The first type, called Monte Carlo
(MC) rules, use R; directly to deliver reinforcement signals only
at the end of the trial. The state visited at time ¢ is denoted s, and
the action executed from that state is denoted a;. Q(s;, a;) for each
visited (s, a;) is modified at the end of a trial with the actual R;
experienced during the trial:

QC(st, ar) <= Qs ar) + arT 11 [R: — Q(st,a0)],  (2)

where o (= 0.1) is a step-size and A (0 < A < 1) defines an eli-
gibility trace (Pavlov, 1927; Sutton and Barto, 1981, 1998; Klopf,
1982; Worgotter and Porr, 2005). The eligibility trace allows for
Q(s, ay) for t before T (the last time step of the trial) to be modi-
fied and controls the rate at which it is modified. If 0 < A < 1, the
eligibility trace is decaying in time and Q(s;, a;) for each (s¢, ar)
is modified with a rate that is lower for ¢ far from T, i.e., Q(s;, a;)
for t early in a trial is modified at a lower rate than Q(s;, a;) for
t later in a trial. If A = 1, the eligibility trace is non-decaying and
Q(s¢, az) for each (s;, a;) is modified at the same rate. We refer to
these rules as MC(A).

The second type of learning rule is a temporal difference
(TD) rule (Sutton, 1988; Sutton and Barto, 1998), in which
Q(s¢—1, ar—1) is modified at every time step with r, and Q(s, a;):

Qsi—1,ar—1) < Q(sp—1,a—1) + o [rr + Q(s¢, ar)
— Q(sp—1,a:-1)] (3)

(this particular formulation is the “SARSA” learning rule,
Rummery and Niranjan, 1994). Each Q(s;— 1, a;— 1) is modified
to be closer to r; + Q(s¢, a;) (and thus indirectly to R;). (Note
that there is no temporal discount term). This rule does not have
an eligibility trace. However, it can be considered a special case
of similar rules that do have eligibility traces (Sutton and Barto,
1998), but with A = 0. We thus refer to it as TD(0).

2.5. WITH-COST vs. NO-COST LEARNING RULES

Q(s, a) for each (s, a) visited during a trial are modified by learn-
ing rules toward the measure of behavior to be expected if action
a were execute from state s.

2.5.1. With-cost learning rules

For comparison purposes, we implement two standard RL algo-
rithms (Sutton and Barto, 1998) using the with-cost measure of
behavior: MC(1) (where A = 1) and TD(0), referred to here as
with-cost rules.

When modified according to with-cost rules, Q(s;, a;) for each
Q(s¢, a;) visited during a trial is modified toward the return (R;)
according to the with-cost measure of behavior. The with-cost
measure of behavior includes the sum of explicit action costs
received during the trial after selecting action a, from state s; and,
if the outcome is achieved during the trial, r, = 420. (Q(s, a) is
modified toward the actual experienced return in MC rules, and
the next r, and Q(s, a) in TD rules). R; can thus take on a range of
values under with-cost measures of behavior and Q(s, a) will con-
verge to different values for different actions: Q(s, a) for the action
that leads to achievement of the outcome with a smaller number
of actions will be higher than Q(s, a) for the action that leads to
achievement of the outcome with a larger number of actions. (As

Frontiers in Computational Neuroscience

www.frontiersin.org

November 2014 | Volume 8 | Article 151 | 6


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Shah and Gurney

Finding minimal action sequences

described in the Introduction and earlier in the Methods, tempo-
rally discounting r; would also have this effect). Because they use
with-cost measures of behavior, with-cost learning rules focus on
“how well was the outcome achieved?”

2.5.2. No-cost learning rules

We suggest that a simple rule using a no-cost measure of behav-
ior (which is not influenced by explicit action costs) would be an
MC rule because the reinforcement signal is generated at only
one time step (T) and only one return need be generated. We
also suggest that it use a decaying eligibility trace. We thus imple-
ment an MC rule with a no-cost measure and A = 0.7, referred
to as ncMC(0.7) (where “nc” indicates “no-cost”). We implement
two other no-cost rules for comparison purposes: ncMC(1) (with
A = 1) and ncTD(0).

When modified according to no-cost rules, Q(s, a) is not
modified toward a return that incorporates explicit action costs.
Instead, the return can take on one of only two values under no-
cost measures (0 if s is not achieved or r, = +20 if s is achieved),
and each Q(s, a) during a trial is modified toward the same value.
No-cost rules use no-cost measures of behavior and focus on “was
the outcome achieved?”

Because Q(s, a) for each state and action approach the same
value under no-cost rules in our simulations, and actions are
selected stochastically according to Q(s, a), behavior according
to Q(s, a) modified with no-cost rules does not converge with
extended experience. Rather, Q(s, a) will approach r, for all states
and actions in our simulations and, eventually, each action will
be chosen with equal probability. In order for behavior under no-
cost rules to stabilize, another process must attenuate reinforce-
ment signals. We do not model this process here so as to describe
the behavioral patterns that would result from inappropriate con-
tinued reinforcement. (Also, note that in our simulations, there is
no state or action from which it is not possible to achieve s°. In
tasks and environments in which there do exist states and actions
from which it is not possible to achieve s°, Q(s, a) for those states
and actions will remain at 0).

2.6. EXPERIMENTS
A run consists of an agent undergoing 200, 000 trials. (A large
number of trials was chosen so as to better expose the effects of
reinforcement for an extended period of time under the differ-
ent rules). Twenty runs for each learning rule were conducted
using the grid-world environment. Behavior was examined at fest
points (every 100 trials for the first 1000 trials; every 1000 trials
after that), during which & = 0 and five sample trials using the Q-
values from the test point were run. Thus, 100 sample trials (five
sample trials for each of the twenty runs) for each test point were
used to report behavior.

In addition, twenty runs using ncMC(0.7) were conducted for
the grid-world with obstacles and the two warped-worlds.

3. RESULTS

3.1. DISCOVERY OF THE MINIMAL ACTION SEQUENCE IN THE
GRID-WORLD

We use the word “behavior” to refer to the agent traversing a

series of states by executing a sequence of actions. For the grid-

world (Figure 1 top left), behavior that follows the spatially direct
trajectory (dashed line) is the minimal action sequence because
it achieves the outcome—reaches s’ from s*—using the minimal
number of actions. If an outsider observed this behavior, and
was not aware of the mechanisms by which it was developed, he
may describe it as optimal with respect to a measure of behavior
that is higher for actions that lead to achieving the outcome with
a smaller total number of actions, such as a measure of behav-
ior in which every executed action is accompanied by an explicit
cost (negative numerical signal) (as described in the Methods).
Figure 2 left shows the mean (across all sample trials) number
of actions at each test point for each learning rule. Note that
standard deviation (Figure 2 bottom right) is very low at sample
trials for which the mean number of actions is very low. Figure 2
top right shows the proportion of sample trials that achieved the
outcome at each test point for each learning rule.

As seen in Figure 2 and consistent with descriptions in Sutton
and Barto (1998), the two standard with-cost rules, MC(1) and
TD(0), develop the minimal action sequence in that behavior
converges to a low number actions (stochasticity inherent in
action selection prevents any rule from executing only the min-
imal action sequence). This is unsurprising because they incor-
porate the with-cost measure of behavior in which each action
incurs an explicit cost.

Behavior under no-cost rule ncMC(1) reliably achieves s°,
but ncMC(1) was not able to discover and execute (on aver-
age) behavior that uses a low number of actions. No-cost rule
ncMC(0.7) was able to discover and execute, for trials 400 to
11, 000, the minimal action sequence. Similarly, no-cost rule
ncTD(0) was able to discover and execute, for trials 400-2000, the
minimal action sequence. Although the minimal action sequence
can be described as optimal with respect to the with-cost mea-
sure of behavior in that it reliably executes actions associated with
the highest with-cost measure of behavior (the minimal action
sequence), it is important to note that ncMC(0.7) and ncTD(0)
use the no-cost measure of behavior, in which any action sequence
that achieves the outcome is associated with the same measure

Proportion of sample trials
that achieved outcome

11— v
v
05

grid—world

w— ncMC(0.7)
—— ncMC(1)

—— ncTD(0) o
— Me(1)
—— TD(0)

Standard deviation of
number of actions taken

Mean number of actions taken

1000 _ 10000 100000
Trial (log scale)

FIGURE 2 | Left: mean (across all sample trials) number of actions at each
test point for each learning rule (see legend for color scheme). Trial time-out
is indicated by “max" (115) on the vertical axis. The minimum number of
actions needed to achieve s° (8) is indicated by “min.” Note that the
horizontal axis uses a log scale. Bottom right: standard deviation of the
number of actions at each test point for each learning rule. Top right:
proportion of sample trials that achieved s°.
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of behavior. We explain how no-cost rules discover the minimal
action sequence in the next subsection.

Behavior under with-cost rules converges with continued rein-
forcement for an extensive period of time. Behavior under no-cost
rules does not; rather, the mean number of actions increases with
continued reinforcement for an extensive period of time (up to
200, 000 trials in our simulations).

3.2. HOW NO-COST RULES DISCOVER THE MINIMAL ACTION
SEQUENCE

The ability of ncMC(0.7) to discover the minimal action sequence
can be understood by examining how the decaying eligibility
trace (A < 1, see Methods) affects the rate at which Q(s, a) for
each action executed at each state visited en route to the out-
come is modified. Let s; be the state visited at time ¢, and a; be
the action executed from state s;. Recall that, under ncMC(0.7),
Q(s¢, a;) for each visited (s;, a;) is modified toward the same value
at each trial: r, = 420 if s° was achieved, 0 if not. (In contrast,
in with-cost rules, which use the with-cost measure of behavior,
Q(s¢, a;) for each visited (s;, a;) is modified toward different val-
ues because they lead to action sequences of different lengths.)
However, because & < 1, the rate at which Q(s;, a¢) is modified by
ncMC(0.7) depends on the temporal distance of ¢ from T (where
T indicates the time step at the end of the trial): Q(s;, a;) for ¢
early in a trial (and thus far from T') are modified at a lower rate
than Q(s;, a;) for t late in a trial. This has the effect of reinforc-
ing actions that lead to shorter action sequences that achieve the
outcome at a greater rate than actions that lead to longer action
sequences that achieve the outcome, even though all Q(s;, a;) are
modified toward the same value.

This idea is illustrated in Figure 3, which is a simplified
schematic of three sequences of actions from one state (“Start”)
to another (“End”). The darker the arrow representing the action,
the greater the rate at which that action is reinforced if the out-
come is achieved: actions executed at a closer temporal distance
to End are reinforced at a greater rate than actions executed at a
further temporal distance to End. As in the grid-world, the min-
imal action sequence consists of taking the action northeast to

7/
i

-3 Fnd

ARRY

Start

FIGURE 3 | Simplified schematic of three sequences of actions from
“Start” to “End.” Each action is represented by an arrow; the darker the
arrow, the greater the rate at which the tendency to select the action is
modified.

move directly from Start to End (right-most action sequence in
Figure 3). A slightly longer action sequence involves taking action
north from Start and then moving directly to End (middle action
sequence). The longest of the three action sequences involves tak-
ing action northwest from Start and then moving directly to End
(left-most action sequence). Because taking action north from
Start leads to a longer action sequence than taking northeast
from Start, action north from Start is reinforced at a lower rate
than action northeast from Start. Similarly, action northwest from
Start is reinforced at an even lower rate.

Under ncMC(0.7), all actions that were executed during tri-
als in which the outcome was achieved are reinforced toward
the same measure of behavior (r, = +20), but those that lead
to shorter action sequences are reinforced at a greater rate than
those that lead to longer action sequences. In other words, the
minimal action sequence is reinforced at a greater rate than
all other sequences that achieve the outcome. Also, because
action selection—behavior—is based on a softmax function of
Q(s, a) (see Methods), actions associated with a higher Q (the
minimal action sequence) are more likely to be executed for
a period of time. Thus, ncMC(0.7) discovers and executes, for
the vast majority of the first 11, 000 trials, the minimal action
sequence. (As described later, because each Q(s¢, a;) is mod-
ified toward r, = +20 if the outcome is achieved, eventually
all action sequences will be equally likely to be executed—
extraneous actions will be selected with continued reinforcement
and extensive experience).

Similar reasoning explains how ncTD(0) discovers the min-
imal action sequence: because information at time ¢ (r; and
Q(s¢, a;) for the TD rules in this paper) are used to modify
Q(sf—1,ar—1) in the TD rules we use (Sutton, 1988; Rummery
and Niranjan, 1994; Sutton and Barto, 1998), information avail-
able at ¢ late in a trial must propagate over several trials to (s, a;)
visited at ¢ earlier in a trial. Thus, Q(s;, a;) for t later in a trial are
modified at a greater rate than that for ¢ earlier in a trial under
ncTD(0) as well. (This feature also offers an explanation for the
observation that behavior as developed by with-cost rule TD(0)
actually uses fewer actions (on average) from trials 400 to 2000
than at later trials, Figure 2).

As demonstrated with behavior developed under rule
ncMC(1), simply reinforcing behavior that achieves s°, and
decreasing the tendency to select behavior that does not achieve
s within the time-out, provides a small bias toward—but
not reaching—the minimal action sequence. ncMC(0.7) and
ncTD(0) reinforce all actions that achieve s° as well, but, because
the rate of reinforcement is greater for actions executed in closer
temporal proximity to T, ncMC(0.7) and ncTD(0) can discover
and execute the minimal action sequence for a temporary but
substantial period of time.

These concepts are also illustrated in Figure 4, which graphs,
for each learning rule, the mean Q(s, a) for each action at states
5%, s', and s? (highlighted in Figure 1 top left) as a function of
trial number. State s* is spatially close to s° (the outcome); s°
(the starting state) is spatially far from s% and s' is in between.
Q(s, a) for the most direct action (northeast for each of the
three states) is highlighted in color (according to the legend in
Figure 2). Actions executed from states spatially closer to s° are
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ncMC(0.7) ncMC(1)
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FIGURE 4 | Mean (across the 20 runs) Q(s, a) at each test point for
states s, s', and s2 (highlighted in Figure 1) for learning agents in
the grid-world using the different learning rules. The learning rules
are indicated at the top. Q(s, a) for a= northeast, which is the action
that leads to the shortest action sequence in each case, is drawn with
a thick line in color according to the legend in Figure 1. That of all
other actions are drawn with thin gray lines. The horizontal axis (log

scale) is the same in each graph, as is the vertical axis. The downward
arrow at the bottom of the vertical axis in the graphs in the lower right
indicates that Q(s, a) in these graphs actually fall below the lower limit
of the vertical axis (i.e., they are negative) during early trials. However,
we cut off these graphs to enable a visually clearer comparison of
Q(s, a) evolution in the latter stages of training under the different
learning rules.

more likely to be executed at ¢ closer to T than those from states
farther from s°. Thus, if the outcome is achieved, actions from
s% are reinforced at a greater rate than those from s!, which
are reinforced at a greater rate than those from s° (Figure 4).
Also, in all no-cost rules, at states s°, s', and s?, action north-
east is reinforced at a greater rate than other actions (this effect
is much stronger for rules ncTD(0.7) and ncTD(0) than for
ncMC(1)).

The use of stochastic action selection allows all (s, a) to even-
tually be visited many times. As a result, Q(s, a) for each (s, a) gets
modified toward r, = 420 if s° was achieved (0 if not) under no-
cost rules. Thus, eventually all Q(s, a) will be close to +20 with
continued reinforcement (trials during which s° is not achieved
prevent them from reaching +20). Because actions are selected
stochastically based on Q(s, a), with extensive experience and
continued reinforcement, all actions will eventually be equally
likely to be selected and behavior as developed by no-cost rules
will deviate from the minimal action sequence. This can be seen
in Figure 4, left three columns. In contrast, because Q(s, a) as
developed by with-cost rules converge to different values, depend-
ing on the number of actions executed subsequently, behavior
as developed by with-cost rules stabilizes to close to the mini-
mal action sequence even with continued reinforcement (Figure 4
right two columns).

3.3. PATTERN OF DEVELOPMENT OF EXTRANEOUS ACTIONS

Under ncMC(0.7), Q(s, a) increases toward r, = +20 (if s° is
reached) at a greater rate for (s, a) visited closer T (the last time
step of a trial) than for (s, a) visited further from T (Figures 3,
4). Thus, if reinforcement under ncMC(0.7) continues for an
extended amount of time, extraneous actions will be selected at
states closer to s° (which is a termination condition for a trial) ear-
lier in experience than at states closer to s°. Figures 5, 6 illustrate
this pattern.

Figure 5 shows, for sample trials that achieved s° in the grid-
world, the mean shortest distance from the line segment between
s° and s° of the first four visited states (after s°) of the trial
and that of the last four states (before s°) of the trial. Behavior
developed by ncMC(0.7) (large center panel) displays a clear
pattern in which the mean distance for the last four increases
at a greater rate than that of the first four. Behavior generated
under ncTD(0) (second from top on the right) shows a simi-
lar, but weaker, pattern. Such a pattern is not clearly apparent
in behavior generated under the other rules. Other ways of see-
ing this pattern are illustrated in Figure 6, which shows sample
trajectories (top row) and density of visited states (bottom) for
sample trials that achieved s’ under ncMC(0.7) at different test
points.

The distance metrics in Figure5 for with-cost rule TD(0)
(bottom right) also illustrates the observation made earlier that
the bias toward the minimal action sequence for behavior gen-
erated under this rule is stronger at early trials (400-2000)
than at later trials, even though the rule converges to exe-
cuting short action sequences. In addition, the metrics reveal
a slightly greater deviation from the direct trajectory for the
last four steps of behavior generated under rule ncMC(1) than
that for the first four steps. This suggests that additional fac-
tors may also influence these metrics. For example, the fact
that states visited at late + depend on actions selected at earlier
t implies that, due to error accumulation, the agent is sim-
ply more likely to visit states away from the direct trajectory
at later ¢ than at earlier ¢. (Recall that this analysis is con-
fined to sample trials in which s° was achieved, so the effects
of sample trials in which s° was not achieved are not included).
However, this factor does not account for the clear pattern
exhibited by behavior under rule ncMC(0.7) and the somewhat
weaker but similar pattern exhibited by behavior under rule
ncTD(0).
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FIGURE 5 | Mean (across sample trials that achieved s°) shortest
distance from the line segment between s° and s of the first four steps
after the start of the trial (blue) and the last four steps before s® was
achieved (red) for learning agents in the grid-world using the different
learning rules. Sample trials that did not achieve s°® were excluded
(otherwise the distance measure would necessarily be shorter for the first
four steps because the agents start every trial at s°, but they are not
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restricted to end every trial at s°). Left: schematic illustrating the distance
measures. This schematic uses a continuous trajectory to more-clearly
illustrate that the distance measures are based on the first four steps and last
four steps of a trajectory; actual trajectories are a series of straight line
segments. Center: The mean distance for agents using rule ncMC(0.7) (note
the horizontal axis uses a log scale). Right: That for agents using the other
rules. Each graph uses the same horizontal and vertical scales and limits.
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FIGURE 6 | Sample trajectories (top row) and density of visited states
(bottom) (across all sample trials) for learning agents in the
grid-world using learning rule ncMC(0.7) at different test points
(indicated at the top). For indicating density of visited states, each state

was colored in gray scale: the darker the color, the larger the number of
times that state was visited across all sample trials. States s° (blue) and
s° (red) were not colored in, and states that were not visited were not
drawn.

3.4. BEHAVIOR UNDER ncMC(0.7) IN DIFFERENT ENVIRONMENTS

The general pattern of behavioral development observed in agents
using ncMC(0.7) acting within the grid-world holds for agents
acting within other environments (see Figure 1) as well. The top
row of Figure 7 graphs, in a manner similar to Figure 2, the mean
number of actions taken at each sample trial for agents using
ncMC(0.7) acting within the grid-world with obstacles (left),
warped-world 1 (middle), and warped-world 2 (right). The rest
of Figure 7 shows, in a manner similar to Figure 6, the density of
states visited for the three environments at different test points for
sample trials that achieved s°.

Agents using ncMC(0.7) in the grid-world with obstacles dis-
covered behavior that used the minimal action sequence (i.e., the
shortest trajectory, above the obstacles). Thus, ncMC(0.7) discov-
ered the minimal action sequence even when some short-length
trajectories (e.g., above and below the obstacles) are not easily

reached from each other (which increases the likelihood of getting
stuck in a local minimum).

Agents in warped-world 1 produced behavior that first trav-
els east to the border of the world, and then north. Agents in
warped-world 2 produced behavior that avoids the middle of the
environment by traveling along the upper region of the environ-
ment. Figure 7 shows that, in the grid-world with obstacles and
the two warped-worlds, the minimal action sequence is discov-
ered and executed for a temporary but substantial period of time.
Also, as with the grid-world, behaviors under the no-cost rules in
the other worlds do not converge: with continued reinforcement
for an extended amount of time, extraneous actions, beginning at
states near the outcome, are executed.

If spatially indirect overall behavior were observed (e.g., mov-
ing east and then north in warped-world 1, or moving above the
center in warped-world 2) but the underlying state and action
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FIGURE 7 | lllustration of behavior for learning agents in the
grid-world with obstacles and warped-worlds 1 and 2 using
learning rule ncMC(0.7). (See Figure 1 for schematics of

environments). Line plots (top graphs) follow conventions of Figure 2.
Density of visited states plots (rest of graphs) follow conventions of
Figure 6 bottom.

representations were not known, one possible account of such
behavior would be that the actions executed at certain locations
are simply more costly than actions executed at other locations
(e.g., if moving horizontally along the north edge of warped-
world 1 was very costly, and moving through the center of
warped-world 2 was very costly), and that the learning rule incor-
porates these explicit action costs. Our results demonstrate that
spatially indirect behavior can also be accounted for with other
mechanisms: learning rules that do not incorporate explicit action
costs, such as no-cost rules, govern behavior, and the underlying
state representation is nonuniform on a spatial level.

We note that the spatially nonuniform state representation
also allows for spatially indirect behavior to be accounted for
by a learning rule that incorporates temporal discounting of the
positive numerical signal received upon achievement of the out-
come but does not incorporate explicit action costs. Note also that
we do not suggest that a spatially nonuniform state representa-
tion prohibits the use of learning rules that incorporate explicit

actions costs. Rather, we demonstrate how similar behavior can
be accounted for with different mechanisms.

4. DISCUSSION

Most sensory outcomes can be achieved through many different
action sequences of varying lengths. Animals discover, through
interaction with the environment and no outside instruction,
the minimal action sequence—the minimal number of actions
that achieves an outcome (Thorndike, 1911). The discovery of
the minimal action sequence is often accounted for with learn-
ing rules that focus on “how well was the outcome achieved?” by
associating actions with a measure of behavior that is higher for
actions that lead to achieving the outcome with a smaller total
number of actions. In this type of account, learning is driven
by a prediction error in this measure of behavior, and the min-
imal action sequence is “optimal” in that it is associated with
the highest measure of behavior. Factors that influence this mea-
sure of behavior in many accounts include the delivery of positive
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numerical signal if the outcome is achieved (which addresses the
question “was the outcome achieved?”) along with some combi-
nation of explicit negative numerical signals (“costs”) for each
executed action and/or temporal discounting of the numerical
signals, either of which addresses the question “how well was the
outcome achieved?” (Sutton and Barto, 1998).

However, such an account may not apply to all situations in
which the minimal action sequence is discovered. In particular,
in the process of action discovery (Redgrave and Gurney, 2006;
Redgrave et al., 2008, 2011, 2013; Stafford et al., 2012; Gurney
etal., 2013), the minimal action sequence is thought to be discov-
ered by learning mechanisms that focus on the simple evaluation
of “was the outcome achieved?” and are driven by a prediction
error in the outcome’s occurrence. As discussed in Redgrave and
Gurney (2006), biological reinforcement signals in action discov-
ery may occur too quickly to evaluate an action sequence beyond
an indication of the outcome’s occurrence.

In this paper we demonstrate that no-cost learning rules, which
focus on “was the outcome achieved?” and are more consistent
with action discovery than previous accounts, can also discover
and execute the minimal action sequence for a temporary yet
substantial period of time (Figures 2, 7). Under the no-cost rules
described in this paper, if the outcome is achieved during a trial,
the tendency to execute every action that was executed en route
to the outcome is increased, but at a rate that decreases with
temporal distance from the outcome (see Figure 3). In no-cost
rules, though, every action that leads to achievement of the out-
come is associated with the same measure of behavior. In effect,
no-cost rules develop behavior that is similar to behavior devel-
oped by rules that focus on “how well was the outcome achieved?”
but no-cost rules focus on the simple evaluation of “was the
outcome achieved?”

One limitation of no-cost rules as described in this paper is
that behavior does not converge if reinforcement continues for
an extended period of time (Figures 2, 4, 7). This limitation is
also consistent with the process of action discovery (Redgrave
and Gurney, 2006; Redgrave et al., 2008), which suggests that a
separate process that predicts the outcome’s occurrence attenu-
ates reinforcement signals as the outcome becomes predictable.
(We do not model this proposed process in this paper). If such
attenuation were disrupted, e.g., due to disorders of prediction or
reinforcement functions, extraneous actions would be developed
under no-cost rules, first appearing in close proximity to the
outcome (Figures 4-6).

Another limitation, which arises with all scenarios involving
learning without external instruction, is that of scaling. The envi-
ronments we use (Figure 1) comprise between 100 and 1000
states. It is likely that, as with the more common with-cost RL
(Sutton and Barto, 1998) rules we use in this paper, the effective-
ness of no-cost rules will decrease if the number of states increases
by a very large factor. One area of future research is to augment
no-cost rules with techniques used to increase the effectiveness of
with-cost rules in very large state spaces. These techniques include
the development of state abstractions and behavioral hierarchies
(Sutton et al., 1999; Dietterich, 2000; Barto and Mahadevan, 2003;
Ravindran and Barto, 2003; Mahadevan, 2010; Osentoski and
Mahadevan, 2010; Barto et al., 2013a) which should be applicable,

in principle, to the no-cost rules we use here. We expect any limi-
tations from scaling of our no-cost rules to be similar to those of
with-cost RL rules.

We also note that, despite a similarity in language, our frame-
work is different from that described in Friston et al. (2012). The
latter does not invoke notions of optimality or cost because the
agent already represents “optimal” behavior (such as the minimal
action sequence) as a probability distribution over hidden states
that is learned from experience generated by an external supervi-
sor. The agent acts to move from low-probability (“surprising”)
states that it does not expect to inhabit to high-probability states.
Behavior is described in terms of information theoretic measures
rather than optimal control.

Below we discuss computational and biological issues related
to no-cost rules in behavioral development.

4.1. DIFFERENTIAL RATE OF REINFORCEMENT

In computational RL (Bertsekas and Tsitsiklis, 1996; Sutton and
Barto, 1998), the tendency, Q(s, a), to select action a from state s
is modified with learning rules that modify Q(s, a) toward some
target value (often referred to as the return). In many RL-based
accounts of human or animal behavior, that target value is a
measure of behavior that is influenced by a positive numerical
signal (if the outcome is achieved) and also some combination of
explicit action costs (negative numerical signals) and/or temporal
discounting of numerical signals. (In the with-cost rules described
in this paper, there are explicit action costs but no temporal dis-
counting). In many tasks and environments, that target value is
higher for actions that lead to shorter action sequences and, thus,
Q(s, a) converges to a higher value if it reliably results in achieve-
ment of the outcome with a shorter action sequence. In contrast,
in the no-cost rules described in this paper, the target value used
to modify Q(s, a) is influenced only by a positive numerical signal
if the outcome is achieved; explicit action costs and/or temporal
discounting of the signals do not influence the target value. Thus,
for tasks similar to those described in this paper, Q(s, a) for all
(s, @) pairs converge to the same target value when modified with
no-cost rules (see Methods for more details).

Even though Q(s, a) for all (s, a) pairs converge to the same
value in no-cost rules, the minimal action sequence is discovered
and executed for a substantial amount of time with (Figures 2,
7). A crucial feature of no-cost rules that enables them to find
the minimal action sequence is that, if the outcome is achieved,
proximal actions (which are executed in close temporal distance
to the outcome) are reinforced at a greater rate than distal actions
(executed in greater temporal distance from the outcome). This
has the effect of reinforcing actions that lead to shorter action
sequences that achieve the outcome at a greater rate than actions
that lead to longer action sequences (Figure 3), and reinforcing
the minimal action sequence at a greater rate than all other behav-
iors. If an external observer were not aware of the mechanisms by
which behavior is developed and noted the execution of the min-
imal action sequence, he might describe such behavior as optimal
with respect to a measure of behavior that is influenced by a pos-
itive numerical signal upon achieving the outcome and also some
combination of explicit action costs and/or temporal discounting
of numerical signals.
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While there are likely many behaviors in which learning mech-
anisms associate behavior with a measure that is influenced by
explicit action costs and/or temporal discounting, the central
nervous system has multiple learning and control schemes at
its disposal (Milner et al., 1998; Yin et al., 2008). By modifying
different Q(s, a) at different rates toward the same target value,
as opposed to modifying different Q(s, a) toward different tar-
get values, no-cost rules are able to discover and execute the
minimal action sequence (temporarily) through different mech-
anisms and with different types of information than with-cost
rules.

The differential rate of reinforcement can be accomplished
with a decaying eligibility trace (Pavlov, 1927; Sutton and Barto,
1981, 1998; Klopf, 1982; Worgotter and Porr, 2005) in Monte
Carlo (MC) rules, which deliver reinforcement signals only at
the end of a trial (such as rule ncMC(0.7)) when the out-
come is achieved (Sutton and Barto, 1998). In Lecture III of
his famous account of conditioned reflexes (Pavlov, 1927), Ivan
Pavlov discusses how the trace of a conditioned stimulus (CS)
allows behavior in response to the CS to be modified by an
unconditioned stimulus (US, which produces the reinforcement
signal) that occurs at a later time, and how the effect of rein-
forcement is weaker as delay between CS and US increases.
Eligibility traces play a prominent role in several computa-
tional models of brain function (such as Suri and Schultz, 1998;
Worgotter and Porr, 2005; 1zhikevich, 2007; Vasilaki et al., 2009;
Chersi et al., 2013) and are used to describe several experi-
mental results (Markram et al., 1997; Bi and Poo, 2001; Pan
et al.,, 2005). They may be implemented in the brain through
persistent neural activity (Goldman-Rakic, 1995; Curtis and
Lee, 2010) or, as has been suggested in some modeling stud-
ies (Houk et al., 1995; Suri and Schultz, 1998), intracellular
processes.

It is unclear if the influence of eligibility traces can extend
to actions executed many time steps before the outcome in
biological systems. However, the “bootstrapping” nature of tem-
poral difference (TD) learning rules (Sutton, 1988; Sutton and
Barto, 1998), in which intermediate states that predict a rein-
forcing event themselves become reinforcing, enables actions that
are executed many time steps before the outcome to be rein-
forced. This paper demonstrates that TD rules also, in effect,
reinforce actions proximal to the outcome at a faster rate than
actions distal to the outcome. Thus, no-cost TD rules (such
as ncTD(0)) can also discover and execute the minimal action
sequence for a substantial period of time, even without eligi-
bility traces. Recent experimental results (Wassum et al., 2012)
demonstrate that dopamine (DA) release (thought to communi-
cate reinforcement signals, Wickens et al., 2003, also discussed
later in the Discussion) is propagated from proximal to dis-
tal actions in rats engaged in a operant conditioning task that
requires a sequence of two separate actions in order to achieve
an outcome.

Of course, the differential rate of reinforcement on which no-
cost rules rely is not restricted to no-cost rules. MC rules and TD
rules using with-cost measures with or without eligibility traces
can easily be implemented (Bertsekas and Tsitsiklis, 1996; Sutton
and Barto, 1998). The no-cost rules described in this paper allows

us to more clearly demonstrate the functional mechanisms by
which differential rates of reinforcement help shape behavioral
development.

4.2. DOPAMINE ACTIVITY

In order for behavior developed using no-cost rules to con-
verge with extended experience, a separate process must attenuate
reinforcement signals. Reinforcement signals in the brain are
thought to be communicated by phasic DA neuron activity
(henceforth referred to simply as DA activity). Experimental stud-
ies (Ljungberg et al., 1992; Schultz et al., 1993, 1997; Horvitz,
2000; Redgrave et al., 2011; Schultz, 2012) have shown that
sensory-evoked DA activity attenuates with repeated presenta-
tions of the sensory stimulus. If mechanisms similar to no-cost
rules participate in behavioral development, such participation
provides a functional-level teleological explanation for why DA
activity attenuation occurs: DA activity that is not attenuated by
a separate process would result in prolonged reinforcement and
consequential degradation of performance.

This interpretation is different than that in which DA activ-
ity is accounted for solely by the learning rule, i.e., in which
the rule accounts for both an increase in DA activity (reinforce-
ment) and its subsequent attenuation (Houk et al., 1995; Schultz
et al., 1997). In this case, if the outcome can be achieved in many
ways, it is necessary that the target value toward which Q(s, a)
is modified represents a measure of behavior that is higher for
actions that achieve the outcome in some “better” way than other
actions that achieve the outcome (such as the with-cost mea-
sures described in the Methods). Otherwise, extraneous actions
will occur. Most studies describing DA activity in such terms use
fairly simple tasks (e.g., the outcome is biologically rewarding and
is dependent on only one or two actions) to investigate how DA
activity propagates from the outcome to otherwise neutral stimuli
or actions that precede the outcome (Schultz et al., 1997; Schultz,
2012; Wassum et al,, 2012) rather than how redundancy is
resolved.

The putative separate process of attenuating DA activity if no-
cost rules are used must rely on newly acquired knowledge, such
as an internal prediction model of the outcome’s occurrence, of
the agent in relation to the task. In a critique of the role of
DA activity and description of the process of action discovery
(Redgrave and Gurney, 2006; Redgrave et al., 2008, 2011, 2013),
Redgrave, Gurney, and colleagues suggest that short-latency (<
100 ms after a stimulus) DA activity indicates that something
unexpected has happened (the outcome), but not its biological
rewarding or reward-predicting properties (reward-related infor-
mation may be communicated by longer latency DA activity).
Thus, measures of behavior that represent “how well was the
outcome achieved?” and that can be used to rank one action
that achieves an outcome as better than another action that
achieves the outcome may not be represented in action discov-
ery. In this critique, the learning rule was not explicitly given,
and it was proposed that a separate process learns to predict
that the outcome will occur and attenuates DA activity accord-
ingly. The no-cost rules described in this paper are consistent with
the process of action discovery in that they focus on “was the
outcome achieved?” as opposed to “how well was the outcome
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achieved?” but they do rely on the proposed separate process of
attenuating DA activity based on a prediction of the outcome’s
occurrence. The separate process has been incorporated in a
recent model which also investigates computational mechanisms
consistent with action discovery (Bolado-Gomez and Gurney,
2013).

4.3. FURTHER COMPUTATIONAL CONSIDERATIONS

Behavior can result from functionality (such as reinforcement
and attenuation of reinforcement) mediated by one process (as
in with-cost rules), but that functionality can also be distributed
across multiple processes (as in no-cost rules). Experimental
studies describe how the development and execution of observed
behavior in biological systems may be distributed across differ-
ent learning and control processes (Dickinson, 1985; Milner et al.,
1998; Packard and Knowlton, 2002; Pasupathy and Miller, 2005;
Yin et al., 2008; Balleine et al., 2009; Balleine and O’Dohrety,
2010; Redgrave et al., 2010). Conceptual and computational
accounts, inspired in part by these studies, demonstrate the func-
tional advantages of such distribution (Kawato, 1990; Rosenstein
and Barto, 2004; Daw et al., 2005; Haruno and Kawato, 2006;
Samejima and Doya, 2007; Bissmarck et al., 2008; Shah and Barto,
2009; Ashby et al., 2010; Shah et al., 2013). Within the context of
the work presented in this paper, no-cost rules reinforce actions
that achieve the outcome but do not attenuate reinforcement.
Separate prediction mechanisms (which we do not model here)
would attenuate reinforcement signals and thus prevent the devel-
opment of extraneous actions. In addition, other mechanisms
may be trained by such behavior and then dominate control in
a way that is specialized for executing, but not developing, behav-
ior (computational examples of this are described in Shah, 2008
and Ashby et al., 2007).

Different learning and control mechanisms may have different
advantages and disadvantages. For example, the with-cost rules
described in this paper associate a different measure of behav-
ior to different actions that lead to action sequences of different
lengths in achieving the outcome. This is accomplished by taking
into account explicit action costs—a negative numerical signal
(the “cost”) that accompanies each executed action. Such a rule
has advantages in that it is flexible: it is designed to find behav-
ior that maximizes the measure of behavior given an arbitrary
mapping from states and actions to positive and negative numer-
ical signals, not just one in which the minimal action sequence
is associated with the highest measure of behavior. For exam-
ple, suppose that an outcome could be achieved by executing two
particular actions, each of which incurs a cost of —1, or by exe-
cuting three other actions, each of which incur a “cost” of 0. A
learning rule that takes explicit action costs into account would
learn to execute the latter sequence of three actions instead of the
former sequence of two actions. However, this flexibility comes
with a price on a computational and representational level: in
such learning rules, resources must be devoted to represent every
action’s cost and incorporate those costs into learning signals.
Such flexibility may not be necessary for many types of behavioral
development, such as developing the minimal action sequence in
action discovery, and it may be advantageous to use mechanisms
that are less flexible but also are less expensive.

As discussed in the Introduction and Methods, another mech-
anism by which to associate actions that result in achieving the
outcome with a shorter action sequence with a higher mea-
sure of behavior is to temporally discount the positive numerical
signal received upon achieving the outcome (Sutton and Barto,
1998). This mechanism is less expensive (and less flexible) than
incorporating explicit action costs, but, depending on the specific
learning rule, it may be more expensive than no-cost rules.
Consider the case of MC rules, which modify Q(s, a) for (s, a)
visited during a trial only at the end of the trial. The computa-
tional steps executed during each trial for MC rules are different
in temporal discounting of the positive numerical signal (r,) upon
achieving the outcome vs. no-cost rules. In both rules, a variable
z(t) is updated at each time step t. In rules that temporally dis-
count r,, z is initialized to 1 and is then multiplied by y (the
temporal discount factor) at each time step (z(t + 1) < z()y).
Similarly, in no-cost rules, z is initialized to « and is then multi-
plied by A at each time step (z(t + 1) < z(t)A). However, when
the end of the trial occurs and Q(s, a) for each visited (s, a) are
modified, there is a difference. The temporal discount of r, rule
computes three quantities before modifying Q(s, a;): (1) z(t)r,,
(ii) z()ro — Q(s¢, ay), (iil) afz(t)r, — Q(ss, ar)]. In contrast, the
no-cost rule computes two quantities: (i) 1, — Q(s¢, ar), (ii)
z(t)[ro — Q(s¢, ar)]. Furthermore, although this analysis includes
an update of z(t) at every time step in no-cost rules, such an
update is independent of the specific task being accomplished
in no-cost rules. Therefore, a sequence of these variables can be
hard-wired in memory for use in any task rather than recalculated
for every task. In rules that temporally discount r,, on the other
hand, the multiplication involves a task-dependent variable (r,),
so such a sequence must be calculated for every task and cannot
be stored in memory for use in other tasks.

In conventional (von-Neumann style) computing hardware,
in silico, these considerations are of little consequence. First, the
hardware contains a general purpose processing unit, where each
class of arithmetic operation (add, subtract, multiply, divide)
is implemented only once; there is no dedicated hardware for
particular instances of an arithmetic operation in a particular
algorithm. Second, the “data” stored in memory [for each (s, a)]
is separated from the arithmetic operations which operate on
them. Thus, there is no extra hardware cost for rules that tempo-
rally discount the numerical signal upon achieving the outcome
because those and no-cost rules use common arithmetic pro-
cessing hardware, and have similar data/memory requirements.
The former differs only in that it makes use of the arithmetic
hardware more often.

In contrast, in the brain, while arbitrary arithmetic operations
may be performed in neurons (Koch et al., 1983; Mel et al., 1998;
London and Hausser, 2005), the neural substrate for each compu-
tation is usually specific to that computation, being embodied in a
set of brain structures or nuclei. Moreover, processing (supported
by trans-membrane currents in the neuron) is distributed across
the “memory/data” (stored in synaptic weights) in a massively
parallel way; there is no common processing unit bottleneck oper-
ating iteratively on a single data stream. Thus, in terms of neural
circuits, the no-cost rules may be implemented using less “neu-
ral hardware” due to their fewer required arithmetic operations.

Frontiers in Computational Neuroscience

www.frontiersin.org

November 2014 | Volume 8 | Article 151 | 14


http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Shah and Gurney

Finding minimal action sequences

This may be a significant factor for the biology implementing the
different types of rules. The no-cost rules would require calcula-
tion of a signal to terminate training at the best point in time (see
Results and Figure 2), but this is a single operation, common to
all state-action pairs and therefore does not require a massively
parallel computation.

Finally, recall that temporal discount of the positive numerical
signal upon achieving the outcome in computational accounts is
inspired by experimental studies in animal learning and behav-
ioral economics (Samuelson, 1937; Chung, 1965; Logan, 1965;
Green and Myerson, 2004). Temporal discount in most RL
accounts are of an exponential form, which is relatively simple
to implement mathematically in both MC and TD rules (Sutton
and Barto, 1998). However, such a simple form may not gov-
ern animal behavior. An exponential temporal discount function
exhibits a property sometimes referred to as dynamic consistency
(Strotz, 1955; Thaler, 1981): if the relative difference in delay and
magnitude between two rewarding outcomes is such that one
is preferred (for example, preferring 1 apple today instead of 2
apples tomorrow), that preference is preserved even after a con-
stant delay is added to both outcomes (preferring 1 apple in 365
days instead of 2 apples in 366 days). However, animal behavior
exhibits dynamic inconsistency: 1 apple today might be preferred
over 2 apples tomorrow, but that preference is reversed after a
delay of a year is added, e.g., 2 apples after 366 days is preferred
over 1 apple in 365 days, even though the relative delay between
the two choices (1 day) is the same in both scenarios (Thaler,
1981; Myerson and Green, 1995, 1996). Other forms of temporal
discount, such as hyperbolic functions or magnitude-dependent
exponential functions, better explain animal behavior (Myerson
and Green, 1995, 1996). Behavior described by hyperbolic tem-
poral discounting may also be generated by the combination
of different mechanisms that use different exponential tempo-
ral discounting (Kurth-Nelson and Redish, 2009). Also, different
types of behavior may be governed by different forms of tempo-
ral discount (Green and Myerson, 2004). Thus, implementation
of temporal discounting in animals may be more expensive on a
computational and representational level than is usually assumed.

5. CONCLUDING REMARKS

We have shown that no-cost rules, which focus on the simple eval-
uation of “was the outcome achieved?” and associate every action
that leads to achievement of the outcome with the same mea-
sure of behavior, can be used to discover the minimal number
of actions that achieves an outcome. Unlike previous accounts,
which focus on “how well was the outcome achieved?” and asso-
ciate actions with a higher measure of behavior if they lead to
achieving the outcome with a smaller total number of actions, the
no-cost rules we describe in this paper are consistent with the pro-
cess of action discovery (Redgrave and Gurney, 2006; Redgrave
etal., 2008, 2011, 2013; Gurney et al., 2013; Stafford et al., 2012).
Although no-cost rules on their own will lead to behavior that
includes extraneous actions if reinforcement were continued for
an extended period of time, they can be used to find the minimal
action sequence if they are part of a distributed system in which
other processes attenuate reinforcement as the outcome’s occur-
rence becomes predictable (Redgrave and Gurney, 2006; Redgrave
et al., 2008; Gurney et al., 2013). No-cost rules are an account

of behavioral development that uses different mechanisms and
relies on different types of information than previous accounts
of similar behavior.
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