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The brain is known to operate in multiple coexisting frequency bands. Increasing
experimental evidence suggests that interactions between those distinct bands play
a crucial role in brain processes, but the dynamical mechanisms underlying this
cross-frequency coupling are still under investigation. Two approaches have been
proposed to address this issue. In the first one distinct nonlinear oscillators representing
the brain rhythms involved are coupled actively (bidirectionally), whereas in the second one
the oscillators are coupled unidirectionally and thus the driving between them is passive.
Here we elaborate the latter approach by implementing a stochastically driven network
of coupled neural mass models that operate in the alpha range. This model exhibits a
broadband power spectrum with 1/f b form, similar to those observed experimentally. Our
results show that such a model is able to reproduce recent experimental observations on
the effect of slow rocking on the alpha activity associated with sleep. This suggests that
passive driving can account for cross-frequency transfer in the brain, as a result of the
complex nonlinear dynamics of its underlying oscillators.

Keywords: cross-frequency coupling, stochastic, neural mass model, Jansen-Rit model, neuronal oscillations,

driven oscillators, mesoscopic brain dynamics, Ornstein-Uhlenbeck noise

1. INTRODUCTION
Brain activity, as registered in macroscopic recordings like EEG,
does not yield power spectra composed of multiple isolated and
narrow frequency peaks, but of broad frequency bands that are
merged with each other in a seamless manner, and which are
embedded in a 1/f b background with large power at low fre-
quencies and a fat tail at high frequencies (Freeman et al., 2000;
Buzsáki and Draguhn, 2004). Nonlinearities in the interactions
between neuronal populations (Friston, 2000) can be expected
to lead to mixing within this continuum of frequencies. Indeed,
transcranial stimulation of the brain at low frequencies (smaller
than 1 Hz) has been seen to cause for instance an increase in oscil-
latory power at larger frequencies (5–10 Hz) (Marshall et al., 2006;
Massimini et al., 2007). Much emphasis has been placed recently
on quantifying and characterizing the transfer of spectral power
across frequencies (known in what follows as cross-frequency
coupling, Jirsa and Müller, 2013), and on identifying its func-
tional roles in the brain (Jensen and Colgin, 2007; Canolty and
Knight, 2010). In particular, power spectrum correlations have
been observed for instance between theta and gamma rhythms in
the rat hippocampus during memory retrieval (Shirvalkar et al.,
2010), between posterior gamma and frontal alpha/beta oscilla-
tions in the human brain during motor imagery tasks (de Lange
et al., 2008), and between the gamma and delta bands in dif-
ferent regions of the human visual cortex during a visual task
(Bruns and Eckhorn, 2004). Phase coupling between delta and
alpha bands has also been reported in human brains performing
an orientation task (Isler et al., 2008). More common is the

situation in which the oscillation power in a given frequency band
is modulated by a second rhythm at lower frequency. Such phase-
to-amplitude cross-frequency coupling has been observed for
instance between alpha and gamma activities in humans during
rest (Osipova et al., 2008) and between theta and gamma oscilla-
tions in rats during learning (Tort et al., 2009). Other behavioral
correlates of cross-frequency coupling have been found, associ-
ated for instance with reward coding (Cohen et al., 2009a) and
decision making (Cohen et al., 2009b) in humans. Also, recent
work has shown that such cross-frequency coupling is modulated
by behavioral tasks (Voytek et al., 2010). Cox et al. (2014) reported
cross-frequency coupling between the phase of sleep spindles and
the amplitude of higher frequency rhythms, in particular beta,
recorded in EEG during sleep. This effect, in turn, was modulated
in the frontal cortex by the phase of slow sleep oscillations.

Despite the large number of experimental studies point-
ing toward cross-frequency correlations, several difficulties arise
when it comes to the interpretation of this phenomenon. As
pointed out by Aru et al. (2015), the methodologies applied
in a number of recent studies on cross-frequency coupling are
not flawless and the results might have been overinterpreted.
Therefore, further and stricter studies on the functional role of
cross-frequency coupling are needed to confirm previous results.
In particular, not all cross-frequency correlations are signatures
of direct interaction between rhythms. When they are, such cor-
relations may be explained by different mechanisms, which may
be grouped into two broad scenarios. In one scenario, two neu-
ronal oscillators operating at two different rhythms might be
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coupled bidirectionally to each other. This coupling could medi-
ate an interaction that would result in each of the oscillators being
affected in one way or another by the natural frequency of the
other oscillator (Jirsa and Müller, 2013). When such bidirectional
interaction occurs locally, it has been proposed to be mediated
by the firing activity of the underlying neurons (Mazzoni et al.,
2010). In such a way delta oscillations, for instance, control
the level of local cortical excitability, which in turn modulates
the excitatory-inhibitory balance that gives rise to the gamma
rhythm (Mazzoni et al., 2011). In a second, somewhat simpler
scenario, cross-frequency correlations might arise due to unidi-
rectional coupling, through which the spectral features of the
driving neuronal population would be directly transferred to the
driven population. When the same external stimulus is encoded
by two different rhythms, cross-frequency correlations can appear
as a result of that common unidirectional driving (Mazzoni et al.,
2008). In some cases, however, the stimulus does not necessar-
ily affect directly the neurons underlying one of the rhythms.
This might be the case of recent experimental work by Bayer
et al. (2011), who examined the effect of rocking on sleep in
human subjects. In that study, healthy volunteers were asked
to lie down on a rocking bed that oscillated slowly, at a fre-
quency of 0.25 Hz. This periodic stimulation was seen to ease
the transition from waking to sleep, and to increase the power of
cortical oscillations (measured via EEG) in the alpha range. Here
we ask whether a cross-frequency transfer such as that reported
by Bayer et al. (2011) can be the result of the low frequency
input driving a mesoscopic broadband oscillator operating in the
alpha range. To that end, we need a mesoscopic model of brain
activity.

Brain dynamics at the mesoscale is frequently described by
population models such as the neural mass model (NMM), orig-
inating from the works of Freeman (1972), Wilson and Cowan
(1972), Amari (1974), Lopes da Silva et al. (1974), and Nunez
(1974). These models aim to reproduce the average behavior
of relatively large populations of cells. The dynamical unit in
this model can be interpreted as a cortical hypercolumn (Jansen
et al., 1993; Jansen and Rit, 1995), the model variables being the
average postsynaptic potentials of the different neuronal pop-
ulations (Faugeras et al., 2009). NMMs have been extensively
used in recent years to describe a wide variety of brain behaviors
including rhythm generation (Ursino et al., 2010) and propaga-
tion (Cona et al., 2011), spontaneous dynamics (Nguyen Trong
et al., 2012), photic stimulation (Spiegler et al., 2011), critical-
ity (Aburn et al., 2012), and even plasticity (Wang and Knösche,
2013). Aberrant dynamics in epilepsy has been described with
NMMs both at the level of the generation (Wendling et al., 2000)
and termination (Goodfellow et al., 2012; Freestone et al., 2013)
of epileptic seizures. Coupled NMMs have also been used to
examine the relationship between structural and functional con-
nectivity in healthy and neurodegenerative conditions (Pons et al.,
2010; Ponten et al., 2010). Generalizing the NMM description
to continuous space gives rise to neural field models (Jirsa and
Haken, 1996; Coombes, 2010), which have been used to study the
spatiotemporal dynamics of cortical waves (Hutt and Atay, 2006;
Bojak and Liley, 2010) and even to implement control strategies
in robotics (Erlhagen and Bicho, 2006).

NMMs can be made to exhibit a variety of rhythms depend-
ing on the values of the dynamic parameters (David and Friston,
2003), but in most situations the oscillations obtained are rela-
tively narrowband. This contrasts with the 1/f b spectra usually
observed experimentally (Freeman et al., 2000). In neural fields,
such type of spectral behavior has been linked to the multiple
spatial scales characteristic of spatially extended neuronal tissue,
where it is observed near a stability threshold (Hutt and Frank,
2005). In this paper, we reproduce the spectral properties mea-
sured by Bayer et al. (2011) by applying a temporally correlated
noise to a coupled NMM. This is a reasonable assumption, since
the brain has multiple sources of noise (Faisal et al., 2008) that
have a variety of functional roles (McDonnell and Ward, 2011). In
microscopic models, a temporally correlated Ornstein-Uhlenbeck
noise is known to reproduce the observed 1/f spectral profile of
LFP activity (Sancristóbal et al., 2013). Our results show that a
network of coupled neural masses subject to temporally corre-
lated noise exhibits a well-defined rhythm (in the alpha range)
embedded in a broadband spectral background similar to what
is observed experimentally. We also show that this broadband
oscillator reacts to periodic driving at a frequency much lower
than its natural frequency, by increasing its activity at the latter in
agreement with experimental observations.

2. MATERIALS AND METHODS
2.1. EXTENDING JANSEN AND RIT MODEL
The basic building block of our model is a cortical column (Hubel
and Wiesel, 1977; Helmstaedter et al., 2007; Ts’o et al., 2009)
that we describe in the way proposed by Jansen et al. (1993).
In this model the neurons of a cortical column are classified
into three neuronal populations: pyramidal neurons, excitatory
interneurons, and inhibitory interneurons. The dynamics of each
population is described using two simple transformations. The
first one stands for synaptic processing: it describes how the presy-
naptic signal coming from interconnected populations translates
into a postsynaptic membrane potential. This transformation is
linear and is given by the convolution:

y(t) =
∫ t

−∞
h(t′)ptot(t − t′)dt′, (1)

where ptot(t) is a total input acting upon the population,
expressed in terms of a firing rate, y(t) is the net postsynaptic
membrane potential, and h(t) is an impulse response. The ker-
nel of the transformation is valid for t > 0 and is defined for
excitatory and inhibitory connections as follows:

he(t) = Aate−at (2)

hi(t) = Bbte−bt, (3)

where A and B are the maximum excitatory and inhibitory postsy-
naptic potential amplitudes, respectively, and a and b are inverse
time constants that lump together all signal propagation delays.
This transformation can be expressed in differential form using
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the Laplace transform, which leads to:

d2y(t)

dt2
+ 2a

dy(t)

dt
+ a2y(t) = Aa · ptot,exc(t), (4)

where y(t) is a postsynaptic membrane potential averaged over
all neurons in a given population, and ptot,exc is the sum of fir-
ing rates of all excitatory signals coming into that population.
An equivalent expression containing the sum of all incoming
inhibitory signals ptot,inh(t) with constants B and b describes
inhibitory processing.

The second transformation describes how the postsynaptic
membrane potential within a population translates into a firing
rate in that population’s output. This transformation is nonlinear
and is given by:

Sigm(y) = 2e0

1 + er(ν0−y)
, (5)

where 2e0 is the maximum firing rate, ν0 is the potential for which
the firing rate is equal to half of the maximum, and r determines
the steepness (and nonlinearity) of the response.

Figure 1 shows a schematic representation of the model. It is
built as a network of coupled cortical columns. Within a sin-
gle column a population of pyramidal neurons feeds forward
to the excitatory and inhibitory interneuron populations, which
in turn feed back to the pyramidal neurons leading to positive
and negative feedback, respectively. The excitatory and inhibitory
interneurons receive only excitatory input from the pyramidal
neurons residing in the same cortical column. The pyrami-
dal population receives an inhibitory input from the inhibitory
interneurons, and an excitatory input [denoted with p

pyr
tot,exc(t)]

coming from both the excitatory interneurons and from sources
external to the column. The latter part we indicate with p

pyr
ext,exc(t),

which for a cortical column i is given by:

p
pyr,i
ext,exc(t) = pconst +

∑
j

p
j,i
coup(t) + posc(t) + ξ i

ou(t). (6)

Here pconst is a constant component and ξ i
ou(t) is a stochastic one.

Those two components stand for a contribution from sensory
input or brain areas that are not explicitly included in the model.

The component
∑

j p
j,i
coup(t) is the summed contribution from

other cortical columns (indexed with j) connected with column
i, and the oscillatory component posc(t) = Ã sin (2π ft) stands for
a periodic stimulus.

The system of equations that describe the dynamics of a single
cortical column i is given by:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ÿi
0(t) + 2aẏi

0(t) + a2yi
0(t) = Aa Sigm[yi

1(t) − yi
2(t)] (7)

ÿi
1(t) + 2aẏi

1(t) + a2yi
1(t) = Aa{ppyr,i

ext,exc(t)

+C2 Sigm[C1yi
0(t)]} (8)

ÿi
2(t) + 2bẏi

2(t) + b2yi
2(t) = Bb{C4 Sigm[C3yi

0(t)]} (9)

FIGURE 1 | Driving inputs and connectivity between neuronal

populations within a single cortical column and between columns. The
model is formed by a network of coupled cortical columns described by the
Jansen-Rit model. In each column a population of pyramidal neurons (green
triangle), feeds forward to a population of excitatory interneurons (blue
hexagons) and inhibitory interneurons (red circles). The two interneuron
populations feed back into the pyramidal neurons. Excitatory connections
are marked with blue arrows, and inhibitory connection with red lines with
circular endings. The model is homogeneous; all columns are identical and
all inter-column connections have same strength. Columns are fed with a
common deterministic input and independent realizations of an
Ornstein-Uhlenbeck noise. The deterministic input denoted here by a
sinusoid has a constant DC level.

where i runs from 1 to the number of columns N. y0 is the
excitatory postsynaptic membrane potential that feeds into the
two populations of interneurons and y1 and y2 are excita-
tory and inhibitory postsynaptic membrane potentials that enter
into the pyramidal population, respectively. Ck(k = 1, 2, 3, 4)
are constants representing the connection strengths between
populations.

The pyramidal neurons are known to be the main source of
the EEG signal, which locally is proportional to the difference
between their excitatory and inhibitory potentials. In the notation
introduced above this value is expressed as y1(t) − y2(t). Below
we will analyze the model behavior in terms of this quantity, in
order to compare it with experimental data. Model parameters
are listed in Table 1.

The Jansen-Rit model is capable of exhibiting two different
types of periodic behavior: alpha oscillations and spiky oscilla-
tions (Grimbert and Faugeras, 2006; Spiegler et al., 2010). The
latter are characterized by a lower frequency and higher ampli-
tude than the alpha dynamics. The dynamical regime in which the
system operates depends on the external excitatory input p

pyr
ext,exc.

For the parameters used here and in the sole presence of the con-
stant input component (p

pyr
ext,exc = pconst), the model is known

(Grimbert and Faugeras, 2006) to undergo a Hopf bifurcation
at an input value pconst = 89.83 Hz, above which a limit cycle
appears that corresponds to the alpha oscillations. For 113.58 >

pconst > 137.38 Hz, the alpha regime coexists with spiky oscilla-
tions, whereas for pconst > 137.38 Hz the alpha regime becomes
the only attractor again. Finally, for pconst = 315.70 Hz the system
undergoes another Hopf bifurcation and the limit cycle collapses
back to a fixed point.

Experimental observations reveal a large autocorrelation time
in EEG signals (see Aburn et al., 2012, and references therein).
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Table 1 | Parameter values of our neural mass model.

Variable Symbol Value Units

Number of columns N 4,unless stated
otherwise

–

Integration step h 0.001 s

Noise intensity D 350, unless stated
otherwise

Hz

Noise correlation time τ 0.15, unless stated
otherwise

s

Constant input
component

pconst 75 for coupled
system, 90 for
uncoupled

Hz

Coupling strength
between the columns

K 15, unless stated
otherwise

–

Driving sine signal
frequency

f 0.25, unless stated
otherwise

Hz

Driving sine signal
amplitude

Ã 45, unless stated
otherwise

Hz

Composed signal
amplitude

Ã′ 10.76 Hz

Composed signal
minimal frequency

fmin 0.05 Hz

Composed signal
maximal frequency

fmax 4 Hz

Composed signal
frequency step

fstep 0.05 Hz

Length of simulation – 1010 s

Length of rejected
transient

– 10 s

Parameters e0, v0, r , A, B, a, b, C1, C2, C3, C4 were set to plausible values as in

Jansen and Rit (1995).

A number of studies interpret this observation as an instance of
critical behavior such as the one found in the proximity of second-
order phase transitions (Chialvo, 2010; Deco et al., 2013). This
suggestion is, however, still under debate; for example Bédard
et al. (2006) explained one of the putative signatures of critical-
ity, 1/f scaling of the EEG power spectrum, in a way that does
not rely on critical phenomena, but on filtering properties of
the brain’s tissue. In our simplified Jansen-Rit model description,
we reproduce this spectral feature by operating close to one of
the two Hopf bifurcations delimiting the alpha regime (Aburn
et al., 2012). This allows us to see an emergent, but not fully
developed, alpha resonance, characteristic of the proximity of a
transition to an oscillatory regime (Kang et al., 2010; Battaglia
and Hansel, 2011). We set the external excitatory input param-
eters in such a way that its value averaged over time (and over
columns in case of the network of columns), 〈ppyr

ext,exc〉 � 90 Hz,
is located close to the first Hopf bifurcation point. The external
input p

pyr
ext,exc delivered to each cortical column contains constant,

stochastic and periodic components, as well as an input com-
ing from coupled columns. Only the constant component pconst

and the contribution from the afferent columns
∑

j p
j,i
coup(t) have

non-zero mean, and therefore determine 〈ppyr
ext,exc〉. The columns

receive a common periodic signal mimicking a sensory stimu-
lus received by cortical areas from the thalamus. Stochastic and

periodic components have zero means and thus, even though
they do not affect the average of the total input 〈ppyr

ext,exc〉, they do
contribute to its variance.

As mentioned in the Introduction, the brain contains sources
of noise originating from different mechanisms (Faisal et al.,
2008). Noise has been taken into account in past studies of the
Jansen-Rit model (Jansen and Rit, 1995; Pons et al., 2010; Aburn
et al., 2012) usually in the form of white noise. Here we use
Ornstein-Uhlenbeck noise, which has a finite correlation time
and is a more realistic representation of background synaptic
noise. Destexhe and Rudolph (2004), for instance, showed that
Poisson spike trains acting upon a neuron lead to a temporal
correlation in membrane conductivity fluctuations, which under
certain conditions can be modeled with Ornstein-Uhlenbeck
noise. This noise, corresponding to ξou variable in Equation (6), is
generated by the following linear stochastic differential equation:

dξou

dt
= −ξou

τ
+

√
2D

τ
ξw(t) (10)

where ξw(t) is a random variable representing Gaussian white
noise with zero mean, 2D defines the amplitude of the stochas-
tic component and τ is the correlation time of the Ornstein-
Uhlenbeck noise. Each column in the model was fed with an
independent realization of the Ornstein-Uhlenbeck noise.

2.2. NETWORK OF COUPLED CORTICAL COLUMNS
The full model is composed of a number of cortical columns,
each modeled in the way described above and connected with
each other via the pyramidal neurons. For simplicity we choose
all-to-all bidirectional connectivity and do not consider delay
in the coupling (see Figure 1). The latter is justified by the fact
that neighboring cortical columns are separated by a distance
smaller than 1 mm and signal speed propagation in axons has a
lower limit 0.1 m/s (Segev and Schneidman, 1999). Therefore,
the delay between neighboring columns is not larger than mil-
liseconds, which is at least one order of magnitude smaller than
the characteristic timescales of the system. We performed simula-
tion with non-zero time delays that reproduced qualitatively the
results reported below, thereby validating this approach.

The input component
∑

j p
j,i
coup(t) in Equation (6) stands for

the excitatory contribution to column i from its neighboring
columns, and is given by:

∑
j

p
j,i
coup(t) = 1

N − 1

N∑
j=1
j �=i

Kj,iSigm[yj
1(t) − y

j
2(t)], (11)

where the matrix K stands for the excitatory connectivity
strengths between columns. The diagonal elements of K are equal
to zero (no self-connectivity), and all other elements are equal to
each other, taking a value that from now on will be referred to as
the connectivity strength K. The total external contribution to a
single cortical column is normalized by the number of its affer-
ent connections. The contribution from one cortical column to
the input of other columns is determined by the activity of the
former, which depends on its own total input. So, the values of
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pconst and
∑

j p
j,i
coup (through K) are chosen adequately in order

to establish self consistent conditions that yield an effective input
〈ppyr

ext,exc〉 � 90 Hz.

2.3. NUMERICAL METHODS
The model was integrated using the stochastic Heun integration
method (Toral and Colet, 2014) with a time step equal to 0.001 s.
We validated the integration method by running computations
with decreased integration step. In each run we simulated 1010 s
of activity, discarding the first 10 s. We computed the power spec-
tra by applying the Welch algorithm from the Matplotlib Python
module, using a Hanning window. The length of each time seg-
ment was chosen to be 20 s, with an overlap between segments
equal to 10 s.

3. RESULTS
3.1. SPECTRAL AND TEMPORAL PROPERTIES OF A SINGLE COLUMN
We first studied the behavior of a single cortical column receiving
an input pconst = 90 Hz, systematically varying the parameters
of the Ornstein-Uhlenbeck noise, namely its noise intensity D
(varied in a range from 0.1 Hz to 1000 Hz) and correlation
time τ (varied in a range from 0.001 s to 10 s). We obtained
the power spectrum in each case and compared it with the one
reported in the experiments of Bayer et al. (2011) (see Figure 2A).

Our goal here was to choose the noise parameters for which the
computational result reproduced the experimental characteris-
tics, namely an 1/f b shape with an embedded peak in the alpha
band. Figure 2B shows three power spectra obtained from the
model driven by noisy inputs with the same variance but differ-
ent intensities and correlation times. We found that experimental
characteristics were qualitatively reproduced for τ = 0.15 s and
noise intensity D = 350 Hz (see Figures 2A,B). Our result is
robust for a range of D and τ values, provided that τ � 0.2 s.
Beyond that region, the power spectrum at low frequencies (�
2 Hz) becomes noticeably steeper than at higher frequencies
(green trace in Figure 2B), which is not the case for experimental
data. Moreover, for these large τ values the alpha peak becomes
too prominent, whereas in the opposite limit it decreases as the
correlation time τ is reduced (blue trace in Figure 2B), becoming
for τ < 0.15 s significantly smaller (with respect to the 1/f b back-
ground) than in experimental data. This dependence of the signal
spectrum on the noise characteristics can be explained in the fol-
lowing way: the system operates on average close to the Hopf
bifurcation, where the limit cycle regime begins. This regime is
explored transiently by the system due to the stochastic driving.
The duration of the episodes in which the system stays in the
oscillatory regime is dictated by the correlation time of the noise.
Small τ implies rapid changes of the input to the system, which

A

B C

FIGURE 2 | Comparison of experimental and computational power

spectra. (A) Shows experimental data extracted from Figure 1D of the article
by Bayer et al. (2011). (B) Shows power spectra obtained for three different
noise parameter sets. Variance of the noise is the same for each case, but
noise intensity D and correlation time τ change. Black line corresponds to
time series shown in (C), green line to conditions when the correlation time τ

is 10 times increased and the blue one when it is 10 times decreased.

(C) Shows the time trace obtained from a Jansen-Rit model of a single
cortical column with an input consisting of two parts: a constant component
equal to 90 Hz and a stochastic one determined by Ornstein-Uhlenbeck noise
with intensity D = 350 Hz and correlation time τ = 0.15 s. Three distinct
types of dynamics are apparent: time trace begins with a noisy behavior
based on the fixed point, then spiky dynamics show up and finally time trace
ends with alpha oscillations.
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does not have time to relax in the limit cycle regime and alpha
oscillations do not occur. In contrast, for relatively large τ , the
input changes in a more smooth manner and the system has time
to relax and exhibit alpha oscillations, which contribute to the
alpha peak in the power spectrum. The noise intensity D plays
a role too, because it dictates how deep the system can go into the
limit cycle regime. The broadband shape of the power spectrum
roughly follows the shape of the spectrum of the noise, which
depends on the control parameter τ . This effect is noticeable spe-
cially for low frequencies, and originates in the regime which in
deterministic conditions corresponds to a fixed point (referred to
as a “random fixed point” from now on), where the system fol-
lows the noisy driving, and thus yields power spectra similar to
that of the Ornstein-Uhlenbeck noise. In this way, the combined
effect of different dynamics gives rise to a realistic power spec-
trum. This effect does not rely on critical behavior, but requires
that the system explores different dynamical regimes.

The correlation time τ dictated by synaptic effects is con-
jectured to be of the order of 10 ms (Mazzoni et al., 2008;
Sancristóbal et al., 2013) rather than 100 ms. In our case, how-
ever, noise stands for background activity arising from collective
effects at the mesoscopic scale. In this study we focused on alpha
rhythm, which has a characteristic time scale ∼ 0.1 s, therefore
choosing a noise correlation time τ equal to 0.15 s is reasonable.
Note also that in the computational results shown in panel B of
Figure 2 the alpha peak is shifted toward lower frequencies with
respect to experimental results shown in panel A. The location
of the peak could have been shifted by changing parameters of
the model, however we chose to perform the analysis with the
original set of parameters proposed by Jansen and Rit (1995), in
order to maintain coherence with studies that adopted that set of
parameters.

Although the power spectrum obtained with these noise
parameters (Figure 2B) reproduces qualitatively the experimental
results (Figure 2A), its corresponding temporal evolution exhibits
a strong spiky behavior (Figure 2C), which is far from what is
typically observed in experimental EEG recordings of healthy sub-
jects. An adequate change of noise parameters would suppress
the spiky dynamics in favor of alpha oscillations, but then the
alpha peak in the power spectrum would be much higher than
the 1/f b background, in contrast with the experimental observa-
tions. Therefore, we conclude that the behavior of a single column
is not able to recapitulate realistically both the temporal and spec-
tral characteristics of the experimental observations at the same
time. For this reason we extended our model to several coupled
columns.

3.2. COUPLED CORTICAL COLUMNS
The signals measured in experimental EEG recordings do not
arise from a single cortical column, but from an aggregate of
columns. In order to take this into account we extended our
model to represent multiple coupled columns. As a simplifying
assumption, we consider that the signal registered by an elec-
trode is an average of the signals generated by individual columns
in the probed area. The model considers only excitatory con-
nections between populations of pyramidal neurons residing in
different cortical columns. There are two new parameters with

respect to the single-column case: the number of columns N
and the coupling strength K. Our aim was to test our cross-
frequency transfer hypothesis in a simple model, therefore we
considered only N = 4 cortical columns coupled in a simple all-
to-all manner with equally strong connections. Already for 4
coupled columns, individual spikes in the temporal domain are
substantially attenuated due to averaging (Figure 3A), rendering
time traces that qualitatively resemble EEG signals. On the other
hand, the power spectrum of the averaged signal still resembles
the experimental one (Figure 3B). This approach finds support
in experiments; so-called “microseizures”—spiky, epileptic-like
activity that may be detected only in a very fine spatial scale
(∼1 mm electrode array resolution, 40 μm electrode size)—have
been observed experimentally by Stead et al. (2010), not only in
epileptic subjects, but also sporadically in healthy ones.

The coupling contribution to each column was normalized
by the number of afferent columns [N − 1 for our all-to-all
connectivity topology, as expressed in Equation (11)]. This nor-
malization allowed us to study the dependence of the results on
the system size N for a constant value of the coupling strength K.
Without that normalization, increasing the number of columns N
in all-to-all topology would ultimately lead to saturation due to
excessive external driving. Increasing the number of columns to
N = 100 showed that the spectrum remains qualitatively consis-
tent with the experimental one independently of the system size.

We next studied how robust the behavior shown in Figure 3
above is with respect to changes in the constant input and cou-
pling strength. To vary those parameters it is necessary to take into
account the fact that the input into a cortical column from other

columns [
∑

j p
j,i
coup(t)] is implicitly dependent on pconst, which

has the same value for all columns and determines the dynamical
regime in which the columns operate. In order to keep the effec-

tive total input 〈ppyr,i
ext,exc〉 close to 90 Hz, the coupling strength K

needs to be compensated by reduction in the input constant com-
ponent pconst below 90 Hz. Taking this into consideration, we ran
a series of simulations for N = 4 columns varying both the con-
stant input component pconst and the coupling strength K. For
each condition we averaged the inputs coming from the coupling
terms over time and over all columns. In this manner we obtained
the mean contribution of inter-column coupling to the input of
a column. Adding this value to the constant input pconst gives the
average total input acting upon a column, 〈ppyr

ext,exc〉. We varied
the coupling strength in the range 0 < K < 70, and in each case
we chose the constant input component within the range 50 Hz
< pconst < 90 Hz in such a way that the average external input to
each column 〈ppyr

ext,exc〉 was close to 90 Hz, in accordance with our
assumption regarding proximity to the bifurcation point. In these
conditions we found a linear dependence of the average of the
coupling input on coupling strength K. Moreover, we found that
the variation coefficient of this input was close to unity, which
indicates that not only its average, but also its standard deviation
grows linearly with K. This can be explained by two effects. First,
higher synchronization causes in-sync spiking that weakens the
effect of averaging between the columns. Second, these periods
of high activity alternate with periods of low activity when due
to the lower value of pconst the columns operate effectively in the
fixed point regime.
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A B

FIGURE 3 | Effect of signal averaging. (A, B) Show a typical time
trace and power spectrum, respectively, analogous to (B, C) of
Figure 2, but obtained from the model of four columns coupled in an
all-to-all bidirectional manner. The coupling strength constant K was set
to 15. Besides the input from the other columns, each column received

the same external input as in the single column case, described above.
(A) Shows time traces of two individual columns (dashed lines) and the
average signal of all four columns (solid line). Averaging attenuates
individual spikes, but does not affect the power spectrum substantially
(as shown in B).

In the whole parameter range that fulfills the condition
〈ppyr

ext,exc〉 ∼ 90 Hz, the temporal behavior and power spectrum
resembled the experimentally observed one (results not shown).
With that caveat, our results are robust not only with respect to
the parameters of the Ornstein-Uhlenbeck noise and the system
size, but also with respect to the constant input and coupling
strengths. The simulations described below correspond to K = 15
and pconst = 75 Hz.

3.3. EFFECT OF AN OSCILLATORY INPUT
The experimental study that we are interested in was performed
by Bayer et al. (2011) on human subjects. Volunteers were placed
on a bed, which was swung at a frequency 0.25 Hz. In our model
we represent the stimulus associated with this movement as a
harmonic driving. EEG data was recorded from the Fz electrode
during the N2 sleep phase of the subjects for two conditions:
swinging (bed in motion) and stationary (bed still). The exper-
iment showed that swinging facilitates the transition from the
awake state to sleep, and that it enhances the EEG power of
both slow and alpha oscillations (see Figure 4A). According to the
experimental setup the bed motion is harmonic, thus we started
by mimicking swinging applying to each column in our model
an oscillatory component Ã sin (2π ft), with f = 0.25 Hz. We set
the driving amplitude Ã to 45 Hz, and left all other parameters
unchanged with respect to the stationary conditions described in
the previous section.

A typical time trace and power spectrum of the signal
obtained from the model with harmonic driving are presented in
Figures 4B,C. Panel B shows that both the instantaneous ampli-
tude of the alpha oscillations and the average value of the signal
are modulated by driving signal. The mechanism underlying both
these effects originates in the bifurcation structure of the model
(Grimbert and Faugeras, 2006; Spiegler et al., 2010), and was
first reported by Tsodyks et al. (1997) for the case of gamma-
theta coupling in a Wilson-Cowan model. Recently this effect
was more generally discussed by Deco et al. (2008). We now
examine in detail this mechanism for our case. In stationary con-
ditions, the system explores four different dynamical regimes: two

random fixed points, a regime of spiky behavior and a regime
of alpha oscillations. This exploration arises as a consequence of
the conjunction of two factors. The first factor is the proxim-
ity and coexistence of different dynamical regimes in the vicinity
of the chosen input value 〈ppyr

ext,exc〉 = 90 Hz. The second factor
is stochastic driving, which enforces alternations between these
regimes. For the noise parameters chosen here, D = 350 Hz and
τ = 0.15 s, the variance of the Ornstein-Uhlenbeck noise is �
48 Hz, which means that the system may explore two regimes
separated by the Hopf bifurcation at 89.83 Hz: a regime of alpha
oscillations and a random fixed point. Moreover, the system can
enter the spiky dynamics regime, which starts at a saddle-node
bifurcation at 113.58 Hz. Below this point the system may enter
another random fixed point regime from which it may undergo
noisy excitation and also exhibit spiky dynamics.

In the presence of oscillatory driving this situation changes
and a number of factors contribute to an overall increase of
power in the alpha band. Firstly, the amplitude of alpha oscil-
lations is smaller in the direct vicinity of the Hopf bifurcation
(p

pyr
ext,exc � 90 Hz), than for greater p

pyr
ext,exc values, determined by

the driving signal amplitude. Secondly, for p
pyr
ext,exc > 137.38 Hz

the alpha oscillations become the only allowed dynamics, so flip-
ping between different regimes ceases to occur. This results not
only in an increased alpha activity of each individual column, but
also in an increase of synchronization between the columns. For
sufficiently high driving amplitude columns go through transient
in-phase synchronization periods, where the averaged ampli-
tude of their alpha oscillations is greater than in the periods
of unsynchronized alpha activity. These periods may occur for
only some, or for all columns in the system, they may be termi-
nated by noise and then may reappear due to coupling between
the columns. A few peaks, which emerge due to synchroniza-
tion between the columns during the driving sine upswing are
shown in Figure 4B. They appear only for single or few oscil-
lation cycles. It is due to the fact that for this case the driving
amplitude is Ã = 45 Hz and thereby sets the maximal value of
the deterministic part of the input to 135 Hz, which coincides
with the starting point of the purely alpha regime at 137.38 Hz.
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A

B C

FIGURE 4 | Effect of low-frequency driving. (A) Shows experimental
EEG power spectra published by Bayer et al. (2011) (Figure 1D of that
article), recorded from the Fz electrode in N2 sleep phase for both
stationary (black line) and swinging (red line) conditions. Bayer et al.
(2011) performed paired 2-tailed t-tests and found statistically significant
increase in power in the ranges denoted here with horizontal arrows. In
these ranges they found p-value to be p < 0.05, except for the
frequency range 1 Hz–2 Hz, where p < 0.005. (B) Shows a typical time
trace obtained from the model for two full periods of the driving sine
signal, for which (C) shows the corresponding power spectra obtained

in the periodically driven case (blue line) compared with the absence of
driving (black line) and driving with the composed signal (red). This
signal comprises sinusoid ingredients with varying frequencies,
amplitudes and random phases. See text for details. Gray marks one
standard deviation of distribution of power spectra obtained for different
values of phases in the composed signal. In all cases four all-to-all
connected columns subject to Ornstein-Uhlenbeck noise with intensity
D = 350 Hz and correlation time τ = 0.15 s were used. In the case of
sinusoidal driving, the input had amplitude Ã = 45 Hz and frequency
f = 0.25 Hz. The columns were coupled with coupling strength K = 15.

This regime may still be explored due to noise, but under these
conditions the system operates at best on the edge of resonance
(Kang et al., 2010; Battaglia and Hansel, 2011). To the contrary,
for higher driving amplitudes synchronization develops fully,
enhancing further power increase in the alpha band, as shown in
Figure 5A.

During the positive half of the driving cycle the alpha oscilla-
tions are superimposed to the oscillatory signal (see Figure 4B).
During the negative half of the cycle the system moves further
away from the oscillatory regimes and it may dwell in one of
the random fixed point regimes. Consequently, less spiky behav-
ior is observed, which results in a slight decrease of power
in 0 Hz–5 Hz frequency band that corresponds to spiking
(Faugeras et al., 2009). This decrease is shown in Figure 4C
and in all panels of Figure 5. In the case of alpha oscillations,
however, the system may remain in the regime of the ran-
dom fixed point associated with the alpha limit cycle via the
Hopf bifurcation. Noisy perturbations alter the system which
may oscillate with alpha frequency. For the noise parameters
chosen here (D = 350 Hz and τ = 0.15 s) the latter effect is
minor. Nevertheless, all the discussed effects together lead to
an overall increase of power in the alpha band in comparison

to stationary conditions, as shown in Figure 4C, thereby repro-
ducing qualitatively the experimental observation shown in
Figure 4A.

The experiment also showed a statistically significant increase
of power for low frequencies. The increase is also observed in
the model, but is much more centered (peaked) at the driv-
ing frequency (0.25 Hz) than in the experiment, which is much
smoother, probably due to reshaping of the low-frequency har-
monic signal by sensory, thalamic and/or thalamocortical pro-
cessing. In order to test this assumption, in the next step we drove
the model with a reshaped signal of the form:

f (t) = Ã′
nmax∑

n=nmin

10
− n·fstep−fmin

fmax−fmin sin[2π(nfstept + Xn)] (12)

where nmin = fmin/fstep, nmax = fmax/fstep, fmin = 0.05 Hz is the
minimal frequency of the driving, fmax = 4 Hz is the maximal
one, fstep was set to 0.05 Hz and Xn is a random number in
the range [0, 1). This formula describes a signal composed of
a sum of sines with frequencies from fmin to fmax taken every
fstep, with exponentially decaying amplitudes and with randomly
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A

B C

FIGURE 5 | Relative change of the power spectrum with respect to

stationary conditions as the function of the amplitude (A) and

frequency (B) of the driving oscillatory signal, and the number of

columns in the system (C). Color represents the relative change of
the power spectrum expressed in dB, as defined by
10 log10 (PSDdriven/PSDstat), where PSDdriven is the power spectrum in
the presence of driving and PSDstat is the power spectrum in its

absence. In (A, B) the number of columns was N = 4, in (B, C) the
driving amplitude Ã was fixed to 45 Hz and in (A, C) the driving
frequency was fixed to 0.25 Hz. Again, the analysis was performed on
the system of all-to-all connected Jansen-Rit models of cortical columns
in the presence of Ornstein-Uhlenbeck noise with intensity D = 350 Hz
and correlation time τ = 0.15 s. The coupling strength between the
modules K was set to 15.

distributed phases. The choice of fmax has been dictated by the
upper limit of the frequency interval in which Bayer et al. (2011)
observed a significant increase of power. The amplitude Ã′ =
10.76 Hz was set is such a way that this composed signal delivered
the same power to the model as the previously used simple sine
signal with amplitude Ã = 45 Hz. We performed 10 full simula-
tions for different distributions of random phases and averaged
the power spectra obtained. The resulting averaged spectrum
along with one standard deviation of the power spectrum distri-
bution is shown in Figure 4C. This figure shows that driving with
the composed signal reproduces the experimental results better
than driving with a simple sine: the increase in the alpha band is
present regardless of the randomization of phases, and instead of
a decrease of power for low frequencies (as observed in the simple
sine driving case), an increase (similar to the experimental result)
is observed.

Next, in order to examine systematically the response of
this broadband oscillation to harmonic signals, we studied the
response of our model for N = 4 columns to a variation in
the amplitude and frequency of the driving. Figure 5A depicts
the dependence of the power spectrum (in color code) on the
driving signal amplitude, with red indicating an increase in power
and blue representing a decrease with respect to the stationary
conditions. This figure shows that the power increase in the alpha
band is robust with respect to the driving amplitude, provided its
value is large enough. The slight increase in the frequency that
responds maximally, observed for large amplitude values, might

be understood from the fact that the frequency of the limit cycle
exhibited by the NMM increases slightly for increasing input to
the columns (Spiegler et al., 2010).

More importantly, we examined the response of the model
with N = 4 columns for a large range of signal frequencies, rang-
ing from values much smaller than its intrinsic alpha frequency
(as we have been discussing so far) all the way to much larger fre-
quencies (up to 25 Hz). The results, shown in Figure 5B, reveal
that an increase in alpha occurs only for low-enough driving
frequencies (f � 2 Hz). As the driving frequency increases, the
initial response at alpha splits and leads to increase of power at fre-
quencies smaller and larger than alpha. Interestingly, at this point
the alpha band undergoes a decrease, rather than an increase, in
power. The low-frequency power (� 0.5 Hz) is also reduced for a
wide range of driving frequencies. The response is dominated by
a straight diagonal line corresponding to 1:1 response to the driv-
ing frequency, and by its first harmonic. This strong 1:1 response
means that in the case of harmonic driving every injected fre-
quency is transferred by the system. This explains why driving of
the form as in Equation (12) leads to a broad increase of power in
low frequencies in the system’s output. The same study performed
for stronger driving showed that the effects discussed above are
robust with respect to the driving amplitude (results not shown),
although for stronger signals higher harmonics show up and rel-
ative changes in the power spectrum are enhanced and widened.
Finally, we studied the impact of the system size on the observed
effect. The result shown in Figure 5C indicates that under the
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chosen conditions (oscillatory driving with amplitude Ã = 45 Hz
and frequency f = 0.25 Hz) the results are robust with respect to
the system size.

4. DISCUSSION
We have studied a minimal model that gives rise to broadband
oscillations in the alpha regime. The model consists of a small
number of cortical columns coupled in an all-to-all configuration.
Similarly to what happens in microscopic models (Sancristóbal
et al., 2013), taking into account that the neuronal population
receives a background signal from the rest of the brain in the form
of a temporally correlated Ornstein-Uhlenbeck noise (Destexhe
and Rudolph, 2004) leads to the characteristic 1/f b spectral
profile of neural activity. Furthermore, selecting adequately the
population dynamics of the NMM produces oscillations with a
well-defined frequency (David and Friston, 2003), which appear
superimposed to the 1/f b profile. On the other hand, generating
this profile entails that the NMM operates in a spiking regime,
which differs from the characteristic dynamics observed via EEG.
This type of macroscopic measurement, however, reflects the
behavior of multiple coupled columns, and we showed that when
this situation is considered in our model the spiking behavior dis-
appears due to averaging, rendering signals which recapitulate the
experimentally observed EEG while maintaining the broad power
spectrum.

Within this dynamical regime, we have examined the effect of
a low-frequency driving with a simple sine signal and a composed
one, showing a cross-frequency transfer through which this driv-
ing signal increases the power not only of low-frequency rhythms,
but also of the alpha activity. The result qualitatively reproduces
the experimental observations of Bayer et al. (2011) on the effect
of rocking on alpha activity and sleep and is robust with respect
to the choice of model parameters. The increase of power in the
alpha band results from both an enhancement of alpha activ-
ity of individual cortical columns and collective synchronization
effects. Our results suggest that certain types of cross-frequency
transfer in the brain can be simply the result of passive driving of
a broadband neuronal oscillator, which brings this effect close to
the vast body of work dealing with the driving and synchroniza-
tion of chaotic oscillators (Pikovsky et al., 2001; Boccaletti et al.,
2002; Anishchenko et al., 2007) Interestingly, a systematic analysis
shows that the frequency transfer only occurs toward the intrinsic
frequency of the oscillator (alpha) when the driving frequency is
low; as it increases the response shifts to both lower and higher
frequencies, and the power in the alpha band decreases instead
of increasing. Taken together, our results indicate that a relatively
simple oscillation generation mechanism in neuronal populations
has a strongly nontrivial response to periodic driving, providing a
rich scenario to interpret a variety of cross-frequency phenomena
in the brain.
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