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In computer simulations of spiking neural networks, often it is assumed that every two
neurons of the network are connected by a probability of 2%, 20% of neurons are
inhibitory and 80% are excitatory. These common values are based on experiments,
observations, and trials and errors, but here, I take a different perspective, inspired
by evolution, I systematically simulate many networks, each with a different set of
parameters, and then I try to figure out what makes the common values desirable.
I stimulate networks with pulses and then measure their: dynamic range, dominant
frequency of population activities, total duration of activities, maximum rate of population
and the occurrence time of maximum rate. The results are organized in phase diagram.
This phase diagram gives an insight into the space of parameters – excitatory to inhibitory
ratio, sparseness of connections and synaptic weights. This phase diagram can be used
to decide the parameters of a model. The phase diagrams show that networks which are
configured according to the common values, have a good dynamic range in response to
an impulse and their dynamic range is robust in respect to synaptic weights, and for some
synaptic weights they oscillates in α or β frequencies, independent of external stimuli.
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1. INTRODUCTION
A simulation of neural network consists of model neurons that
interact via network parameters; The model is a set of differential
equations that describes the behaviors of neurons and synapses,
captured by years of electro physiological studies (Nicholls et al.,
2012). A model can be as simple as Integrate-and-fire or as real-
istic as Hodgkin-Huxley (Sterratt et al., 2011). Realistic models
generate reliable results, but they are computationally expen-
sive. On the other hand, simple models consume less computer
resources, at the cost of loosing details and biological plausibil-
ity; therefore, there is a delicate balance between computational
feasibility and biological plausibility, Fortunately, there are many
reviews and books that compare different models (Izhikevich,
2004; Herz et al., 2006; Sterratt et al., 2011) and neural simula-
tors (Brette et al., 2007). They help us to find a suitable model
of a single neuron, set its parameters, and get reliable results in a
reasonable time.

No matter how much a neural model is detailed and efficient,
A carelessly constructed networks of perfect neural models, is
misleading. It only produces wrong biologically plausible results,
in a reasonable time. Unfortunately, network parameters are a lot
more ambiguous.

There are four essential parameters in a neural network sim-
ulation that I investigated in this work - the ratio of excitatory
neurons to inhibitory neurons, the topology and sparseness of
connections, inhibitory and excitatory synaptic weights. To make
it more general and realistic, one may consider the values follow a
distribution. This distribution function may change the behavior.

There are experimental works that reads network parameters
from nature (Binzegger et al., 2004; Brown and Hestrin, 2009;

Lefort et al., 2009; Ko et al., 2011; Perin et al., 2011; Feldmeyer,
2012). For example, Lefort et al studied the share of inhibitory
neurons in each layer of C2 barrel column of mouse (Lefort et al.,
2009). They reported that 100, 16, 10, 8, 17, 17, and 9 percent
of layer 1, 2, 3, 4, 5A, 5B, and 6 are inhibitory neurons, and in
total, 11 percents of the column is made of inhibitory neurons.
They have also studied the synaptic connections of excitatory neu-
rons, they reported neurons of each layers 2, 3, 4, 5A, 5B, and
6 is connected with the probability of 9.3, 18.7, 24.3, 19.1, 7.2,
and 2.8 percents to the neurons of the same layer. Moreover, they
have studied synaptic weights by measuring unitary Excitatory
Post Synaptic Potential (uEPSP), the mean uEPSP for connections
inside a layer are 0.64, 0.78, 0.95, 0.66, 0.71, and 0.53 mV for layer
2–6 but the maximum values are much larger, 3.88, 2.76, 7.79,
5.24, 7.16, and 3 mV for the same layers respectively.

The actual values in computer simulations usually are less
diverse, In many computational studies, 20% of the neurons are
inhibitory, the network topology is a random graph with sparse-
ness of 2% and there are only a couple of fixed synaptic weights for
inhibitory and excitatory neurons. Despite their simplicity, they
observe many interesting phenomena like oscillations, synchrony,
modulations (Song et al., 2000; Brette et al., 2007; Goodman and
Brette, 2008; Buice and Cowan, 2009; Akam and Kullmann, 2010;
Mejias and Longtin, 2012; Augustin et al., 2013) and even psy-
chological disorders (Bakhtiari et al., 2012). There are also many
works that show the results are not actually sensitive to the param-
eters (Prinz et al., 2004; Marder et al., 2007; Marder, 2011; Marder
and Taylor, 2011; Gutierrez et al., 2013).

Why do this parameters appear in nature? What are their evo-
lutionary advantages? How much is the result of a simulation
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robust in respect to the parameters? How does one decide about
the network parameters in a simulation? Which other parameters
might give the same results? These are few question that come to
mind, while dealing with properties of neural networks, and they
could be easily answered by looking at a phase diagram of neu-
ral networks, that shows the behavior of a network in respect to
its parameters. Like the phase diagram of water, tells us about the
properties of water in different pressures and temperatures. But
such a phase diagram does not exist for spiking neural networks,
yet. First, because of the large amount of computation needed and
second, because of the ambiguity of the concept of phase or state
in neural networks.

To answer these question, I could use sophisticated evolu-
tionary algorithms, like the study of evolution of inteligence by
McNally et al. (2012), however, I used a simple brute force search
in the space of parameters, so I can also generate a phase diagram,
similar to the work of Roy et al. (2013).

2. METHOD
I did a brute force search in the space of parameters, by simulat-
ing a population of 1000 neurons, let say a part of a single layer
of cortex, that receives excitatory signals from previous layer of
cortex or an external stimuli, and then sends excitatory signals
to the next layer. There are lateral connections among all types
of neurons (excitatory and inhibitory) in a single layer, but only
excitatory neurons interconnects different layers. I stimulated this
network and watched its response. This was repeated over a wide
range of parameters. At the end I calculated fitness of each set of
parameters and then investigated the overlap of the best param-
eters according to my simulation with the nature’s choices (or
computational neuroscientists’ choices).

To do any sort of evolutionary analysis, first we need to agree
on something to optimize –a fitness function, it can be the net-
work capacity to learn and store information (Barbour et al.,
2007), or it can be the speed and the quality of transmitted signals
(Chklovskii et al., 2002). But here, to define the fitness function, I
remind you of three obvious evolutionary facts:

1. High Dynamic Range is evolutionary favored, an ani-
mal that can see during days and nights, has a higher

FIGURE 1 | This figure demonstrates a typical tuning curve and its

dynamic range. Two consecutive stimuli are different by a factor of 2, also
known as one stop.

survival chance than an animal which can see only during
days.

2. Small Just-Noticeable Difference is evolutionary favored, an
animal which can discriminate more gray levels or colors, has
a better chance to find its preys and foods.

3. Low Energy Consumption is also favored, an energy efficient
animal, consumes less food and therefore has a better chance
to survive (Niven and Laughlin, 2008).

Dynamic Range is the ratio of the largest possible value of stim-
uli to its smallest perceivable value. Just-Noticeable Difference

FIGURE 2 | A simplified schema of simulation setup. Here there are just
N = 9 neurons (N = 1000 in the actual simulation), in which Ne = 7 are
excitatory neurons (circles) and Ni = 2 are inhibitory neurons (disks). The
network is stimulated three times, each time s ∈ (1, 2, 4) neurons are
stimulated (up left, down left and right respectively), with a pulse, in a way
that they fire once at time t = 0 and then they are like any other neuron in
the network.

FIGURE 3 | The layout of phase diagram, (Figure 4 and others), Here, p

is the sparsness of connections, Ni is the number of inhibitory

neurons, we is the weight of excitatory synapses (a positive number)

and wi is the weight of inhibitory synapses (a negative number). The
plane of we and wi is devided into hexagonal bins. The color of each
hexagon is defined by the aggregated value of data points inside that
hexagon. For aggregation, unless spesified, median value of points are
used. If a hexagon is empty, then its color is white.
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is the smallest detectable difference between two sensory stim-
uli, which is often roughly proportional to the magnitude
of the stimulus. The ratio of Just-Noticeable Difference to
the magnitude of the stimulus is known as Weber constant
(Dayan and Abbott, 2001).

Both Dynamic Range and Just-Noticeable are well presented in
logarithmic scale, but instead of log10 and dB, from now on, I will
use log2 and stop which are common in Optics and Photography
(Figure 1).

Here we are left with a neural network and three concepts
to play with—Dynamic Range, Just-Noticeable Different and
Energy Consumption. To keep it simple, I only measure Dynamic
Range while there are upper bounds for the other two. I require
Just-Noticeable Different to be smaller than one stop, thus, the
calculated Dynamic Range is a lower bound for the real Dynamic
Range, and I require the Energy Consumption to be zero in
absence of stimulus, which puts an upper bound for the Energy
Consumption. Moreover, energy consumption can be a determi-
nant factor when all other conditions are equal, when there are
two sets of parameters with about the same Dynamic Range, the
one which consumed less energy will be favored, and here, the

measure of energy consumption is the number generated spikes
(Attwell and Laughlin, 2001).

I stimulated the network with a set of stimuli that were
equally spaced in the logarithmic scale, separated by 1 stop
(×2) intervals, similar to Figure 1. I ran the simulation for a
given time 1024 ms and then I calculated Dynamic Range over
the range that Just-Noticeable Difference was smaller than 1
stop.

To be precise, I used a sequence of n stimuli plus the rest-
ing state (no stimulus), so the sequence includes n+ 1 members
s ∈ (s0, s1, s2, . . . , sn). Except s0, the resting state, the differ-
ence between i-th and (i+ 1)-th stimulus is one stop: si+1 =
2∗si. Each stimulus si evokes a response r(si) ∈ R, where R =
(r(s0), r(s1), r(s2), . . . , r(sn)). Now, the Dynamic Range is simply
the number of elements in the largest subsequence of R′ ⊂ R that
fulfills the expectations,

1. For any r(si), r(sj) ∈ R′, we should have si < sj ⇒ r(si) < r(sj).
It means that R′ is strictly monotonic and it satisfies the
constrain on the Just-Noticeable difference.

FIGURE 4 | The phase diagram of dynamic ranges, dark red means

high dynamic range (good), white means there was not any

simulation data at that bin, all the data were unreliable, or the

the network did not come back to its resting state before 100 ms

of simulation. The information are arranged according to the template
of Figure 3.
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2. For any si ∈ R′, the network must return to resting state
in acceptable time. This satisfy the Energy Consumption
constrains.

For example, if stimuli (0, 1, 2, 4, 8, 16) leads to the responses
(0, 0, 2, 3, 4, 4) then the subsequence (0, 2, 3, 4) ⊂ R is the
largest subsequence of R which meets all the conditions;
Therefore, the dynamic range is 4. In this way the minumum
dynamic range can be 1 and its maximum can reach the total
number of stimuli.

In this study I assumed response r(s) as the maximum firing
rate of population of excitatory neurons in response to the stimu-
lus s. But the paradigm of this study is general and can be applied
to any neural coding schemes.

I stimulated some of the neurons with an impulse, I forced
si excitatory neurons to fire once at time t = 0, then I mon-
itored the propagation of the impulse. Here the number of
excited neurons represents the magnitude of the stimuli si.
This is very similar to Optogenetics stimulation, in which, a
laser pulse excites a specific population of neurons (Peron and
Svoboda, 2011; Toettcher et al., 2011; Lim et al., 2012; Liu et al.,
2012).

I used a simple compartment Izhikevic model (Izhikevich,
2003). It can imitate the behavior of Hodgkin-Huxley model, and
its computational costs is comparable to the Integrate-and-fire
model (Izhikevich, 2004). It is based on a system two-dimensional
differential equations:

dv

dt
= 0.04v2 + 5v + 140− u+ I (1)

dw

dt
= a(bv − u) (2)

and the after spike equation of:

if v > 30 mV, then

{
v← c

u← u+ d

all units are in mV and ms. Here v is the membrane potential, I
is the input current and u is a slow variable that imitate the effect
of slow moving ions in the cell, like Calcium ions. With a proper
values of parameters a, b, c, and d, it can model regular spiking
neurons, fast spiking neurons and it includes adaptation. In our
simulaton excitatory neurons are assumed to be regular spiking,

FIGURE 5 | The phase diagram of oscillations, the dominant frequency

of population rate of the network acording to FFT. Colors are associated
to brain waves: δ(0.1− 4Hz), θ (4− 7Hz), α(7− 15Hz), β(15− 31Hz), and
γ (31− 100Hz), and color of a bin shows the median of all trials in that bin.

Here white means there was not any simulation data at that bin, all the data
were unreliable (they fired at the maximum possible population firing rate), or
the network did not show any activity after 100 ms of simulation. The
information are arranged according to the template of Figure 3.
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inhibitory neurons are assumed to be fast spiking. The values of
parameters and the initial values of u and v are set as follow:

a b c d u v

Regular spiking 0.02 0.2 –65.0 8.0 –14 –70
Fast spiking 0.10 0.2 –65.0 2.0 –14 –70

My network has a random graph topology (Erds and Rényi, 1960).
In a random graph, every two neurons are connected by probabil-
ity p, called sparseness. This is one of the simplest topology for a
network or graph.

I simulated networks of N = 1000 neurons with

NI ∈ (100, 200, 300, 400, 500)

inhibitory neurons. The neurons were connected by a random
graph topology, with the sparseness

p ∈ (0.01, 0.02, 0.04, 0.08, 0.16).

On the other hands, the synaptic weights are chosen randomly,
but in a way to cover the region of interest in the we, wi plane. In
this way, it is always possible to add new points later to improve
results. The new points could be just another pair of connection

weights(we, wi) on the same random netwrok, or they could be
synaptic weights of a whole new realiziation.

I stimulated each network 10 times,

s ∈ (0, 1, 2, 4, 8, 16, 32, 64, 128, 256)

so in each trial, s neurons fire at t = 0. Then I watched the net-
work for 1024ms. At the end, I calculated Dynamic Range of
the network. I repeated the whole process for few realization of
random networks and and then the median of all data in each
hexagonal is calculated and displayed (Figure 2).

The whole process needs a great amount of computa-
tional power. That is the reason I used NeMo (http://nemosim.

sourceforge.net/), a neural simulator software that runs on GPU
(Fidjeland et al., 2009; Fidjeland and Shanahan, 2010), but for the
pilot study, I used Brian (http://briansimulator.org/) (Goodman
and Brette, 2008). Both of them are open source and available on
their websites.

3. RESULTS
I wanted to present the results as a function of 4 other parame-
ters, for that I needed to map a 4-D space to a 2-D space. Here
I used the template in Figure 3, to present the dynamic ranges
in Figure 4, oscillations in Figure 5 , diuration of activities in

FIGURE 6 | The time of last spike in each trial. Dark red means the simulation ended before the network returns to its resting state. Here white means there
was not any simulation data at that bin, or all the data were unreliable. The information are arranged according to the template of Figure 3.
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Figure 6, maximum achived firing rate in each trial in Figure 7
and the time of achived maximum rate in Figure 8 First I made
the plots of dynamic range in the space of synaptic weights –
we and wi. Then I put these plots next to each other accord-
ing to sparseness of connections p and number of inhibitory
neurons Ni.

4. DISCUSSION
In Figure 4, top right corner of each figure is empty (white).
This is where the excitatory neurons dominates and the net-
work riches its maximum firing rate, this region is visible in
Figure 7 as the darkest shade of red. The lesft side of each
graph, where the inhibitory subnetwork dominates, is also
empty, but this time because networks did not return to resting
states. More detail about the length of activity demonstrated in
Figure 6.

A narrow band seperate this two regins, on this band, the
inhibitory and excitatory network are balancing out each other.
As we increase the number of connections, this band gets nar-
rower, the delicate balance can be easily disturbed. The dynamic
ranges on this band is low or moderate.

At the bottom of each graph, there is another region with
valid data points. In this region, excitatory sub networks are not
strong enough to saturate the system, so we have a good dynamic

range regardless of the inhibitory synaptic weights. Nevertheles,
stronger inhibitory sub networks improves the dynamic range.

For the calculation of dynamic range, only trials who returned
to resting state have been used. But in many other trials the
network sustained its activity upto the very last miliscond of sim-
ulation (Figure 6). These networks shows interesting oscillatory
behaviures, that can be seen in Figures 5, 9. The oscillations are
mostly α and β waves, with fewer case of γ waves. There are also
δ and θ waves, but the simulation time of 1 s may not be enough
to study these waves.

The networks are stimulated with only a pulse, and then they
are left alone, even though there is not any spontaneous activ-
ity implemented in the model, yet, the networks show sustained
oscillations.

The oscillation are mostly β-waves, and they happen in the
region of dominating inhibitory sub networks. As we get to the
balanced inhibitory-excitatory band, the oscillations become α-
waves.

It seems that the results are not very sensitive to the param-
eters, We can have good dynamic range over some value of
parameters, and we can have neural oscillators in different set-
tings. These finding agrees with Prinz et al. (2004); Marder et al.
(2007); Marder and Taylor (2011); Marder (2011); Gutierrez et al.
(2013).

FIGURE 7 | Maximum firing rate in each trial. Here white means there was not any simulation data at that bin. The information are arranged according to the
template of Figure 3.
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FIGURE 8 | The time that maximum firing rate happens in each trial. Here white means there was not any simulation data at that bin. The information are
arranged according to the template of Figure 3.

FIGURE 9 | An example of fast respoding network with a good

dynamic range (left), poor dynamic range (middle) and an example

of oscillatory network (right). Population rates as a function of time

(top). The spiking avtivity of neurons (bottom). The red line seperates
excitatory neurons (below the line) from inhibitory neurons (above the
line).
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The results of this paper, specially Figures 4, 5, serves as a start-
ing point to decide about parameters in a neural simulation, and
they may help to find the networks with desired behavior.

This work by no mean is complete, I only studied the effect of
four parameters, in just one model, over dynamic range and oscil-
lations. Many other parameters could be included, like synaptic
delay and distribution of weights or connections. Also it is inter-
esting to know if my results holds for simpler models, like
Integrate-and-fire.

At the end I suggest that any numerical simulation of neural
network should be accompanied with such a phase diagram, it
demonstrate the robustness of the results in respect to the param-
eters. One good example is the the work of Roy et al. (2013),
where they made such diagram to compare experimental data of
orientation selectivity index of mouse primary virtual cortex to
their model.
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