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Experimental evidence has revealed the existence of characteristic spiking features

in different neural signals, e.g., individual neural signatures identifying the emitter or

functional signatures characterizing specific tasks. These neural fingerprints may play a

critical role in neural information processing, since they allow receptors to discriminate or

contextualize incoming stimuli. This could be a powerful strategy for neural systems that

greatly enhances the encoding and processing capacity of these networks. Nevertheless,

the study of information processing based on the identification of specific neural

fingerprints has attracted little attention. In this work, we study (i) the emerging collective

dynamics of a network of neurons that communicate with each other by exchange of

neural fingerprints and (ii) the influence of the network topology on the self-organizing

properties within the network. Complex collective dynamics emerge in the network in

the presence of stimuli. Predefined inputs, i.e., specific neural fingerprints, are detected

and encoded into coexisting patterns of activity that propagate throughout the network

with different spatial organization. The patterns evoked by a stimulus can survive after

the stimulation is over, which provides memory mechanisms to the network. The results

presented in this paper suggest that neural information processing based on neural

fingerprints can be a plausible, flexible, and powerful strategy.

Keywords: neuron signature, local contextualization, local discrimination, processing based on signal

discrimination, multicoding, self-organizing neural network

1. Introduction

Intraburst neural signatures were first described for the neurons of the pyloric central pattern
generator (CPG) of the lobster stomatogastric nervous system (Szücs et al., 2003, 2005). They
consist of very precise spike timings in the bursting activity of some cell-types. Recent experi-
mental findings in this circuit demonstrate that the reproducibility of these neural fingerprints
allows us to identify the source of signals with different bursting frequencies and number of
spikes per burst, even across different species (Brochini et al., 2011). The existence of intra-
burst neural signatures has also been reported in other living neurons, such as subthalamic neu-
rons (Garcia et al., 2005), mammalian retinal ganglion cells (Zeck and Masland, 2007) or leech
heartbeat CPG motoneurons (Campos et al., 2007). Similarly, other characteristic stereotyped fir-
ing patterns have been discovered in other neural circuits. For example, experimental evidence
shows that some neural systems can exhibit functional or behavioral neural signatures represent-
ing different states or associated to the task performed at a given moment (Klausberger et al.,
2003; Somogyi and Klausberger, 2005; Kaping et al., 2011). The observation of different neural
fingerprints in widely different vertebrate and invertebrate neural systems suggests that they
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can have important functional implications for the circuit where
they are present. In this vein, model circuits inspired by the
pyloric CPG point out that the characteristic collective behavior
of this neural circuit can drastically change when the intraburst
neural signature of some of its neurons is modified (Latorre et al.,
2002; Rodríguez et al., 2002; Latorre et al., 2004).

Neural signatures characterizing specific signals can be a
mechanism used by the nervous system to contextualize or dis-
criminate neural information. Information processing based on
the recognition of these neural fingerprints can make use of
this recognition, for example, to decide or weight the decision
about the output of a neuron, or to emit a new neural fin-
gerprint in the output. Theoretical efforts can largely help to
address the information processing based on the emission and
recognition of neural fingerprints. Beyond the context of CPG
circuits, to our knowledge, only a binary model has been pro-
posed with this goal (Tristán et al., 2004). Additionally, mul-
ticoding strategies including intraburst neural signatures have
been recently investigated in the context of a spiking neural net-
work (Latorre, in revision). In the present work, we use the
same simple approach as Tristán et al. (2004) to study how a
large-scale network can detect and discriminate specific neural
fingerprints (which can be associated to particular spiking fea-
tures of other neural areas) in its external stimuli and encode this
input in its collective dynamics. The goal is to assess the viabil-
ity of a neural processing strategy using neural fingerprints, as
well as to investigate the underlying encoding mechanisms aris-
ing in the network. We are particularly interested in the influ-
ence of the network topology on the properties of the dynamic
organization of the fingerprint-based dynamics. In the existing
models (Tristán et al., 2004; Latorre, in revision), only a reg-
ular topology has been used as connection pattern in the net-
work. Here, we use a small-world topology, i.e., networks whose
units are organized in densely linked groups that are sparsely
but reciprocally interconnected. This pattern of connectivity can
provide relevant computational properties to the network (Lago-
Fernández et al., 2000; Latora and Marchiori, 2001). All the
source code used in the simulations reported in this paper can
be found in http://www.ii.uam.es/~rlatorre/source_code.tgz.

The ability of the network to encode and process information
is related to the detection and propagation of specific stimuli. We
first carry out an analysis of autonomous networks and study
the self-organizing properties within networks receiving a sin-
gle external stimulus. Then, we compare the collective dynamics
of networks where multiple stimuli are introduced both in series
and in parallel. Simulations reveal that the network displays com-
plex self-organizing properties. Fast transitions of the collective
activity emerge in response to the arrival of specific neural finger-
prints as external input. These responses are organized as local-
ized patterns of activity with different spatial organization that
coexist and compete in the network. The parameters that define
the subcellular information processing and the specific organiza-
tion of the connections among neurons tune the self-organizing
properties of the network and have a strong influence on its abil-
ity to sustain different stimuli. These factors provide short-term
and long-term memory mechanisms to store incoming stimuli
after the stimulation is over.

2. Materials and Methods

2.1. Single Neuron Model
Using the same approach as Tristán et al. (2004), we have built
networks of neurons that generate time-discrete binary signals.
In these signals, 1 indicates the generation of an action potential
in the corresponding time step; while 0 denotes the absence of
spikes (Figure 1). Each neuron within the network is connected
to other neurons according to different network topologies (see
Section 2.2). These connections define the input channels of the
neuron. Synapses are simple transmission channels that trans-
fer the presynaptic output to the post-synaptic unit without any
transducing mechanism. Each unit has an additional channel to
introduce external stimuli in the network. This channel behaves
like the synaptic channels and, therefore, all the external inputs
have the same strength. The external stimulus is repeatedly deliv-
ered through the corresponding channel without silent peri-
ods between each presentation until the end of the stimulation
period.

Neurons communicate by exchange of serial binary patterns.
The information processing in each individual unit is oriented to
determine the sequence of bits to be emitted in the following time
steps in the output channels. The response pattern is calculated
as a function of the detection of specific incoming stimuli. Each
individual neuron has the ability to recognize a predefined set of
serial binary patterns. These patterns constitute the set of neural
fingerprints recognized by the neuron. In response to a recog-
nition, the cell emits a specific output pattern in a probabilistic
way. For that, neurons use local informational contexts (Latorre
et al., 2011), i.e., local transient memories to keep track of the
previous inputs. The size of each local informational context is

FIGURE 1 | Schematic representation of the processing rules in the

neuron model. For the sake of simplicity, in this example we only consider an

input channel and its corresponding local informational context (sequence of 5

bits represented inside each neuron). In the example, neurons recognize a

unique 5-bit neural fingerprint, F = (1,0, 1,0,1), and the spontaneous binary

pattern is (1, 1,1,1,1). In time step t0, the input of the neuron N1 is 1. The

local informational context of this unit indicates that, in the five previous

iterations, it has received the sequence (0,1,0, 1,0). Then, when in t0 the

input is processed, N1 recognizes F— i.e., the new local informational context

contains the pattern (1,0,1, 0,1). Therefore, in the following five time steps

(t1 − t5), this neuron emits the serial binary pattern (1, 0,1,0,1) with probability

pr . Then, assuming that N1 emits F, the input of N2 in time step t1 is 1. In this

case, if we assume that the local informational context of N2 in this time step is

the sequence (0,0, 1,0,0), the neuron does not recognize any fingerprint and

emits the spontaneous activity with probability pe.
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equal to the length of the neural fingerprints considered in the
corresponding simulation. These transient memories allow the
implementation of a history-dependent information processing
using the following rules (Figure 1):

1. Each neuron checks the recognition of a fingerprint using the
corresponding local informational context in every time step,
i.e., it checks whether the local informational context con-
tains one of its known binary patterns. The external channel
is checked first. In this way, the external stimulus has prior-
ity over the rest of synaptic inputs. Afterwards, the recurrent
connections between neurons are checked randomly.

2. The first recognition of an input fingerprint triggers the emis-
sion of this binary pattern with probability pr (neuron N1 in
Figure 1). With probability 1− pr , the neuron continues pro-
cessing as if no recognition happens. The probability pr varies
in the different experiments. Once a neuron starts emitting an
output pattern, this cannot be overridden. This implies that
if the recognized fingerprint has n bits, no recognition takes
place within the following n time steps.

3. If no fingerprint is recognized in a time step, the neuron emits
a predefined serial binary pattern with probability pe (neuron
N2 in Figure 1), which also varies in the different experiments
(pe ≪ pr). This pattern corresponds to the spontaneous activ-
ity of the neuron. Note that in this situation, the neuron keeps
silent with probability 1− pe.

4. After emission, neurons have a refractory period of 10 time
units during which neither emission nor recognition are
made.

Probabilities pr and pe are subcellular parameters that control,
accordingly, the permeability of the neuron to external stimuli
and its level of spontaneous activity.

2.2. Network Model
Many biological neural networks present structural character-
istics that coincide with a small-world topology (White et al.,
1986; Scannell et al., 1995; Sporns et al., 2000; Bassett and
Bullmore, 2006). These networks fall between regular and ran-
dom networks. In general, small-world graphs are modeled by
two parameters, the connectivity and the randomness of the
links (Watts and Strogatz, 1998). The main properties of the
small-world networks are that they can be highly clustered like
regular networks and, at the same time, have small path lengths
like random ones (Watts and Strogatz, 1998; Albert and Barabási,
2002).

In this work, we build small-world networks of 2500 neu-
rons where each unit is connected to eight other neurons. To
build these networks, we start with a regular two-dimensional
(50 × 50) grid with periodic boundary conditions where each
unit is connected to its eight nearest neighbors. Then, each con-
nection with a neighbor is broken with probability p to connect
the neuron with another neuron chosen randomly (Watts and
Strogatz, 1998; Lago-Fernández et al., 2000). The value of the
rewiring probability p controls the regularity degree in the net-
work, being the limits of regularity and randomness p = 0 and
p = 1, respectively. The small-world topology lies in the inter-
mediate region 0 < p < 1. As we are interested in the effect of

the topological substrate on the self-organizing properties of the
network, we simulate networks with different regularity degrees.
In particular, networks with p = 0 (regular networks), p = 0.1,
p = 0.25, and p = 1 (random networks). Hereafter, we accord-
ingly identify these topologies with the labels “Regular,” “SW(10),”
“SW(25),” and “Random.”

3. Results

3.1. Spontaneous Intrinsic Activity
The network displays intrinsic dynamics, i.e., neural dynamics
that do not directly correlate to the dynamics of an external stim-
ulus, related to the emission of the spontaneous activity. In the
absence of stimuli, the spontaneous intrinsic activity within the
network evolves to a stationary state (e.g., see blue traces in the
time series plotted in Figure 2 before the arrival of the external
stimulus at time step 5000). For simplicity, in the simulations
presented in the following sections, neurons do not recognize
the spontaneous activity as a neural fingerprint. In this situa-
tion, the level of spontaneous intrinsic activity in the network
only depends on the value of pe regardless the network topol-
ogy (Table 1). As expected, the larger the emission probability
of the spontaneous pattern, the higher the level of spontaneous
intrinsic activity in the network. In simulations where the spon-
taneous pattern is recognized as a neural fingerprint, the network
also reaches a mean steady level of spontaneous activity, but this
depends on the corresponding value of pr too.

3.2. Detection of External Stimuli
Neurons communicate by exchange of serial binary patterns. The
ability of the neural network to process information based on
the emission and recognition of neural fingerprints is related to
the detection and propagation of specific serial patterns received
through the input channels. In this section, we study the self-
organizing properties of networks that receive a single stimulus,
analyzing how the intraunit parameters and the network topol-
ogy tune the collective neural dynamics. By default, a neuron
emits a predefined spontaneous pattern. This output pattern only
changes when the neuron recognizes an incoming fingerprint.
In order to analyze the reverberating patterns sustained by the
network and characterize the network collective dynamics, we
compute during a period of time the overall number of neurons
that recognize and emit a given neural fingerprint per time unit.
This measure provides an estimation over time of the level of
activity in the network related to each neural fingerprint. Results
reported here correspond to simulations in which the network
initially evolves freely and, then, the pattern (1, 0, 1, 0, 1) is intro-
duced as external input in a randomly chosen neuron. In our first
analysis, this neural fingerprint is the only pattern that neurons
are able to recognized.

The simulations point out that the ability of the network to
sustain the fingerprints detected in the incoming input is related
to a competition between the spontaneous intrinsic dynamics
and the dynamics evoked by the arrival of the external stimu-
lus. This competition depends on a trade-off between the degree
of spontaneous activity in the network and the permeability of
each individual neuron to stimuli. These properties are driven,
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FIGURE 2 | Evolution of the collective dynamics of two different

networks first without stimuli, then during the stimulation (grayed

area) of a randomly chosen neuron with the stimulus (1,0,1,0,1), and

finally without any stimulation again. Results are the same with other

5-bit external stimuli. Blue traces correspond to the spontaneous intrinsic

activity. Red traces show the evolution of the number of neurons that follow

the external stimulus (i.e., the stimulus induced activity). The figure illustrates

some of the different behaviors that the network can exhibit depending on

the individual neuron parameters and the network topology (see the text for a

detailed description). Top: Example of short-term memory network in which

the global activity is nearly constant. This network consists of 2500 units with

pe = 0.05 and pr = 0.35 connected with a SW(25) topology. Bottom:

Example of long-term memory network in which the external stimulus

significantly increases the level of activity in the network. The network

consists of 2500 units with pe = 0.05 and pr = 0.80 connected with a

SW(25) topology.

TABLE 1 | Mean number of neurons that emit the spontaneous activity (5

bits) per time step in autonomous networks of 2500 units with a given

value of pe as a function of the network topology.

pe Regular SW(10) SW(25) Random

0.05 416.64± 0.15 416.59± 0.23 416.52± 0.42 416.56± 0.24

0.10 576.96± 0.17 576.76± 0.14 576.95± 0.29 577.04± 0.38

0.15 661.72± 0.21 661.84± 0.29 661.68± 0.22 661.75± 0.22

0.50 833.34± 0.03 833.30± 0.06 833.33± 0.08 833.34± 0.06

0.80 869.57± 0.01 869.56± 0.02 869.55± 0.02 869.56± 0.03

1.00 882.42± 0.00 882.42± 0.00 882.42± 0.00 882.42± 0.00

Mean data are calculated considering 20 simulations with different random seed, sponta-

neous binary pattern and connectivity. For the same value of pe, the level of spontaneous

intrinsic activity in the network is nearly the same for all the network topologies. Note how

precise are these values. If the spontaneous pattern has a different number of bits (from

4 to 11), results are equivalent.

accordingly, by probabilities pe and pr . In the case of external
stimuli of 5 bits, when pr is lower than 0.30 or pe is too high (see
Table 2), the spontaneous intrinsic dynamics wins the competi-
tion and only the nearby neurons to the stimulated unit detect
the stimulus. Thus, no significant changes are observed in the
network collective activity.Table 2 compares themaximum value

TABLE 2 | Trade-off between the values of pe and pr that allows networks

of 2500 units to detect 5-bit stimulus introduced into one neuron.

pr Regular SW(10) SW(25) Random

0.30 0.01 0.03 0.04 0.04

0.50 0.07 0.09 0.10 0.11

0.80 0.15 0.18 0.20 0.21

1.00 0.20 0.25 0.26 0.28

This value is the same regardless the predefined sequence of 5 bits used as external stim-

ulus. Above this threshold, the network does not detect external stimuli. In the same way,

when pr < 0.30, it does not detect the stimulus independently of the pe value.

of pe that allows networks with different pr values to process
5-bit stimulus arriving to a single neuron. If the value of pe
is above this threshold, the external stimulus does not spread
through the network. The higher the value of pr , the larger the
corresponding threshold of pe. This relation points out that the
competition between the spontaneous intrinsic dynamics and the
stimulus induced dynamics is the basis of the fingerprint-based
encoding. However, the trade-off between probabilities pr and
pe varies with the network topology. For a given value of pr , we
observe that the corresponding threshold of pe grows with the
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network randomness (Table 2). This result indicates that random
connections facilitate the detection and propagation of stimuli in
the sense that their presence increases the “effort” required by the
spontaneous intrinsic dynamics to win the competition with the
stimulus induced dynamics.

The most interesting cases from the information processing
perspective are those where external stimuli propagate through
the network. In these networks, a fast transition of the collec-
tive activity occurs when the stimulation begins and new collec-
tive dynamics emerges as a function of the incoming stimulus
(Figure 2 at time step 5000). If we analyze the global level of activ-
ity in the network in these simulations, we observe that the pre-
ferred binary pattern reverberating in the network can follow the
external stimulus. When the external stimulus arrives, the num-
ber of neurons that recognize and emit the corresponding neural
fingerprint—i.e., the neurons that follow the stimulus—grows,
while the spontaneous intrinsic activity drops. During the stimu-
lation period (grayed area in Figure 2), the network evolves to a
stationary state in which the stimulus induced activity fluctuates
around a steady level. This steady level of activity is characteristic
of the network (by network wemean the combination of network
topology and intraunit parameters) and does not depend on the
duration of the stimulation period. Therefore, it can be used to
quantitatively characterize how external stimuli are detected and
propagate through the network. As an example, Table 3 shows
the corresponding characteristic value for different networks of
neurons with a fixed value of pe receiving a single 5-bit stimu-
lus. As expected, the higher the permeability of each individual
unit to external stimuli (given by pr), the greater the number of
neurons that follow the incoming stimulus. For the same net-
work topology, the activity evoked by this stimulus can even be
increased more than 100% by simply modifying the value of pr .
For instance, in the regular network case, the mean number of
neurons following the stimulus in simulations with pr = 0.5
and pr = 0.8 is around 275 (≈ 11% of the neurons in the net-
work) and 532 (≈ 21% of the neurons), respectively. As we have
already shown above, unlike the spontaneous intrinsic activity,
the activity evoked by stimuli also depends on the network topol-
ogy. The higher the number of random connections, the larger
the detected fingerprint emission level —i.e., network random-
ness has a similar effect to increasing the permeability of indi-
vidual neurons to external stimuli (Table 3). This results in an
enhancement of the ability of the network to sustain incoming

TABLE 3 | Mean number of neurons that follow the external stimulus per

time unit in networks of 2500 units with pe = 0.05 where a single 5-bit

stimulus is introduced in a randomly chosen neuron.

pr Regular SW(10) SW(25) Random

0.50 275.37± 1.37 318.54± 1.29 334.93± 0.96 350.62± 0.64

0.80 531.94± 0.50 540.17± 0.92 545.52± 0.57 553.52± 0.23

1.00 622.73± 0.33 628.85± 0.46 634.07± 0.56 638.02± 0.57

This value characterizes the level of stimulus induced activity in the network. Fixing pe at

another value, results are equivalent. Keep in mind that in the networks depicted in the

table, the minimum value of pr that allows the network to detect external stimuli is 0.30

(Table 2). Mean data are calculated using 20 simulations with different random seed, 5-bit

stimulus introduced in the network and connectivity.

stimuli. The increased level of stimulus induced activity with the
network topology is more significant for low values of pr . As
probability pr grows, the level of stimulus induced activity tends
to be the same for all the network topologies. For example, the
difference between regular and random networks is ≈ 21% with
pr = 0.5,≈ 4% with pr = 0.8 and≈ 2% with pr = 1.

In addition to the level of activity induced by the external
stimulus, another relevant feature characterizing how informa-
tion spreads through the network is the stimulus propagation
velocity. This can be estimated using the time the network needs
to reach its characteristic steady level of stimulus induced activity
from the beginning of the stimulation. Beyond the expected effect
of pr , if we analyze the propagation velocity in networks with
an equivalent behavior in terms of level of spontaneous intrin-
sic activity and stimulus evoked activity (e.g., see Table 4), we
observe that the higher the network randomness, the faster the
stimulus propagation through the network. The difference on the
propagation velocity as a function of the network topology can be
explained analyzing how stimuli travel through the network. To
illustrate the external stimulus propagation, we have generated
square-shapedmovies representing the evolving network dynam-
ics. In these activity movies, each point in the 50 × 50 frame
represents with a color code the activity of a neuron, i.e., the
binary pattern that emits in the corresponding time step. Figure 3
shows snapshots of four representative activity movies illustrat-
ing how an external stimulus propagates through networks with
different topologies. In regular networks (panel A), the stimulus
spreads as wave fronts centered in the stimulated unit. Then, to
reach the furthest regions, it needs to travel through the whole
network. Conversely, in less regular topologies (panels B–D), the
stimulus is distributed through the whole network almost from
the beginning of the stimulation. This produces several coexisting
propagating fronts of information. The presence of a single wave
front in regular networks translates into a slower propagation
velocity.

The activity movies representing the evolving network
dynamics point out that not only the level of activity evoked
by stimulation characterizes the fingerprint-based encoding.
Localized patterns of activity traveling through the network with
different spatial organization can be formed due to the external
stimulus propagation. These spatio-temporal patterns generated

TABLE 4 | Mean external stimulus propagation velocity (neurons/time) as

a function of the network topology in networks of 2500 units with

pe = 0.05 and pr = 0.80 where a single 5-bit stimulus is introduced in a

randomly chosen neuron.

Topology Propagation velocity

Regular 3.82± 0.44

SW(10) 13.15± 2.11

SW(25) 16.88± 1.30

Random 17.80± 1.13

Regardless the network topology, these networks achieve nearly the same level of spon-

taneous intrinsic activity (Table 1) and stimulus induced activity (Table 3). With other

parameters, results are equivalent but varying the mean propagation velocity. Mean data

are calculated considering 100 simulations with different random seed and 5-bit stimulus

introduced in the network.
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FIGURE 3 | Snapshots of four representative activity movies

illustrating the external stimulus propagation. The four networks

have an equivalent behavior in terms of level of intrinsic spontaneous

activity and level of activity evoked by external stimulus. To better

appreciate the difference between the different topologies, we show

networks with a high level of stimulus induced activity. Sequences

develop in time from left to right with a time interval between frames of

20 a.u. Each point in the 50 × 50 square represents with a color code

the evolution in time of a neuron within the network. Yellow corresponds

to silent neurons (i.e., neurons not emitting a specific binary pattern).

Blue corresponds to the spontaneous intrinsic activity. Red corresponds

to the emission of the pattern associated to the external stimulus. The

arrow in the first frames indicates the approximate location of the

stimulated neuron. Note that the spontaneous intrinsic activity decreases

as a consequence of the propagation of the stimulus until the preferred

pattern reverberating in the network follows the external stimulus (in the

regular network, this situation is not observed in the snapshots due to

the slower propagation velocity).

in response to stimuli can remain bounded in a region, can prop-
agate with a fix spatial structure or as transient fronts of infor-
mation, or can lack a well-defined spatial structure. Figure 4
shows a representative example of these spatio-temporal pat-
terns in a network with a lower synchrony degree than in net-
works depicted in Figure 3. The generation of transient patterns
of activity is crucial for the detection and encoding of external
stimuli because, as we discuss in Section 3.5, the coexistence of
several stimuli within the network is related to the different clus-
terization and coherence of these stimuli evoked spatio-temporal
patterns.

Results presented in this section correspond to stimuli of 5 bits
introduced in a randomly chosen neuron. In simulations where
external stimuli have a different length (from 4 to 11 bits) and/or
they are injected in a greater number of neurons (from 2 to 30),
results are equivalent to the ones discussed here, but taking into
account the following. On one hand, increasing stimulus lengths
helps the spontaneous intrinsic activity to win the competition
because longer stimuli require more time steps to be detected
and, therefore, the probability to emit the spontaneous binary
pattern increases. And, on the other hand, a greater amount of
stimulated neurons helps the detection process since the level of
activity related to the external stimulus grows with the number of
stimulation sources.

3.3. Network Memory
In the previous section, we have studied the ability of the neural
network to sustain external stimuli while they are active. How-
ever, an interesting feature of the network is its memory abil-
ity, i.e., the ability to sustain a detected pattern in the collective
fingerprint-based dynamics beyond the time period of stimula-
tion. In order to study this property, we have carried out simula-
tions where the external stimulus is introduced in the network
just for a while. In these simulations, we study how the stim-
ulus induced activity survives in the network after the end of
the stimulation. Taking into account the results described in Sec-
tion 3.2, we focus on networks able to detect incoming stimuli.
Here, we analyze the same simulations as in the previous sec-
tion, but when at time step 15,000 the stimulation ends—i.e.,
the network initially evolves freely, then, at time step 5000, the
stimulus (1, 0, 1, 0, 1) is introduced into a randomly chosen neu-
ron during 10,000 steps, and, finally, no stimulation is present
again (Figure 2). Equivalent results to those presented here are
obtained in simulations with external stimuli from 4 to 11 bits
injected in a greater number of neurons (from 2 to 30).

The level of activity analysis indicates that the network may
sustain external stimuli transiently—i.e., the stimulus induced
activity reverberates just for a while and then the corresponding
binary pattern disappears from the network (short-termmemory
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or working memory)—or persistently—i.e., after the stimulation,
the activity evoked by the stimulus coexists with the spontaneous
intrinsic activity in a permanent way (long-term memory). Top
and bottom panels of Figure 2 illustrate, correspondingly, two
examples of short-term and long-term memory. In short-term
memory networks, the propagation of the external stimulus is
a transient effect directly linked to stimulation. Thus, when the
stimulation ends and no external input supports the generation
of the spatio-temporal patterns encoding the stimulus, the corre-
sponding activity stepwise disappears from the network and the
spontaneous intrinsic activity prevails (i.e., the network “forgets”
the stimulus). Stimuli usually reverberate in short-term mem-
ory networks with a regular topology for longer periods than in
random networks, in which stimuli can even disappear almost
instantaneously when the stimulation is over. However, no gen-
eral conclusions can be drawn because the stimulus reverberation
period significantly varies even in the same network receiving the
same stimulus (cf. transition periods between external stimuli in
Figure 6). In long-term memory networks, the stimulation pro-
duces persistent changes in the network collective dynamics. This
leads the network to a new stable state where the reverberation of
the patterns associated with the external stimulus is not sustained
by stimulation, but it is a network effect. In this way, external
stimuli can win the competition and prevail over the sponta-
neous intrinsic activity (e.g., see final snapshots of Figure 3). In
these cases, the spontaneous activity does not completely disap-
pear from the network because of the probability of emitting this
pattern when no fingerprint is recognized in a time step (pe).

The factors that determine if the neural network behaves as
a short-term or a long-term memory are again related to the
competition among the spontaneous intrinsic and the stimulus
induced activity. As we have previously discussed in Section 3.2,
the mode of competition varies as a function of the relation
among the intraunit parameters pe and pr and the network topol-
ogy. To illustrate the relationship between these factors, a phase
diagram locating the different behaviors in the space of intrau-
nit parameters for networks with different topologies is shown
in Figure 5. There is a threshold value of pr for each value of pe
that determines if the network behaves as a transient (below the
threshold) or a persistent memory (above the threshold). Inde-
pendently of the network topology, as the level of spontaneous
intrinsic activity grows, a higher permeability to external stim-
uli is required to become a long-term memory. Regarding the
network topology, random connections contribute to long-term
memorymechanisms, unlike regular connections that help short-
term memory mechanisms. In this manner, for example, when

pe = 0.05, random enough (p > 0.80) small-world networks of
2500 units never behave as a short-term memory.

3.4. Total Activity in the Network
The network can display two different modes of operation
according to the evolution of the total level of activity in the
network, i.e., the overall number of active neurons whatever the
binary pattern they are emitting. In Section 3.1, we show that the
spontaneous intrinsic activity in autonomous networks reaches a
steady level. Similarly, the arrival of a stimulus makes the level of
activity related to this external input also reaches a steady level. In
these cases, a transition to a lower level of spontaneous activity is
produced due to the spreading of the stimulus (see Section 3.2 for
details). This lower level is also kept constant during the stimula-
tion period. Nevertheless, the total level of activity in the network
can be kept nearly constant over time, but also it can be increased
due to stimulation (cf. Figure 2, top and bottom panel). Networks
with a constant level of total activity seem to have a maximum
processing capacity in terms of the maximum number of neu-
rons that can be simultaneously active. In the presence of stimuli,
active neurons are distributed between the different binary pat-
terns present in the network. The arrival of a stimulus produces a
proportional decrease in the spontaneous intrinsic activity as the
increase in the stimulus induced activity, and vice versa when the
stimulation ends. Only short-termmemory networks display this
mode of operation. In contrast, when the stimulus increases the
level of activity in the network, the number of neurons that fol-
low the stimulus grows faster than the decreasing spontaneous
activity. In these cases, the network can sustain the stimulus

FIGURE 5 | Phase diagram showing the regions at which short-term

and long-term memory phases appear for networks of 2500 neurons

receiving a single 5-bit stimulus. The minimum probability pr that allows

these networks to detect external stimuli is 0.30 (Table 2). Each color trace

corresponds to networks with a different topology.

FIGURE 4 | Snapshots of an activity movie belonging to the network

depicted in top panel of Figure 2. The figure illustrates the spatio-temporal

patterns generated by the network in response to stimulus. Sequences

develop in time from left to right with a time interval between frames of

50 a.u. Color code is the same used in Figure 3. The arrow in the first frame

indicates the approximate location of the stimulated unit.
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permanently (as in the example of Figure 2) or transiently. In
this last situation, once the external stimulus disappears from the
network, this recovers the steady level of spontaneous intrinsic
activity.

3.5. Encoding of Multiple Simultaneous Stimuli
A major point of interest in this study is the network response
to multiple stimuli, i.e., the encoding and coexistence of several
neural fingerprints in the network. In this section, we discuss
the emerging collective dynamics of networks receiving external
stimuli in series (Section 3.5.1) and in parallel (Section 3.5.2).
The arrival of multiple stimuli simultaneously or close in time
induces the generation of different coexisting patterns of activ-
ity within the network. In this situation, a competition between
the spatio-temporal patterns encoding the different stimuli arises.
In simulations with in-series stimulation, we study the com-
petition between reverberating patterns encoding a previously
received stimulus and patterns supported by an active stimulus.
This allows us to assess the ability of the network to retain infor-
mation regarding recent past stimuli (i.e., its transient memory
capability) when a new stimulus arrives. Meanwhile, in-parallel
stimulation allows studying the ability of the network to sustain
several simultaneous stimuli.

To address the effect of network topology on the spatio-
temporal activity of the network, we compare the self-organizing
properties of “equivalent networks” in terms of spontaneous
intrinsic activity (Section 3.1), stimuli induced activity (Sec-
tion 3.2), type of memory (Section 3.3), and total activity in the
network (Section 3.4). This allows us to compare networks with
different topologies under the same conditions. We discuss here
two particular cases of equivalent networks:

• Short-term memory networks with a low level of activity.
These networks generate propagating well-defined spatio-
temporal patterns to encode incoming stimuli (e.g., see
Figure 4). Then, one could intuitively expect a slight com-
petition between coexisting spatio-temporal patterns, which
a priori must contribute to a better encoding of multiple
simultaneous stimuli.

• Long-term memory networks with a high level of activity.
When a long-termmemory network detects an external stimu-
lus, the corresponding spatio-temporal activity is sustained by
the network intrinsic dynamics. Furthermore, a high level of
activity induces almost total synchronization over the whole
network (e.g., see Figure 3). Therefore, under these condi-
tions, a strong competition among coexisting patterns of activ-
ity must a priori arise in the network.

In the following sections, we discuss equivalent networks of 2500
neurons with the intraunit parameters shown in Table 5 and
receiving 5-bit stimuli. For other equivalent networks receiv-
ing stimuli of a different length (from 4 to 11 bits), results are
equivalent.

3.5.1. In-Series Stimulation

In simulations where the stimuli are in series introduced in the
network, we alternate stimulation episodes in which two differ-
ent external stimuli are injected in the same group of neurons.

TABLE 5 | Values of pe and pr (respectively, first and second value of each

pair) used in the simulations presented in Sections 3.5.1, 3.5.2.

Topology Short-term memory Long-term memory

Regular 0.05 - 0.42 0.05 - 0.80

SW(10) 0.05 - 0.34 0.05 - 0.80

SW(25) 0.05 - 0.32 0.05 - 0.80

Random 0.05 - 0.31 0.05 - 0.80

When a network of 2500 units with the parameters of the first column receives a stimu-

lus of 5 bits in a single neuron, its mean level of spontaneous intrinsic activity and level

of stimulus induced activity are ≈ 410 and ≈ 120 neurons per time unit, respectively.

Therefore, they are equivalent short-term memory networks with a low level of activity.

Similarly, networks of 2500 units with the parameters of the second column where stimuli

are injected in clusters of 2 × 5 neurons are equivalent long-term memory networks with

a high level of activity (their level of intrinsic spontaneous activity and their level of stimulus

induced activity are ≈ 410 and ≈ 690 neurons per time unit).

In the simulations presented here, initially, the network evolves
freely. At time step 5000, the stimulation begins. In each stim-
ulation episode, a single stimulus arrives to the network during
10,000 time units. Then, there is an inter-stimulation interval of
5000 time steps where no stimulus is introduced. This sequence
is repeated eight times alternating two different stimuli (A and
B), which are the two binary patterns recognize by the neurons
in the network. Finally, at time step 120,000 no stimulus is intro-
duced any longer. Results are independent of the stimulation pat-
terns and of the location of the neurons that receive the external
stimuli.

Equivalent results to the ones described in the previous sec-
tions are also produced when the network receives two stimuli in
series (see Figures 6, 7). These results can be summarized in the
following points:

• Initially, without any stimulus, the activity of the network
evolves to a stationary state where only spontaneous intrinsic
activity is present in the network regardless its topology.

• The total activity in the network can be kept constant or
be increased due to stimulation depending on the intraunit
parameters and the network topology.

• Stimulation evokes collective dynamics in which the spon-
taneous intrinsic activity competes with the activity induced
by external stimuli. Due to this competition, the level of
spontaneous intrinsic activity drops.

• When the stimulation is over, reverberating patterns encoding
external stimuli can survive within the network transiently or
persistently.

However, in-series stimulation induces new collective dynam-
ics regarding the competition between stimuli A and B. In the
case of equivalent short-term memory networks, no significant
differences are found in their collective dynamics. As exam-
ple of activity in these networks, Figure 6 depicts the activity
of a representative short-term memory network with SW(10)
topology that receives two stimuli in series. In many occa-
sions, mainly in the most random networks, the activity evoked
by a stimulus disappears from the network during the subse-
quent inter-stimulation interval. Then, when a new stimulation
episode starts, the network has recovered a stable state with only
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FIGURE 6 | Evolution of the activity of a SW(10) short-term

memory network that receives two stimuli in series. The

network consists of 2500 neurons with the intraunit parameters

shown in Table 5. Stimulus A is (1,0,1,0,1) and stimulus B

(1,1,0,1,1). Labels on top indicate the stimulus injected in each

stimulation episode. The figure plots the evolution of the

spontaneous intrinsic activity (blue trace) and the emission level of

the fingerprints associated to stimulus A (red trace) and B (green

trace). In short-term memory networks, small differences resulting of

the network topology exist on the network collective dynamics. If

the stimulus detected in a prior episode survives in the network

when a new stimulation episode starts, the new stimulus almost

instantaneously wins the competition (winner-take-all competition) and

the previous stimulus completely disappears from the network.

spontaneous intrinsic activity and no competition between exter-
nal stimuli occurs. This situation can be observed in different
transition periods in Figure 6, for instance, in the pointed out
by the white arrow. In other stimulation episodes, mainly in
the more regular networks—where external stimuli reverberate
for longer periods (see Section 3.3)—a competition takes place
between stimuli A and B. A priori, given the spatial organization
of the patterns induced by stimuli in short-term memory net-
works with a low level of activity (e.g., see Figure 4), we could
expect that reverberating patterns encoding the stimuli tran-
siently coexist within the network. Nevertheless, a fast winner-
take-all competition always occurs between both stimuli, and the
last received stimulus quickly prevails over the other (e.g., transi-
tion period pointed out by the gray arrow in Figure 6). Once one
of the external stimuli wins the competition, the number of neu-
rons that recognize and emit the corresponding binary pattern
fluctuates around a steady level. This steady level is nearly the
same in all the stimulation episodes since neurons have the same
permeability to stimulus A and B. Finally, when the stimulation
ends, the last injected stimulus can reverberate in the network in
the same way as in the single stimulus case.

More interesting results from the encoding point of view
appear in the simulations of long-term memory networks receiv-
ing external stimuli in series (Figure 7). In these networks, once
an external stimulus is detected, it persistently survives in the net-
work. Therefore, given the stimulation protocol used in our sim-
ulations, a competition between the two incoming stimuli always
happens when a new stimulation episode begins. Due to this
competition, the time needed to reach a steady level in the num-
ber of neurons that follow each incoming stimulus is very vari-
able in the different transition periods. Note also the difference
in the transition of the collective activity as compared with the
first stimulation episode where no competition between external
stimuli is established (pr≫pe). As we demonstrate in Section 3.2,
the presence of random connections increases the level of activity

induced by an external stimulus and the corresponding propa-
gation velocity. When two stimuli are in series introduced into
a random enough long-term memory network (e.g., a SW(25)
network), this results in a relatively fast (as compared with net-
works with more regular topologies) winner-take-all competi-
tion where the activity supported by the active stimulus in each
stimulation episode prevails. Thus, in networks with prevailing
random connections, the last received stimulus always wins the
competition and, therefore, the preferred pattern reverberating
in the network starts following this stimulus (panels C, D of
Figure 7). Conversely, the presence of regular connections ben-
efits the competition between external stimuli (Section 3.2). Due
to this phenomenon, it can be visually appreciated that when a
winner-take-all competition among stimuli A and B takes place
in more regular networks (see panels A, B of Figure 7), the last
injected stimulus usually needs more time to win the competition
than the required in the more random networks. Table 6 quanti-
fies this result showing the mean time elapsed since the arrival of
a new external stimulus until the binary pattern associated to the
previous stimulus completely disappears from long-term mem-
ory networks with different topologies. In networks exhibiting
winner-take-all competitions the arrival of an specific but minor
stimulus in the network induces an alternation of activity in the
whole ensemble.

However, in the more regular networks, the mode of com-
petition among external stimuli is not always a winner-take-all
regime. As illustrated in the stimulation episodes pointed out
by the arrows in panels A, B of Figure 7, transient winner-
less competitions (Rabinovich et al., 2001; Afraimovich et al.,
2004) can be established in these networks. Figure 8 shows a
phase diagram depicting the regions where winner-take-all and
winnerless competition regimes emerge in long-term memory
networks of 2500 units with pe = 0.05 as a function of the net-
work topology as given by the rewiring probability parameter
and the value of the intraunit parameter pr . During winnerless
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FIGURE 7 | Equivalent figure to Figure 6, but for equivalent

long-term memory networks with different topologies. These

networks consist of 2500 units with the parameters shown in

Table 5. Again, stimulus A is (1,0,1,0,1) and stimulus B

(1,1,0,1,1). During the stimulation periods, a competition is

established between stimuli A and B. In networks with a high

degree of regular connections (A,B), this can be a winner-take-all

or a winnerless competition. In the more random networks (C,D), it

is always a winner-take-all competition where the activity supported

by the corresponding active stimulus prevails.

TABLE 6 | In long-term memory networks, stimuli survive in the network

until a new stimulus arrives.

Regular SW(10) SW(25) Random

10,477.75± 4500.46 5759.95± 4376.25 3391.66± 1650.48 3226.42± 1,167.10

The table shows the mean time that the long-termmemory networks depicted in Figure 7

need to “forget” a previously detected stimulus. This period is calculated from the begin-

ning of a new stimulation episode to the instant where the level of activity related to the

previous stimulus is equal to zero. Units are dimensionless. Mean data are calculated

considering 20 simulations with different random seed, 5-bit stimuli introduced in the net-

work, stimulated unit and connectivity. The higher the network regularity, the longer the

competition period between external stimuli.

regimes, no stimulus wins the competition and, therefore, both
external stimuli coexist in the network although one of them is
not supported by stimulation. Due to this competition dynamics,
two interesting phenomena can be observed in the more regular
long-term memory networks when the stimulation is over. On
one hand, the persistently sustained stimulus is not necessarily
the injected in the last stimulation episode. Panel A of Figure 7
shows an example of this effect. Although stimulus B arrives in
the last stimulation episode, the stimulus that survives in the
network after the end of the stimulation is stimulus A. On the
other hand, a sustained winnerless competition between external
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stimuli can emerge in the network (this is illustrated above in
Figure 13 for a network receiving nine external stimuli simul-
taneously). Therefore, these networks have the ability to behave

FIGURE 8 | Phase diagram depicting the regions at which the different

competition regimes emerge in networks of 2500 neurons with

pe = 0.05. The x-axis corresponds to probability pr and the y-axis to the

rewiring probability parameter p, i.e., to the network topology. Note that p = 0

corresponds to regular networks and p = 1 to random networks. Label WLC

denotes regions where transient winnerless competitions between external

stimuli can appear in the network. Label WTA denotes regions where the

mode of competition between external stimuli is always a winner-take-all

regime. The region NC corresponds to networks where no competition among

external stimuli takes place.

as a long-term memory simultaneously encoding more than one
stimulus.

The activity movies illustrating the evolving network dynam-

ics give additional insight about the results derived from the level

of activity analysis. When a new stimulation episode starts, the
new stimulus induces the coexistence of different spatio-temporal

patterns with different spatial organization. Figure 9 shows the

evolving patterns generated by four representative examples

of equivalent long-term memory networks during an inter-
stimulation interval. The four sequences start just before the

arrival of stimulus B, in a situation with a high level of syn-
chrony in the network where the prevailing pattern corresponds

to stimulus A (red points). The arrival of stimulus B (second

frame) produces new emerging spatio-temporal patterns, and a
competition among the two external stimuli starts. As Figure 7
shows, this competition depends on the network topology. Snap-
shots of Figure 9 can explain the transient winnerless competi-
tion dynamics observed in the more regular networks, and the
winner-take-all dynamics in the more random ones. In the more
regular networks (panels A, B of Figure 9), the evolving spatio-
temporal patterns have a well-defined and coherent spatial struc-
ture. The clusterization and coherence of these transient patterns
produce well-delimited boundary regions between stimuli A and
B, which potentiates the competition. This improves the ability

FIGURE 9 | Snapshots of activity movies belonging to the networks

depicted in Figure 7. The figure illustrates the evolving spatio-temporal

patterns of activity observed in these networks as a function of the different

modes of competition established between stimuli A and B when a new

in-series stimulation episode starts. Sequences develop in time from left to

right. To better appreciate the different evolving spatial structure of the

patterns, the time interval between frames is different, but always the same in

the four sequences. Neural activity is represented with a color code. Yellow

corresponds to silent neurons, blue to the spontaneous intrinsic activity, red

to stimulus A and green to stimulus B. The arrow in the first frame of each

sequence points out the approximate location of the 2 × 5 stimulated cluster

of neurons. When stimulus B arrives, it propagates through the network.

Then, as the activity related to this stimulus grows, the activity related to

stimulus A diminishes. When a winner-take-all competition occurs (C,D),

stimulus B completely replaces to stimulus A. The higher the regularity of the

network, the longer the transition period between stimuli. When a winnerless

competition is established between stimuli A and B, both stimuli coexist in

the network (A,B).
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of the network to sustain multiple stimuli simultaneously. In the
same way, the winner-take-all competition observed in the more
random networks in Figure 7 is also observed in the snapshots of
Figure 9. Note that the unstructured propagation of stimulus B
makes it quickly replaces stimulus Awithin the network, reaching
the typical fix spatial organization of the pattern.

3.5.2. In-parallel stimulation

In the simulations where multiple external stimuli arrive in par-
allel to the network, we consider a single stimulation episode.
During this time period, all the external stimuli considered in the
experiment are simultaneously introduced in different groups of

neurons. The set of neural fingerprints recognized by the neu-
rons varies in the different experiments, but always consists of
the serial binary patterns used as external stimuli during the
corresponding stimulation period. Results are independent of
the stimulation patterns and of the location of the neurons that
receive the external stimuli.

When stimuli are applied, they start to spread through the net-
work and, again, new collective dynamics emerge in the network
(Figures 10, 11). If we focus on the stimulation period, the same
as in all the simulations described so far, on one hand, the spon-
taneous intrinsic activity (not shown in Figures 10, 11) drops
due to the competition with the activity induced by incoming

FIGURE 10 | Evolution of the activity of four equivalent short-term

memory networks receiving four stimuli in parallel. All of them consist

of 2500 neurons with the parameters shown in Table 5. Stimulus A is

(1,0,0,0,1), B (1, 0,1,0,1), C (1,1,0,1,1), and D (1,1,1,1,1). The network

collective dynamics is the same independently of the serial binary patterns

used as external stimuli. The figure plots the number of neurons following

each stimulus during and after the stimulation period (grayed area). Note that

the spontaneous intrinsic activity is not shown. While the stimulation is

present, a winnerless competition between the four stimuli arises within the

network. When the stimulation ends, since they are not supported by an

active stimulus, the binary patterns associated to the external stimuli

disappear from the network after a reverberation period. As in all the

previously discussed short-term memories, the more regular networks are

able to sustain external stimuli for longer periods when the stimulation is over.
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FIGURE 11 | Figure equivalent to Figure 10, but for four representative

examples of equivalent long-term memory networks of 2500 neurons

with the intraunit parameters shown in Table 5. Stimulus A is

(1,0,0,0,1), B (1, 0,1,0,1), C (1,1,0,1,1), and D (1,1,1,1,1). During the

stimulation period, a sustained winnerless competition emerges in the

network. This consists of an irregular alternation of the level of activity related

to each external stimulus. When the stimulation is over, at least a stimulus

survives in the network.

stimuli and, on the other hand, the total level of activity in the
network reaches a steady level. However, as now multiple simul-
taneously active stimuli support their generation, coexisting pat-
terns encoding the different external stimuli propagate through
the network and compete between them. The same as in the in-
series stimulation case (Section 3.5.1), the competition dynamics
among the coexisting patterns of activity is the basis of the encod-
ing of multiple stimuli. While the stimulation is present, now,
it always arises a winnerless competition consisting of irregular
intervals where the overall activity within the network is dis-
tributed in turn between the different external stimuli. In this
sense, none of the stimuli neither prevails over the others nor
reaches a steady emission level during the stimulation period.
Depending on the connectivity, different winnerless regimes can
arise in the network. Note that when the network is in-series

stimulated, winnerless competition dynamics only arises in the
more regular topologies. The activity movies illustrate the differ-
ent spatial organization of the coexisting patterns of activity as a
function of the network topology, which allows us to understand
the different winnerless regimes. Snapshots of the evolution of the
network activity of four equivalent long-term memory networks
with different topologies are shown in Figure 12. When the net-
work has a high degree of regular connections, coherent spatio-
temporal patterns are formed due to the propagation of stimuli
to close neighbors. In these networks, there are well-defined clus-
ters of neurons that follow each stimulus and, therefore, it is
established a winnerless competition where each external stim-
ulus keeps a nearly constant level of activity. If one stimulus
disappears from the network, new spatio-temporal patterns fol-
lowing it appear shortly after due to the stimulation. Conversely,
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FIGURE 12 | Snapshots of four representative activity movies of

equivalent long-term memory networks with different network

topologies receiving nine 9-bit stimuli in parallel. Similar patterns of

activity are obtained in short-term memory networks. Sequences

develop in time from left to right. To better appreciate the spatial

organization of the patterns, the time interval between frames in the

sequence is variable, but always the same in the four sequences.

Neural activity is represented with a color code. In this case, yellow

corresponds to silent neurons or neurons emitting the spontaneous

binary pattern. The rest of colors correspond to a different external

stimulus. Note that we do not distinguish between silent neurons and

neurons emitting the spontaneous pattern to simplify the graphical

representation and better appreciate the evolution of the patterns. The

figure shows the characteristic spatial organization of the patterns as a

function of the network topology. In the more regular networks (A,B),

several coherent spatio-temporal patterns coexist within the network.

Conversely, in the more random networks (C,D), the number of

coexisting patterns in a given time step is lower.

in networks with a high level of random connections, the pres-
ence of connections between distant neurons produces patterns
of activity with a lower spatial structure and a faster propagation
velocity. These two features induce a competition between the
stimuli induced activity that makes a few stimuli (in the exam-
ples of Figures 10, 11, only one or two) transiently prevail over
the others. This translates into a winnerless competition regime
consisting of the alternation of irregular cycles where the pre-
ferred pattern in the network follows different stimuli. Note how
in the snapshots of panels C, D in Figure 12, the prevailing col-
ors in each frame change as time evolves, while in panels A, B the
color distribution is homogeneous. The lower the randomness,
the higher the number of coexisting spatio-temporal patterns
within the network. Therefore, connections to close neighbors
increase the ability of the network to sustain multiple incoming
stimuli simultaneously. Table 7 corroborates this result by calcu-
lating the mean number of coexisting stimuli in equivalent long-
term memory networks during an in-parallel stimulation where
nine stimuli are simultaneously applied.

Finally, results observed in short-term memory networks
when the stimulation is over are equivalent to those obtained
during in-series stimulation. In long-term memory networks,
a winner-take-all competition usually occurs and the reverber-
ating patterns follow one of the external stimuli (Figure 11).

TABLE 7 | Mean number of stimuli encoded during the stimulation period

in the networks shown in Figure 12 when they receive nine simultaneous

9-bit stimuli.

Regular SW(10) SW(25) Random

7.77± 0,95 6.68± 1,18 4.51± 1, 19 4.29± 1,11

We consider that the network encodes a stimulus when the number of neurons that follow

it is greater than ten (i.e., the number of stimulated cells). Mean data are calculated con-

sidering 20 different simulations with different random seed, external stimuli introduced in

the network and connectivity.

Nevertheless, in some simulations of regular long-term mem-
ory networks a sustained winnerless competition between two or
three stimuli is established in the network beyond the stimulation
period. Figure 13 illustrates this encoding mechanism in a long-
term memory network that receives nine different stimuli. This
result emphasizes the increasing ability to encode multiple simul-
taneous stimuli that the presence of regular connections provides
to the neural network.

4. Discussion

The idea that neural systems can encode information in the
precise timing of spikes has attracted increasing attention over
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FIGURE 13 | Evolution of the activity of a regular long-term memory

network where nine external stimuli are injected in parallel. Each trace

corresponds to a different external stimulus using the same color code as in

Figure 12. Grayed area identifies the stimulation period. This figure illustrates

how connections to close neighbors promote the competition between the

activity induced by the different external stimuli. This implies that these

networks are able to encode a larger number of stimuli simultaneously, even

after the stimulation period when they are not supported by an active stimulus.

the last years. The presence of precise firing patterns in different
neurons has been reported in several vertebrate and invertebrate
neural circuits (Elson et al., 1999; Reinagel and Reid, 2000, 2002;
Chi and Margoliash, 2001; Hunter and Milton, 2003). Experi-
mental evidence demonstrates that some of these precise tem-
poral structures allow the discrimination of neural signals. For
instance, the bursting activity of some neurons belonging to very
different animals displays intraburst neural signatures in the form
of cell-specific interspike interval distributions (Szücs et al., 2003,
2005; Garcia et al., 2005; Campos et al., 2007; Zeck and Masland,
2007). Similarly, some neural systems can display specific fir-
ing patterns associated to behavioral or functional states (Klaus-
berger et al., 2003; Somogyi and Klausberger, 2005; Kaping et al.,
2011). However, although there is an increasing amount of new
results on the strategies of information processing used by neural
systems (VanRullen et al., 2005; Rabinovich et al., 2006; Kumar
et al., 2010), the existence of characteristic features in an indi-
vidual neural signal allowing a reader to discriminate its inputs
has not been investigated in great detail. This kind of informa-
tion processing can be a powerful strategy for neural coding.
Model simulations support the hypothesis that intraburst neu-
ral signatures could be part of a multiplexed code where the
neuron identity could be transmitted together with the circum-
stantial message (Latorre et al., 2006, 2007). Readers of these
signals can take advantage of these multiple simultaneous codes

and process them one by one or simultaneously to perform dif-
ferent tasks (Latorre et al., 2006; Baroni et al., 2010). Thus, if a
neural system is able to recognize different neural fingerprints
in its input signals and adjust its behavior to them, it could dis-
criminate or contextualize their inputs as a function of general
aspect of the signal like specific interspike frequencies via reso-
nance (Izhikevich et al., 2003; ), but also as a function of a specific
emitter or task. This is a very desirable ability in multifunctional
systems.

This work presents a simulation study showing that a simple
neural network model composed of neurons that are able to emit
and recognize neural fingerprints can detect specific patterns in
its input signals and encode these stimuli in its collective dynam-
ics. The processing and encoding ability of the network is related
to the competition established between the spontaneous intrinsic
activity and/or the activity evoked by the arrival of external stim-
uli. This competition may change from winner-take-all to win-
nerless regimes. When the level of spontaneous intrinsic activity
is too high, this wins the competition and external stimuli do not
propagate through the network, which avoids the generation of
spatio-temporal patterns. This provides a “reset” mechanism to
the network. Only by increasing the level of spontaneous intrinsic
activity, the network stops processing and the previously detected
stimuli almost instantaneously disappear from the network. The
coexistence of stimuli in the network is related to the different
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clusterization and coherence of the transient spatio-temporal
activity generated in response to external input. When a winner-
take-all competition occurs between the spatio-temporal patterns
of activity evoked by different stimuli, one stimulus prevails over
the others and only its corresponding patterns travel through the
network (globally or locally). On the other hand, when a win-
nerless competition emerges in the network, the total encoding
capacity of the network is alternately distributed among different
stimuli. The main factors governing the mode of competition are
the level of spontaneous activity and the permeability to exter-
nal stimuli. Both are driven by intraunit parameters (pe and pr ,
respectively). However, changes in the collective dynamics are
also observed as a function of the network topology. The presence
of random connections has a similar effect to increase the perme-
ability to external stimuli. These connections facilitate the detec-
tion of specific external stimulus in the sense that they increase
the stimulus propagation velocity and the level of activity related
to stimuli. Networks with a more regular topology (connections
with close neighbors) usually benefit the competition between
external stimuli. This implies that these networks are able to
encode a larger number of stimuli simultaneously.

When the stimulation is over, the same competition
regimes emerge between the coexisting spatio-temporal patterns
following external stimuli. The only difference is that, now, these
patterns are not supported by stimulation and, therefore, when
a stimulus looses the competition with other stimuli or with the
spontaneous intrinsic activity, it completely disappears from the
network. In this way, the patterns of activity induced by external
stimuli can almost instantaneously disappear from the network
when the stimulation is over. This can be a desirable behavior for
some systems. However, the more interesting situations are those
where the network displays short-term or long-term memory
abilities. In short-term memory networks the stimulus induced

activity transiently reverberate within the network. Conversely,
in long-term memory networks, the stimuli lead the network to

a new stable state where the reverberating patterns related to
stimuli becomes a network effect. Then, the stimulus persistently
survives in the network until a new stimulus arrives. A short-term
memory can become a long-term memory only by increasing the
neurons’ permeability to external stimuli, and vice versa. In the
same way, increasing the number of connections to close neigh-
bors benefits short-term memory mechanisms; while increasing
the presence of random connections potentiates the long-term
memory mechanisms.

The results reported in this paper indicate that informa-
tion processing based on the identification of specific neural
fingerprints can be a plausible and flexible strategy for neu-
ral systems. Different complex dynamic regimes are observed
in a simple network of neurons that communicate by exchange
of neural fingerprints. Intraunit parameters affecting the indi-
vidual information processing and the network topology can
tune the self-organizing properties of the network. This indi-
cates the great adaptability of the network to different modes
of operation and, although not addressed in this paper, the
large flexibility to implement both synaptic and subcellular plas-
ticity (Davis, 2006). These results call for more realistic mod-
els for the activity of individual neurons, which can intro-
duce a higher information processing capacity in the net-
work.
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