
ORIGINAL RESEARCH
published: 24 March 2015

doi: 10.3389/fncom.2015.00036

Frontiers in Computational Neuroscience | www.frontiersin.org 1 March 2015 | Volume 9 | Article 36

Edited by:

Cristina Savin,

Institute of Science and Technology

Austria, Austria

Reviewed by:

Jochen Triesch,

Johann Wolfgang Goethe University,

Germany

Paul Miller,

Brandeis University, USA

Florentin Wörgötter,

University Goettingen, Germany

*Correspondence:

Witali Aswolinskiy,

Institute of Cognitive Science,

University of Osnabrück,

Neuroinformatics Research Group,

Albrechtstr. 28, 49069 Osnabrück,

Germany

waswolinskiy@uos.de

†Present Address:

Witali Aswolinskiy,

CoR-Lab N-128, Bielefeld University,

Universitaetsstr. 25, 33615 Bielefeld,

Germany

Received: 17 November 2014

Accepted: 04 March 2015

Published: 24 March 2015

Citation:

Aswolinskiy W and Pipa G (2015)

RM-SORN: a reward-modulated

self-organizing recurrent neural

network.

Front. Comput. Neurosci. 9:36.

doi: 10.3389/fncom.2015.00036

RM-SORN: a reward-modulated
self-organizing recurrent neural
network
Witali Aswolinskiy *† and Gordon Pipa

Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany

Neural plasticity plays an important role in learning and memory. Reward-modulation of

plasticity offers an explanation for the ability of the brain to adapt its neural activity to

achieve a rewarded goal. Here, we define a neural network model that learns through

the interaction of Intrinsic Plasticity (IP) and reward-modulated Spike-Timing-Dependent

Plasticity (STDP). IP enables the network to explore possible output sequences and

STDP, modulated by reward, reinforces the creation of the rewarded output sequences.

The model is tested on tasks for prediction, recall, non-linear computation, pattern

recognition, and sequence generation. It achieves performance comparable to networks

trained with supervised learning, while using simple, biologically motivated plasticity

rules, and rewarding strategies. The results confirm the importance of investigating the

interaction of several plasticity rules in the context of reward-modulated learning and

whether reward-modulated self-organization can explain the amazing capabilities of the

brain.

Keywords: reward-modulated STDP, intrinsic plasticity, recurrent neural networks, self-organization, plasticity,

hebbian learning

Introduction

The brain is a complex, self-organizing system, where a multitude of neural plasticity mecha-
nisms shape learning, and memory. These plasticity mechanisms are, in turn, shaped by neuro-
modulators, which are often part of a reward system (Pawlak et al., 2010). In vivo experiments
showed that rewarding behavior can change synapses and neurons selectively to achieve a rewarded
goal (Fetz, 1969; Ahissar et al., 1992; Sigala and Logothetis, 2002). Several models of reward-
modulated recurrent neural networks are able to partially replicate these experiments and solve
simple tasks (Izhikevich, 2007; Legenstein et al., 2008; Soltoggio and Steil, 2013; Hoerzer et al.,
2014). In these models, correct outputs are rewarded through the application of STDP or a heb-
bian learning rule, and noise is used to explore possible output sequences. Noise as a part of a
model, however, makes the model non-deterministic and introduces a random, transient com-
ponent that can counteract the learning of causal relations by STDP. Here, we propose an alter-
native to combine deterministic behavior and the ability to explore states for reward modulated
learning. For this, either deterministic chaos or other complex deterministic behavior may be
used. Here, we study complex behavior that is introduced by Intrinsic Plasticity (IP)—neuronal
plasticity associated with homeostasis (Turrigiano et al., 1998; Desai et al., 1999). We intro-
duce a simple binary neural network model, which learns through interaction of IP and reward-
modulated STDP. Exploration of the output state space is carried out through IP and not noise.

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncom.2015.00036
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:waswolinskiy@uos.de
http://dx.doi.org/10.3389/fncom.2015.00036
http://www.frontiersin.org/journal/10.3389/fncom.2015.00036/abstract
http://community.frontiersin.org/people/u/193187
http://community.frontiersin.org/people/u/4053

Aswolinskiy and Pipa RM-SORN

The Reward-Modulated Self-Organizing Recurrent Network
(RM-SORN), model is based on SORN: Self-Organizing Recur-
rent Network (Lazar et al., 2009). SORN consists of a recur-
rent layer with binary thresholded neurons and a readout layer.
In the recurrent layer three plasticity mechanisms are applied:
IP, Synaptic Normalization (SN) and Spike-Timing-Dependent
Plasticity (STDP). The readout layer is trained with linear regres-
sion. The network is trained in two phases: in the first phase the
recurrent layer processes the input with ongoing plasticity. In the
second phase plasticity is disabled, the recurrent layer processes
the input again, and the neuron activations serve to train the
readout layer. Lazar showed, that all three plasticity mechanisms
are necessary to create an effective representation of the input in
the recurrent layer and that these representations allow SORN
to outperform randomly initialized non-plastic networks. STDP
forms the internal representations, IP activates silent neurons
and dampens neurons with too high activity, and SN decorrelates
neurons preventing seizure-like activity.

SORN was successfully applied to tasks for prediction (Lazar

et al., 2009), recall and non-linear computation (Toutounji and
Pipa, 2014) and artificial grammar learning (Duarte et al., 2014).

The main advantage of SORN is it’s simplicity and the bio-

logical plausibility of the plastic recurrent layer. The biologi-
cal plausibility is further underlined by the findings of Zheng

et al. (2013), who added two plasticity mechanisms to the recur-

rent layer: structural plasticity and inhibitive STDP. The authors
observed a log-normal weight distribution of the synaptic weights

in the recurrent layer matching experimental findings. Addition-
ally, the patterns of fluctuation of the weights were consistent
with the dynamics of dendritic spines found in rat hippocampus.

SORN offers the possibility to study plasticity mechanisms
similar to those in the brain in simple, manageable networks. The

FIGURE 1 | The Reward-Modulated Self-Organizing Recurrent Neural

Network (RM-SORN). Excitatory units are depicted as red, inhibitory units

as blue. The arrows symbolize directed connections between units.

Excitatory units are sparsely interconnected and excitatory and inhibitory

units are fully connected between each other. Only the excitatory units project

to the output layer. Input and output are sequences of predefined symbols.

biologically not plausible part of SORN is the linear regression
readout, which is replaced here by a plastic, non-recurrent,
reward-modulated neuron layer.

Materials and Methods

Both SORN and RM-SORN consist of a recurrent layer with
three plasticity mechanisms and a readout or output layer.
However, whereas in SORN the output is trained with linear
regression, in RM-SORN, the weights from the recurrent layer
to the output layer are plastic and adapted through reward-
modulated STDP. The model allows, but doesn’t prescribe, the
application of reward-modulated STDP to the recurrent layer.
In this paper, we test both versions, i.e., with and without
reward-modulated STDP in the recurrent network, and explain
for which conditions reward-modulated STDP applied to the
weights in the recurrent network improves the computational
performance.

Network Model
Figure 1 depicts the model structure. Both layers consist of
binary threshold neurons. The first layer is recurrent and con-
sists of NE excitatory and NI inhibitory neurons. The connec-
tivity between the excitatory neurons is sparse (5–10%) and full
between excitatory and inhibitory neurons. Self-connections are
not allowed. The ratio of excitatory to inhibitory neurons is 5:1.
The second layer is the output or readout layer with neurons that
are not interconnected. In tasks where the network has to gener-
ate sequences, a feedback connection from the output layer to the
recurrent layer is necessary. A random subset of the excitatory
units in the recurrent layer receives the input: for each symbol
of an input sequence, e.g., “1234,” a different subset of the units

Frontiers in Computational Neuroscience | www.frontiersin.org 2 March 2015 | Volume 9 | Article 36

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Aswolinskiy and Pipa RM-SORN

receives an input of 1 and the rest 0. The units are binary with 2

being the heaviside step function, applied independently to every
neuron:

xi(t + 1) = 2

NE
∑

j

w EE
ij xj(t)−

NI
∑

k

w EI
ik yk (t)

+ui (t) − TE
i (t)

 (1)

yi (t + 1) = 2

NE
∑

j

w IE
ij xj(t)− TI

i

 (2)

oi (t + 1) = a

NE
∑

j

wOE
ij xj(t)− TO

i (t)

 (3)

Neurons in the first layer are updated according to (1) and (2)
while neurons in the output layer are updated according to (3).
x and y represent the activity of the excitatory and inhibitory
neurons in the recurrent layer and o the activity of the output
neurons. a is the activation function for the output neurons.
With several output neurons, the activation function is winner-
takes-all (WTA), with one output neuron, the heaviside step
function 2 is used. wAB is the weight matrix with weights from
B-units to A-units, u is the input and TA is the threshold for
the A-units. (Hence, wOE are the weights from the recurrent to
the output layer and TO are the thresholds for the output neu-
rons). Initially, the weights are drawn from a normal distribu-
tion, but change through application of three plasticity rules: IP,
SN, and reward-modulated Spike-Timing-Dependent Plasticity
(rm-STDP).

Plasticity Rules
IP adapts the thresholds so that on average each neuron has the
firing rate µIP:

△TE
i (t)= ηIP(xi(t)−µIP) (4)

The threshold is increased when the unit was active and
decreased when the unit was inactive, leading to an asymptotic
fix point of the average firing rate µIP. Thereby, IP activates
neurons, which would be otherwise inactive and regulates down
neurons which fire too often, enforcing the given average fir-
ing rate. During the experiments, in the recurrent layer, µIP

was set to values between 0.05 and 0.25 depending on which
value performed best. In the output layer, µIP was set per neu-
ron to correspond to the expected occurrence probability of
the symbol represented by the neuron. ηIP is the learning rate
for IP.

STDP strengthens the connection from xj to xi when xj
was active before xi (xj “causes” xi) and weakens it, when
xj was active after xi. The main difference to SORN is
the modeling of the output layer as another plastic neu-
ron layer and the reward-modulation of STDP with the
modulationm:

△wEE
ij = mr∗ηSTDP

(

xj(t − 1)x
i
(t) − xj (t) xi(t − 1)

)

(5)

△wOE
ij = mo∗ηSTDP

(

xj (t − 1) o
i
(t)

)

(6)

ηSTDP is the learning rate for STDP. mr and mo are the modula-
tion factors for the recurrent and the output layer, respectively.
During the simulations, mr was either set to one (no modula-
tion) or to the same value as mo. mo is determined according
to a rewarding strategy, which is a function of the reward r.
Both modulation and reward can be positive, negative or zero.
Depending on the task, different modulation strategies can be
chosen formo.

After application of STDP the incoming weights to a neuron
are scaled to sum up to 1:

wij(t)=
wij(t)

∑

j wij(t)
→

∑

j

wij(t)= 1 (7)

The relative strength of the synapses remains the same.

Reward-Modulation Strategies
In tasks with known target values (which are all tasks except the
generation task), the reward was set to 1 for correct outputs, and
either 0 or −1 for wrong outputs, depending on which setting
led to the highest performance. Negative reward—punishment—
can lead to Anti-STDP. In the generation task, where the network
has to generate a sequence of symbols without input, the network
is rewarded if it produces a part of the target sequence, starting
from the beginning of the sequence. The reward is proportional
to the length of the correctly generated sequence part. For exam-
ple, let the network be rewarded for generation of the sequence
“1234.” If the network generates “1234,” it receives the full reward
of unit 1 at the time when it generates the last state “4.” Anal-
ogous, it receives the reward of ¾ for the sequence “x123,” 2/4
for the sequence “xx12” and only ¼ for “xxx1” (here “x” repre-
sents any symbol or state). An exception is made for “xx11”: this
combination is punished to prevent the generation of the trivial
sequence of repetitions of “1.” For any other sequence, no reward
is given.

The reward-modulation strategy (M) determines the modula-
tion factorm and therefore, whether STDP is applied, suppressed
or inversed. The network can be modulated either directly by (8)
or the modulation can be computed from the previous rewards.
Particularly interesting is here the hypothesis, that dopamine
neurons encode reward prediction errors. (9) defines a simple
estimate of the reward prediction error.

M0 : m(r, t) = r(t) (8)

Mk : m(r, k, t) = r(t)− r(t, k), k ∈ (1, 5, 10, 20) (9)

r is computed as the moving average of the previous k rewards.
With window size k = 1, the modulation factor is the current
reward minus the previous reward. The k-values were defined
ad-hoc and selected for each task independently with a param-
eter grid search. The selected strategies for the tasks and other
parameters are listed in the supplementary material.

Frontiers in Computational Neuroscience | www.frontiersin.org 3 March 2015 | Volume 9 | Article 36

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Aswolinskiy and Pipa RM-SORN

Training and Testing
The network is trained in two phases:

1. In tasks with training data, the network is reward-modulated,
while processing 20,000 steps of training data. In the genera-
tion task, the network output is fed back as input. Every 100
steps, the network is validated on 500 steps of validation data.
After 20,000 steps, 200 networks are evaluated and the net-
work with the best validation performance is chosen for the
next phase.

2. Step 1 is repeated while the plasticity in the first layer is shut
off, allowing to fine-tune the weights to the output layer.

After this composed training phase, the network is tested on
10,000 steps of test data or, in generation tasks, is used as a
generative model to generate the desired output for 10,000 steps.

The evaluation of the network at different plasticity times
is essential, since the performance of the networks fluctuates
strongly during reward-modulated plasticity.

During the simulations, the network size consisted of at
least 100 and at most 400 excitatory neurons. The number of
inhibitory neurons was always a fifth of the excitatory neurons,
as in the original SORN. From here on, the number of excita-
tory neurons will be referred to as the size of the network or
simply N.

Model Evaluation
The performance of the model was compared to SORN, static
(non-plastic) supervised trained networks and random networks.
In SORN networks, the 20,000 steps of training data were pro-
cessed by the plastic recurrent layer. After every 1000 steps,
the weights were frozen, the network processed the 20,000
steps of training data and the readout weights were trained on
the resulting network states. Thus, 20 intermediary networks
were created, with the first network being subjected to plastic-
ity for 1000 steps and the last network for 20,000 steps. The
network that performed best on 500 steps of validation data
was chosen for the performance evaluation on the test data.
Static networks were created by taking the best SORN net-
work, shuffling the weights 20 times and choosing the network
that performed best on the validation data. Random networks
were trained in the same manner as RM-SORN, but with the
reward-modulated STDP-weight updates randomly distributed
across all eligible weights at each step. The eligible weights
in the recurrent layer are the initially non-zero weights in
the sparse connectivity matrix. (Initially non-zero weights can
become zero through STDP). From the recurrent layer to the
output layer all weights are eligible. The performance difference
between the RM-SORN and “random” networks is the difference
between learning through reward-modulated STDP and lucky
guessing.

Notably, during training of a network, 200 RM-SORN, but
only 20 SORN and static-networks were evaluated. This discrep-
ancy is due to the high computational cost of the linear regression
in SORN and the fact, that SORN achieves in most tasks almost
perfect performance - more frequent evaluation is not necessary.
In the pattern recognition task, where RM-SORN was better, the
same number of networks (200) was evaluated to even the odds.

All results were averaged over ten data sets and ten net-
works per data set—the procedure described above was applied
to each of the 100 network/data set combinations. In the
motion generation task, which has no input, 100 networks were
evaluated.

Since the weights in RM-SORN are positive, a similar restric-
tion was imposed onto the supervised training—instead
of least squares, non-negative least squares method
(Lawson and Hanson, 1995) was used.

Task Descriptions
The model was evaluated on eight different tasks, including those
in Lazar et al. (2009) and Toutounji and Pipa (2014).

In the counting task (Lazar et al., 2009), the network receives
random alternations of two words “abbb...c” and “eddd...f ” with
n + 2 letters per word and n b’s or n d’s in a word. The goal is
to predict the next letter. In order to correctly predict the last
letter in the word, the network has to “count” the b’s and the
d’s. Thus, the first layer needs to learn separable representations
(linearly separable when using a simple linear readout, as we use
here) of the input conditions a, b1, b2,... bn, e, d1, d2,..., dn. In the
output layer, these representations must be mapped to the next
letter in the word: a→b, b1→b, b2→b ... bn− 1→b bn→c and
similar for e’s and d’s. Given the random alternation of words,
the first letter of a word is unpredictable and therefore excluded
from the performance measure. We use two kinds of perfor-
mance measures. Firstly, the overall performance that measures
the match of all letters of the entire sequence, with the excep-
tion of the excluded first letter of each word. Secondly, we mea-
sure the counting performance that is the accuracy of predicting
the last letter in a word. This performance reflects the capabil-
ity of the network to retain and use information from previous
inputs.

As a second task, we use motion prediction (motivated by
Lazar et al., 2009). In the motion prediction task, the network
receives random renewal sequences of the two words “123...n”
and “n....321.” These sequences can be interpreted as movement
of an object in one dimension from left to right and back, that
is sensed by a line array of sensors. Therefore, the task was
initially set up to mimic the learning of motion-specific visual
receptive fields (Lazar et al., 2009). Comparing the counting
task and the motion prediction task highlights their difference
in respect to subsequence learning of the individual words. For
the motion prediction task, all subsequences (e.g., 12, 23, 34, . . .)
of the word “123...n” can be learned independently. This is not
the case in the counting task, where, for example, the input
condition b3 (“abbb”) cannot be learned before b2 (“abb”) is
learned.

As a third task, we used the occluder task (Lazar et al., 2009),
that is a combination of the counting and motion task. With
n = 8, the input consists of random alternations of four words:
“12345678,” “87654321,” “19999998,” and “89999991.” As in the
motion prediction task, they can be interpreted as the movement
of an object sensed by a line of sensors. To model the occlu-
sion of part of the sensors, two additional words “19999998”
and “89999991” are used. Here, the symbol “9” represents the
lacking information about the object position when the object

Frontiers in Computational Neuroscience | www.frontiersin.org 4 March 2015 | Volume 9 | Article 36

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Aswolinskiy and Pipa RM-SORN

is occluded. Note that because the first letter occurs more than
once, the second letter in a word is unpredictable, and therefore
excluded from the performance measure.

As a fourth task, we measure the memory capacity (corre-
sponds to the RAND task in Toutounji and Pipa, 2014). Here,
the network receives a random sequence of symbols and has to
reproduce the symbol from n steps back. The number of symbols
used here is 6.

As a fifth task, we use the Markov-85 task (Toutounji and
Pipa, 2014). For this task, we generate an input sequence that
consists of symbols generated by a first order Markov chain. The
chain has six states: 1, 2, 3, 4, 5, 6. The transition probabilities for
1→2, 2→3, 3→4, 4→5, 5→6, and 6→1 are p = 0.85. All other
transition probabilities are p = 0.03. The goal of the task is either
to recall the inputs from n steps back or to predict the state n steps
in the future.

As a sixth task, we use the parity task (Toutounji and Pipa,
2014). Here, the network receives a series of binary values and
has to compute the parity for the current input and n - 1 previous
inputs. This task tests the capability of the network for non-linear
computation.

As a seventh task, we designed a sequence or motion

generation task, where the network has to generate either
“123...n” or “n....321.” This is the only task, where the net-
work receives no input. The number of symbols, and thus
input dimensions, is n, and the longer the sequence, the harder
the task. Similar to the motion prediction task, this task can
be interpreted as the movement of an object in one dimen-
sion. More generally, success in this task shows that the net-
work can generate an arbitrary symbol sequence with the same
symbol distribution as in the motion words. The reinforce-
ment of two words instead of one is more difficult, because
the same output symbol can be rewarded for two different
reasons.

The last task is a pattern recognition task, designed to high-
light the effect of reward-modulated changes of synaptic weights
in the recurrent network. Here, the network receives random
alternations of the four words “1234,” “4321,” “4213,” “2431” and
has to recognize the word “1234”: the output for every letter in
this word has to be 1, and for all others, 0. In this task only one
output neuron was used.

Results

The performance measures for the counting, occluder,
motion prediction and motion generation tasks are shown
in Figure 2. The results for the Markov-85, memory capac-
ity, parity, and pattern recognition tasks are shown in
Figure 3. In most tasks, RM-SORN achieves high accuracy,
and is only slightly worse than SORN. This is remarkable,
considering that RM-SORN learns in a self-organized man-
ner through interaction of plasticity mechanisms, while
SORN learns through a supervised, mathematically derived
algorithm.

Reward-modulation of the recurrent layer improved perfor-
mance only in the pattern recognition task: it allowed RM-
SORN to outperform SORN for small network sizes. In the other

tasks, reward-modulation of the recurrent layer didn’t improve
performance and was not applied during the experiments.

Prediction, Recall and Non-Linear Computation
In the counting task, RM-SORN achieves a high overall perfor-
mance (Figure 2A) in the range 95–100% and has a counting
performance (Figure 2B) in-between static and SORN networks.
Higher n increases the difficulty for the prediction of the last let-
ter, as the network needs to remember more of the past inputs,
but reduces the overall difficulty of predicting the other letters,
which are either b’s or d’s. A system that just produces “b” when
it sees “a” or “b” and “d,” when it sees “e” or “d” can achieve
a high accuracy without being able to count—this happens in
the random networks, which achieve, for example, 85% accuracy
for n = 20. The difference between static and SORN networks
is due to improvement of the representational capability of the
recurrent layer through unmodulated plasticity.

The performance of RM-SORN in the occluder task
(Figures 2C,D) is worse, due to the higher number of input con-
ditions, but the task can still be solved with high accuracy for
n ≤ 8 and good overall accuracy for n > 8.

In the motion prediction task (Figure 2E), high accuracy can
be achieved until very high n—the network can learn many dif-
ferent input condition mappings. Random networks achieve a
performance slightly above the chance level of 1/n for higher n.

Remarkable is the high accuracy of RM-SORN in the motion
generation task (Figure 2F), where the network never receives
any input. These results will be discussed in more detail in the
next section.

The performance in the memory capacity task (Figure 3A) is
similar for static, SORN and RM-SORN networks: high for low
n and low for higher n, hitting the chance level of 1/6 in the end.
Since the input is random, learning of effective representations
through STDP in the recurrent layer is not possible, and static
and SORN networks have similarly low network memory. RM-
SORN stays slightly behind static and SORN networks for higher
n, which was also observed in the other tasks.

The Markov-85 task (Figure 3B) offers a different picture—
static, SORN and RM-SORN networks feature high performance,
also for high negative n (recall—corresponds to positive n in the
memory capacity task). The structure in the input allows an effi-
cient representation in the recurrent layer and also a more effi-
cient mapping of the representations in the output layer. The
performance for prediction (positive n) is lower, since the max-
imal achievable performance declines exponentially with each
step, because of the stochastic nature of the input sequences.

The parity task (Figure 3C) offers a picture similar to the
memory capacity task, since its input is also unstructured.
Nevertheless, the high performance of RM-SORN for small
n demonstrates the capability of the model for non-linear
computation.

In conclusion, RM-SORN achieves high performance in all
tasks and is in most tasks in-between SORN and static networks.
For complex tasks (high n), the performance deteriorates more
than in SORN. A more detailed analysis of the motion genera-
tion and the pattern recognition task (Figure 3D) follows in the
next sections.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 March 2015 | Volume 9 | Article 36

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Aswolinskiy and Pipa RM-SORN

FIGURE 2 | Performance comparison in the counting (A,B), occluder

(C,D), motion prediction (E), and motion generation task (F). Varied are

the task difficulty n and the network size N. Shown is the average

performance in percent over 10 data sets with 10 networks per data set. In

case of motion generation, which has no input, the average performance of

100 networks is shown. Error bars indicate standard deviation.

Pattern Recognition
In this task, RM-SORN achieved a higher performance than
SORN, especially for small network sizes. The results are
shown in Figure 3D. The best average performance of 97.48%
was achieved with a network with only 30 excitatory neu-
rons. Static and SORN networks of this size stay below the
90%-mark.

The reason for the better performance of RM-SORN is
the reward-modulation of the recurrent layer. In order to
recognize the target word, only the representations of parts
of the target word are necessary, and all other symbol
combinations can be ignored. SORN tries to create represen-
tations of all occurring symbol combinations and has there-
fore less memory for each individual combination. This leads

Frontiers in Computational Neuroscience | www.frontiersin.org 6 March 2015 | Volume 9 | Article 36

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Aswolinskiy and Pipa RM-SORN

FIGURE 3 | Performance comparison in the memory capacity (A),

Markov-85 (B), parity (C), and pattern recognition task (D). In the

pattern recognition task, the network size N was varied. In the other tasks,

the task difficulty n was varied with N = 100. Shown is the average

performance over 10 data sets with 10 networks per data set. Error bars

indicate standard deviation.

to a poor performance with small networks. RM-SORN, on
the other hand, is only rewarded if it recognizes the tar-
get word, and its recurrent layer is plastic only during
this time—it learns to represent parts of the target word
exclusively.

Figure 4 visualizes the selectivity of neurons in the recurrent
layer for static, SORN and RM-SORN networks with 30 neurons.
For all two-symbol input sequences that occurred during testing,
the probability of a neuron to spike was estimated by counting
the occurred spikes. In static and SORN networks, neurons have
no preferred input stimuli. The selectivity for partial sequences
“43” and “21” in SORN is slightly higher than in static networks,
because both occur in two patterns, while the other combina-
tions occur only in one. In RM-SORN, neurons mostly encode

the parts of the target word (“12,” “23,” “34”), which allows for
a simple and effective mapping to the output neuron and a high
performance.

The pattern recognition task is also the only task, where static
networks perform better then SORN networks. This is due to the
training procedure, as explained in section Model Evaluation: in
the pattern recognition task, static networks were created by shuf-
fling the SORN weights and taking the best out of 200 networks
(in other tasks, out of 20 because of the computational load).
While all intermediary evaluated SORN networks try to map
all input conditions equally, some static networks, by chance,
better represent the target word parts. Thus, the best static net-
work can achieve a better performance then the best SORN
network.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 March 2015 | Volume 9 | Article 36

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Aswolinskiy and Pipa RM-SORN

FIGURE 4 | Neuron selectivity in the recurrent layer for the pattern recognition task with 30 neurons. Shown is the probability of a neuron to spike for each

possible two-symbol input sequence. For example, the 30th neuron in RM-SORN (C) is activated only by the sequence “12.” Static (A) and SORN (B) are less selective.

Motion Generation
The performance is computed as the percentage of symbols that
belong to a target word. Despite rewarding both words, for n > 4
the network learns to generate only one word. The performance
results are shown in Figure 2F. The performance of RM-SORN
is impressive, since, in contrast to SORN, which learns with
teacher-forcing (Jaeger, 2001), RM-SORN does not receive any
external teaching signal, except the reward, and is still capable of
generating the desired behavior.

Figure 5 visualizes the activity in the recurrent and out-
put layer during 100 steps of reward-modulated plasticity at
different time points during training. In the beginning, the
recurrent and output activity is almost constant and has no
resemblance to the target words “12345678” and “87654321.”

Then, reward-modulated STDP adapts the output weights,
and through feedback, changes the dynamics in the recurrent
layer. As can be seen from the output activity in Figure 4B,
the network generates alternately “123” and “876”—the begin-
nings of the target words. After an additional 5000 steps
of reward-modulation, the network settles on the generation
of “87654321”.

Exploration during Motion Generation
In the motion generation task, exploration in the out-
put layer corresponds to the production of different out-
put sequences. Figure 6 visualizes the extent of exploration
during 20,000 steps of training. Shown is the number
of unique output sequences of different lengths in the

Frontiers in Computational Neuroscience | www.frontiersin.org 8 March 2015 | Volume 9 | Article 36

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Aswolinskiy and Pipa RM-SORN

FIGURE 5 | Neural activity during reward-modulated learning in the

motion generation task with n = 8 and N = 100. The narrow tile

visualizes the spiking activity of the eight output neurons and the wide tile the

activity of the 100 neurons in the recurrent layer. Neuron i allocates the i-th

row of the tile. In the output layer the i-th neuron represents the i-th output

symbol. A diagonal in the output tile corresponds therefore either to

“1234568” or “87654321.” (A) shows the activity from steps 500 to 600, (B)

from 5000 to 5100 and (C) from 10,000 to 10,100.

previous 100 steps, which don’t contain any parts of the
target words. Exploration is highest during the first 10,000
steps. With time, the output sequences resemble more and
more the target words and only few, short, original output
sequences are produced. Notably, the exploration doesn’t stop
completely.

Reward-Modulation in the Recurrent Layer
The pattern recognition task was the only task in which
the reward-modulation of the recurrent layer improved the
performance. Punishment in the recurrent layer prevented
learning of unnecessary input conditions and allowed neu-
rons selective for the relevant input conditions to emerge.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 March 2015 | Volume 9 | Article 36

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Aswolinskiy and Pipa RM-SORN

FIGURE 6 | Exploration during training in the Motion Generation Task. Shown is the number of unique output sequences produced during the previous 100

steps, which are not part of the target words. The stronger the color, the longer the unique sequence.

However, the pattern recognition task is the only task, where
only a part of the input sequences is relevant. In the
other tasks, all input conditions matter. Reward-modulation
of the recurrent layer (either suppression or inversion of
STDP for wrong outputs) worsened the performance. Enhance-
ment of the exploration of the recurrent layer state space
through reward-modulation of the recurrent layer was not
observed. The effect of reward-modulation in the recurrent
layer on the performance is visualized in the supplementary
material.

Effect of Synaptic Normalization of the Weights
to the Output Layer
In the recurrent layer, SN is applied to the weights between the
neurons, decorrelating them and preventing seizure-like activ-
ity (Lazar et al., 2009). In the output layer, SN is applied to
the weights from the recurrent to the output neurons. Since
in the output layer the neurons are not interconnected and
only one neuron is activated at a time (WTA), correlated activ-
ity is not possible. The performance comparison of RM-SORN
with and without SN, as shown in Figure 7, suggests another
effect. In the figure, only the performance results for the count-
ing, occluder, motion prediction and motion generation task
are shown—in the other tasks the performance differences are
negligible.

Depression of the weights from the recurrent to the out-
put layer happens either through punishment—Anti-STDP or
SN. The challenge in the counting task is to map the rep-
resentations of long, similar sequences to the corresponding
output neurons. When, through chance, such a representa-
tion is mapped correctly, STDP reinforces the weights from
the active neurons in the recurrent layer to the activated out-
put neuron. Then, SN scales the weights hereby reducing the
weights from the inactive recurrent neurons to the active out-
put neuron. Thus, SN introduces synaptic competition, that

leads to a stronger mapping of the representations of the long
sequences.

In the motion tasks the focus is not on long sequences but
on a high number of symbols. With increasing n, the number of
symbols increases and the number of neurons representing an
input decreases. Thus, less neurons represent an input condition
and more neurons not related to the input condition need to be
ignored and their outgoing weights depressed in order to map an
input condition correctly.

The occluder task is a combination of the counting and
motion task. Notably, without SN, a higher number of neurons
worsens the occluder overall and the motion task performance.
When there are more neurons in the recurrent layer, the output
neurons have more incoming weights and can be activated more
easily by the wrong input representations. In the other tasks the
length of sequences, the number of mappings and the number of
neurons is moderate—synaptic competition through SN does not
lead to an advantage.

Intrinsic Plasticity vs. Noise for Exploration
Exploration of possible output mappings or output sequences is
an essential part of reward-modulated learning. Most reward-
modulated models use noise for exploration. Noise, however, is
per definition transient and random—the rewarded behavior is
not guaranteed to appear again, even with the same input and
the same neuronal state. A correct model guess induced by noise
might even be derogatory. For example, in a prediction task, if
the correct target neuron is activated purely by chance, while
the input representation in the recurrent layer is “bad” (non-
distinctive for the input condition), through STDP, connections
with the “wrong” neurons (neurons which don’t represent input
conditions or represent other input conditions) are reinforced.
IP, on the other hand, is deterministic—the rewarded behavior
is reproducible, and when the output is correct, it is always due
to the neuronal structure and not to chance. It is therefore not

Frontiers in Computational Neuroscience | www.frontiersin.org 10 March 2015 | Volume 9 | Article 36

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Aswolinskiy and Pipa RM-SORN

FIGURE 7 | Comparison of RM-SORN with and without SN in the

counting (A,B), occluder (C,D), motion (E), and motion generation

task (F). Shown is the average performance for different task complexity

values n. In the motion generation task, the results are averaged over 100

networks, in the other tasks the results are averaged over 10 data sets with

10 networks per data set. Error bars indicate standard deviation.

surprising that the performance results confirm the superiority
of IP.

The performance comparison with noise was made by dis-
abling IP in the output layer and introducing bit-flip-noise
instead: at each step, with a given probability, the active output
neuron was set to zero and another randomly chosen output neu-
ron set to one. In order to compare IP and noise in their roles
as exploration drives, they have to be aligned, regarding the tar-
get average firing rate. Ensuring the target firing rate with noise
is not possible, but the thresholds of the output neurons can be
selected to match on average the thresholds found through IP.
Therefore, before the actual task, for each network, a preliminary

run with 20,000 steps with unmodulated plasticity was made and
the output thresholds averaged over the values of the last 1000
steps. Then, the network was reset to its initial state, but with the
threshold averages as the new threshold values.

During simulations without IP at different noise levels, the
highest performance results were obtained with noise prob-
abilities of 5, 15, and 100%. Figure 8 compares the perfor-
mance of RM-SORN with IP and RM-SORN without IP but
with noise at these levels. Overall, networks with IP achieve
a higher performance than networks without IP, but with
noise. Particularly motion generation would not be possi-
ble with noise as exploration drive. Noise achieves slightly

Frontiers in Computational Neuroscience | www.frontiersin.org 11 March 2015 | Volume 9 | Article 36

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Aswolinskiy and Pipa RM-SORN

FIGURE 8 | Comparison of RM-SORN with IP and without IP but

with noise at different noise levels in the counting (A,B), occluder

(C,D), motion prediction (E), motion generation (F), memory

capacity (G), Markov-85 (H), parity (I), and pattern recognition (J)

task. The noise probability is the probability of a randomly chosen

output neuron to be activated at each training step. In the pattern

recognition task, the network size N was varied. In the other tasks, the

task difficulty n was varied with N = 100. Shown are the averages over

10 data sets with 10 networks per data set. Error bars indicate

standard deviation.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 March 2015 | Volume 9 | Article 36

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Aswolinskiy and Pipa RM-SORN

higher performance in the motion task for n > 24, and
roughly similar performance in the parity and pattern recog-
nition task, and also in the prediction part of the Markov-85
task.

These results demonstrate the power of IP as exploration
drive. Noise is a comparatively weak alternative.

Discussion

In this article, we introduced the RM-SORN, in which reward-
modulated STDP replaced supervised learning in the readout of
SORN and additionally, when applied to the recurrent layer in the
pattern recognition task, fitted the representation of the inputs to
the task goals. RM-SORN achieved high performance compara-
ble to that of supervised trained networks in all tasks. For com-
plex tasks (high n), the performance deteriorated more strongly
than in SORN, from which we can conclude that in RM-SORN,
similar representations in the recurrent layer cannot be differ-
entiated as well as in SORN. This is not surprising, considering
that supervisedmethods have an exact error signal, while reward-
modulated learning has only a general goodness signal and works
on a trial and error basis.

Reinforcement Learning and Reward-Modulation
RM-SORN and similar models are a form of reinforcement learn-
ing, where the state is defined by the network activation and
the action by the readout. The weights are adapted to maxi-
mize the reward. In a recent review of reinforcement learning in
cortical networks, Senn and Pfister (2014) generalize the weight
update rule to follow (10), with R being the reward and PI a
plasticity induction based on pre- and postsynaptic activity. The
hypothesis, that synaptic plasticity is driven by the covariance
between reward and neural activity was initially introduced by
Loewenstein and Seung (2006).

△w = R ∗ PI (10)

Senn and Pfister differentiate between policy gradient methods,
where the average policy induction<PI>= 0 and Temporal Dif-
ference (TD) methods, where the average reward <R> = 0. The
postulated purpose of these restrictions is to prevent systematic
weight drift. A simple alternative to <R> = 0 is to subtract the
average reward from the modulating factor as is done in RM-
SORN with the rewarding strategy Mk. A similar method was
used by Hoerzer et al. (2014).

TD learning with SORN was implemented by Franz (2010):
the readout was replaced with action neurons and the weights
modulated via the TD error. The network was able to learn
symbolical sequences. A more complex actor-critic network
was implemented by Frémaux et al. (2013) based on sim-
plified spike response model neurons and used to solve a
version of the cartpole task. Most recently, Dasgupta et al.
(2014) developed a model, consisting of a recurrent neural
network critic model representing the basal ganglia and a
feed-forward correlation-based learning model representing the
cerebellum. This combinatorial model was validated by let-
ting it control a robot to forage in an enclosed environment.

These increasingly complex, biologically motivated models of
reward-based reinforcement learning in neural networks are able
to solve complex tasks, but neglect other forms of synaptic
plasticity.

Reward-Modulated STDP Models and
Exploration
The core of RM-SORN is the interaction of IP and STDP: IP
explores possible output mappings or output sequences, and
STDP reinforces the rewarded ones. In contrast to most previous
models, noise for exploration is neither necessary nor desirable,
as IP is considerably superior to noise in most tasks and on the
same level in the rest.

Previous reward-modulated models, with one exception,
use only STDP or a hebbian rule, and noise for exploration.
Legenstein et al. (2008) performed an extensive analytical
and simulational analysis of reward-modulated STDP. Their
networks made from noisy, leaky integrate-and-fire neurons
solved several tasks: increasing the firing rate of a single neu-
ron, learning of spike times, spike pattern discrimination and
isolated digit recognition. One of their findings was that sponta-
neous activity is essential for reward-modulated learning in order
to explore which firing patterns are rewarded.

Shortly before Legenstein, in 2007, Izhikevich created a
model with spiking neurons, where the distal reward prob-
lem was solved through eligibility traces and reward-modulated
STDP (Izhikevich, 2007). He validated his model on three
simulations: reinforcement of a synapse between two excitatory
neurons, classical (Pavlovian) conditioning, and stimulus-
response-instrumental conditioning. During learning, sponta-
neous activity was achieved through random input, mimick-
ing noisy miniature PSPs. Izhikevich concluded that STDP is
insensitive to random firings during the waiting time for the
reward, and is only triggered by precise firing patterns in the
millisecond range, which are rare. He also argued that the pre-
cise timing of spikes is essential for reinforcement with STDP,
and that this effect could not be reproduced with firing rate
models. This statement was disproved by Soltoggio and Steil
(2013).

Soltoggio and Steil reproduced most of the experiments of
Izhikevich in a rate-based model, and they showed that clas-
sical and instrumental conditioning with delayed rewards can
be learned without precise spike timing. Their Rare Correlation
Model features a rate-based hebbian rule with a threshold that
allows only the upper 1% of all correlations to be applied. Noise
is added to the firing rate after the tanh-activation, to generate
spontaneous activity. Beside the tasks from Izhikevich, the model
was also successfully applied in robotics for classical and oper-
ant conditioning of the humanoid robot iCub (Soltoggio et al.,
2013).

Another rate-based model with reward-modulated hebbian
learning was created by Hoerzer et al. (2014). It consists of
a recurrent layer and a linear readout with a feedback con-
nection to the recurrent layer. In Hörzer’s model, the recur-
rent layer is chaotic with tanh-neurons, following Sussillo and
Abbott (2009), but instead of supervised learning, a reward-
modulated hebbian rule is used to train the readout. The

Frontiers in Computational Neuroscience | www.frontiersin.org 13 March 2015 | Volume 9 | Article 36

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Aswolinskiy and Pipa RM-SORN

model was successfully applied to several tasks, including
periodic pattern generation and non-linear analog computa-
tions on complex input signals. During learning, noise was
applied to the firing rates of neurons in the readout. The
authors point out that this exploration noise is the driving
force for learning, and that without it, no learning would take
place.

Other notable reward-modulated spiking neuron models
include Soltani and Wang (2010), where a connection between
reward-modulated plasticity and probabilistic inference was
observed and Bourjaily and Miller (2011), where reward-
modulated STDP combined with multiplicative synaptic scaling
was used to learn a XOR task.

The most recent model combines reward-modulated STDP
with eligibility traces, IP and synaptic scaling in a 2-layer net-
work with binary thresholded units (Savin and Triesch, 2014),
similar to the model in this article. The model was applied to two
working memory tasks: delayed response and delayed catego-
rization. During learning, task-dependent representations bene-
ficial for task performance emerged in the recurrent layer. The
neurons were noisy, but the noise did not play any special role in
learning.

The focus in these publications is on the hebbian or STDP
learning rule and tasks with delayed reward. The interaction
of several plasticity mechanisms and the role, that homeostatic
plasticity plays in reward-modulated learning was not investi-
gated. This article demonstrates that reward-modulated learning
can achieve performance comparable to that of supervised learn-
ing methods in tasks of different nature and complexity, and
that IP can serve as the exploratory drive during learning. This
is at first glance surprising, since IP is a homeostatic mecha-
nism. However, IP as implemented here ensures an average fir-
ing rate by lowering or raising the thresholds continuously and
these threshold-changes alter the neuronal activity and drive the
exploration.

Outlook
Supervised learning requires a precise error signal, which is prob-
ably not present in the brain. For reward-modulated learning,
only a general goodness signal is necessary. Additionally, it can
be applied to any network structure. In this article, only two-
layer networks were investigated, which in itself is biologically not
plausible. More complex network architectures, which present
a challenge for supervised training methods, may, in contrast,
unfold the capabilities of reward-modulated learning.

Another possible line of investigation is the effect and nature
of modulation via the reward-prediction error. In all tasks, except
the counting- and pattern prediction-task, modulation via the
reward-prediction error was better than modulation via the
reward directly. The difference in the task performances offers
a starting point for a more detailed investigation.

An interesting question is also, how exploration and exploita-
tion can be balanced. During reward-modulated plasticity the
exploration diminishes, but never stops completely, which made
it necessary to evaluate intermediate networks in order to get
the best performance (as described in sections Model Eval-
uation and Exploration during Motion Generation). From a

functional point of view, a mechanism that stops exploration,
when a sufficient performance level is achieved, is desirable.
The rewarding strategy seems to be a good place for such a
mechanism.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fncom.
2015.00036/abstract

Effect of reward-modulation of the recurrent layer on perfor-
mance, 603 parameters for the tasks, detailed performance results
(means and standard deviation).

References

Ahissar, E., Vaadia, E., Ahissar, M., Bergman, H., Arieli, A., and Abeles, M.

(1992). Dependence of cortical plasticity on correlated activity of single neu-

rons and on behavioral context. Science 257, 1412–1415. doi: 10.1126/science.

1529342

Bourjaily, M. A., and Miller, P. (2011). Synaptic plasticity and connectivity

requirements to produce stimulus-pair specific responses in recurrent net-

works of spiking neurons. PLoS Comput. Biol. 7:e1001091. doi: 10.1371/jour-

nal.pcbi.1001091

Dasgupta, S., Wörgötter, F., and Manoonpong, P. (2014). Neuromodulatory adap-

tive combination of correlation-based learning in cerebellum and reward-based

learning in basal ganglia for goal-directed behavior control. Front. Neural

Circuits 8:126. doi: 10.3389/fncir.2014.00126

Desai, N. S., Rutherford, L. C., and Turrigiano, G. G. (1999). Plasticity in the intrin-

sic excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515–520. doi:

10.1038/9165

Duarte, R., Seriès, P., and Morrison, A. (2014). “Self-organized artificial grammar

learning in spiking neural networks,” in 36th Annual Conference of the Cognitive

Science Society. (Freiburg).

Fetz, E. E. (1969). Operant conditioning of cortical unit activity. Science 163,

955–958. doi: 10.1126/science.163.3870.955

Franz, A. (2010). Neural Network Models of Cognitive Development in Infancy.

Frankfurt: Frankfurt Institute for Advanced Studies (FIAS).

Frémaux, N., Sprekeler, H., and Gerstner, W. (2013). Reinforcement learning using

a continuous time actor-critic framework with spiking neurons. PLoS Comput.

Biol. 9:e1003024. doi: 10.1371/journal.pcbi.1003024

Hoerzer, G. M., Legenstein, R., and Maass, W. (2014). Emergence of com-

plex computational structures from chaotic neural networks through reward-

modulated Hebbian learning. Cereb. Cortex 24, 677–690. doi: 10.1093/cercor/

bhs348

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of

STDP and dopamine signaling. Cereb. Cortex 17, 2443–2452. doi: 10.1093/cer-

cor/bhl152

Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent

neural networks.

Lawson, C. L., andHanson, R. J. (1995). Solving Least Squares Problems. Englewood

Cliffs, NJ: SIAM. doi: 10.1137/1.9781611971217

Lazar, A., Pipa, G., and Triesch, J. (2009). SORN: a self-organizing recurrent neural

network. Front. Comput. Neurosci. 3:23. doi: 10.3389/neuro.10.023.2009

Legenstein, R., Pecevski, D., and Maass, W. (2008). A learning theory for

reward-modulated spike-timing-dependent plasticity with application to

biofeedback. PLoS Comput. Biol. 4:e1000180. doi: 10.1371/journal.pcbi.10

00180

Frontiers in Computational Neuroscience | www.frontiersin.org 14 March 2015 | Volume 9 | Article 36

http://www.frontiersin.org/journal/10.3389/fncom.2015.00036/abstract
http://www.frontiersin.org/journal/10.3389/fncom.2015.00036/abstract
http://www.frontiersin.org/journal/10.3389/fncom.2015.00036/abstract
http://www.frontiersin.org/journal/10.3389/fncom.2015.00036/abstract
http://www.frontiersin.org/journal/10.3389/fncom.2015.00036/abstract
http://www.frontiersin.org/journal/10.3389/fncom.2015.00036/abstract
http://www.frontiersin.org/journal/10.3389/fncom.2015.00036/abstract
http://www.frontiersin.org/journal/10.3389/fncom.2015.00036/abstract
http://www.frontiersin.org/journal/10.3389/fncom.2015.00036/abstract
http://www.frontiersin.org/journal/10.3389/fncom.2015.00036/abstract
http://www.frontiersin.org/journal/10.3389/fncom.2015.00036/abstract
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Aswolinskiy and Pipa RM-SORN

Loewenstein, Y., and Seung, H. S. (2006). Operant matching is a generic outcome

of synaptic plasticity based on the covariance between reward and neural activ-

ity. Proc. Natl. Acad. Sci. U.S.A. 103, 15224–15229. doi: 10.1073/pnas.05052

20103

Pawlak, V., Wickens, J. R., Kirkwood, A., and Kerr, J. N. D. (2010). Timing is not

Everything: Neuromodulation Opens the STDP Gate. Front. Synaptic Neurosci.

2:146. doi: 10.3389/fnsyn.2010.00146

Savin, C., and Triesch, J. (2014). Emergence of task-dependent representa-

tions in working memory circuits. Front. Comput. Neurosci. 8:57. doi:

10.3389/fncom.2014.00057

Senn, W., and Pfister, J.-P. (2014). “Reinforcement learning in cortical networks,”

in Encyclopedia of Computational Neuroscience, eds D. Jaeger and R. Jung (New

York, NY: Springer), 1–6.

Sigala, N., and Logothetis, N. K. (2002). Visual categorization shapes fea-

ture selectivity in the primate temporal cortex. Nature 415, 318–320. doi:

10.1038/415318a

Soltani, A., andWang, X.-J. (2010). Synaptic computation underlying probabilistic

inference. Nat. Neurosci. 13, 112–119. doi: 10.1038/nn.2450

Soltoggio, A., Lemme, A., Reinhart, F., and Steil, J. J. (2013). Rare neural correla-

tions implement robotic conditioning with delayed rewards and disturbances.

Front. Neurorobot. 7:6. doi: 10.3389/fnbot.2013.00006

Soltoggio, A., and Steil, J. J. (2013). Solving the distal reward prob-

lem with rare correlations. Neural Comput. 25, 940–978. doi: 10.1162/

NECO_a_00419

Sussillo, D., and Abbott, L. F. (2009). Generating coherent patterns

of activity from chaotic neural networks. Neuron 63, 544–557. doi:

10.1016/j.neuron.2009.07.018

Toutounji, H., and Pipa, G. (2014). Spatiotemporal computations of an excitable

and plastic brain: neuronal plasticity leads to noise-robust and noise-

constructive computations. PLoS Comput. Biol. 10:e1003512. doi: 10.1371/jour-

nal.pcbi.1003512

Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., and Nelson,

S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical

neurons. Nature 391, 892–896. doi: 10.1038/36103

Zheng, P., Dimitrakakis, C., and Triesch, J. (2013). Network self-organization

explains the statistics and dynamics of synaptic connection strengths in cortex.

PLoS Comput. Biol. 9:e1002848. doi: 10.1371/journal.pcbi.1002848

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Copyright © 2015 Aswolinskiy and Pipa. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this jour-

nal is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 15 March 2015 | Volume 9 | Article 36

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	RM-SORN: a reward-modulated self-organizing recurrent neural network
	Introduction
	Materials and Methods
	Network Model
	Plasticity Rules
	Reward-Modulation Strategies
	Training and Testing
	Model Evaluation
	Task Descriptions

	Results
	Prediction, Recall and Non-Linear Computation
	Pattern Recognition
	Motion Generation
	Exploration during Motion Generation
	Reward-Modulation in the Recurrent Layer
	Effect of Synaptic Normalization of the Weights to the Output Layer
	Intrinsic Plasticity vs. Noise for Exploration

	Discussion
	Reinforcement Learning and Reward-Modulation
	Reward-Modulated STDP Models and Exploration
	Outlook

	Supplementary Material
	References

