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The inverse problem for estimatingmodel parameters from brain spike data is an ill-posed

problem because of a huge mismatch in the system complexity between the model and

the brain as well as its non-stationary dynamics, and needs a stochastic approach that

finds the most likely solution among many possible solutions. In the present study, we

developed a segmental Bayesian method to estimate the two parameters of interest, the

gap-junctional (gc) and inhibitory conductance (gi) from inferior olive spike data. Feature

vectors were estimated for the spike data in a segment-wise fashion to compensate

for the non-stationary firing dynamics. Hierarchical Bayesian estimation was conducted

to estimate the gc and gi for every spike segment using a forward model constructed

in the principal component analysis (PCA) space of the feature vectors, and to merge

the segmental estimates into single estimates for every neuron. The segmental Bayesian

estimation gave smaller fitting errors than the conventional Bayesian inference, which

finds the estimates once across the entire spike data, or the minimum error method,

which directly finds the closest match in the PCA space. The segmental Bayesian

inference has the potential to overcome the problem of non-stationary dynamics and

resolve the ill-posedness of the inverse problem because of the mismatch between the

model and the brain under the constraints based, and it is a useful tool to evaluate

parameters of interest for neuroscience from experimental spike train data.

Keywords: Bayes inference, spike train, inferior olive, gap junctions, non-stationary

1. Introduction

Rapid progress in computer science now enables simulations of neuronal networks with high
complexity. Advanced technology in neuroscience—such as the multiple electrode arrays, optical
recording using various dyes, and optogenetic techniques—enable sampling of a massive amount
of neuronal data from the brain (Nikolenko et al., 2007; Pastrana, 2010). Combining technologies
across two fields of science to understand the computations in the brain still face severe
difficulties mainly because of the fact that the technologies of both fields are still rather simplistic
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compared to a huge complexity of the brain network. It is
nevertheless a big challenge in computational neuroscience to
construct a brain model that simulates brain computations.

Modeling of the brain requires a number of parameters
that are difficult to measure using current technology. Various
approaches have been developed to resolve this “parameter
estimation” problem. There are deterministic approaches that
find unique solutions by optimization techniques, including
the conjugate gradient, genetic algorithm, simulated annealing,
and random search methods (Kirkpatrick et al., 1983; Vanier
and Bower, 1999; Keren et al., 2005). These methods are only
applicable in relatively well-defined environments where the
complexity of the system—such as the hierarchy, granularity,
and degrees-of-freedom—is comparable between the model
and experiment. Otherwise, parameter estimation problems
become ill-posed. Another deterministic approach uses state
and parameter reconstruction based on rather simplified neural
models, such as Hindmarsh–Rose and FitzHugh–Nagumo
models (Fairhurst et al., 2010; Tyukin et al., 2010). Stochastic
approaches were developed to overcome these difficulties, e.g.,
Markov random field model that estimates membrane resistance
from the optical imaging data (Kitazono et al., 2012) and
stochastic models that estimate the synaptic conductance from
the electrophysiological recording data (Berg and Ditlevsen,
2013). Nonlinear state space modeling has also been applied
to estimate hidden dynamical variables as well as unknown
parameters from the optical recording data (Tsunoda et al., 2010;
Meng et al., 2011). These approaches were also limited to the
cases of a small mismatch between the model and experiment
where the system complexity for the two cases was almost
comparable. Another difficulty is that brain dynamics are non-
stationary. Neuronal firing in the brain exhibits various types
of irregularity in its dynamics (Ikeda et al., 1989; Kaneko, 1990;
Tsuda, 1992; Tsuda et al., 2004) that are difficult to model.

The present study aims to estimate the conductance of the
inferior olive (IO) neurons from spike train data using the
network model simulation, which is confronted by various
mismatch problems in the system complexity between the model
and experimental data. The first is the granularity-hierarchy
mismatch. The experimental spike data are generated by the
network while the parameters to be estimated exist at the
synapses. The second is the degrees of freedom mismatch. The
real IO conveys far more complicated structures with huge
degrees of freedom than those for the model, the number of IO
neurons being at least four orders of magnitude greater than that
for the model. The third mismatch is that IO firing dynamics
are highly non-stationary, showing chaos, oscillations and other
non-stationary properties (Schweighofer et al., 2004), while those
of the model convey rather low non-stationarity. Therefore, we
cannot expect that the network model can perfectly simulate
the experimental data, and no one-to-one mapping would hold
between the experimental data and the model parameters. None
of the current approaches, either deterministic or stochastic,
would be suitable for resolving this huge mismatch problem.

A previous study (Onizuka et al., 2013) resolved this huge
mismatch problem by combining the deterministic approach
with the statistical one in two ways. First, the model parameters

to be fitted to the experimental data were estimated in a
deterministic fashion as those of simulation data with the
minimum distance to the experimental ones. Nevertheless, this
procedure can be regarded as an extreme case of a class of
statistical Bayesian estimation algorithms where a variance of
a mixture-of-Gaussian model to translate spike data to the
parameter values is assumed to be infinitely small. Second, the
experimental spike data for every neuron were divided into short
segments and the parameters were estimated for each segment.
Then, these parameter values were pooled to give the probability
distribution of the parameter values for the entire neuronal
data, thus introducing the statistical estimates. The aim of the
current study is to present a general framework based on a
hierarchical Bayesian inference, adopting the same estimation
problem of the two conductance values in IO network as used
in our previous study. Our method estimates conductance values
for spike segments using the forward models generalized to the
entire spike data andmerges the segmental estimates into a single
estimate for every neuron. The segmental Bayes is equivalent
to the method used in the recent studies that introduced the
system noise in order to reduce the estimation errors due to
modeling errors (Arridge et al., 2006; Huttunen and Kaipio, 2007;
Kaipio and Somersalo, 2007). To allow segmental fluctuations in
the parameter estimates and to merge the estimates for a single
neuron imply to assume noise for parameter estimation with the
constraint to minimize fluctuations within single neurons. This
neuronal constraint avoids over-fitting of the forward models
to experimental data that was the case in the previous study,
reducing the number of Gaussians by three orders of magnitude,
and the fitting errors to less than one-third of those in previous
studies with highly non-stationary data.

2. Methods

2.1. Experimental Data
We used the same spike data as those for a previous study
(Onizuka et al., 2013). They include the spike data collected
from two picrotoxin (PIX; Lang et al., 1996; Lang, 2002) and one
carbenoxolone (CBX; Blenkinsop and Lang, 2006) studies. These
studies sampled the IO spike as the complex spikes of Purkinje
cells and blocked the inhibitory and gap-junctional conductance
(gi and gc) of IO neuronal circuitry by application of PIX and
CBX. PIX and CBX experiments contained the spike data of
500-s-long samples from 136 and 35 neurons, respectively.

2.2. Conductance Parameters Estimation
It has been shown that the inhibitory synaptic conductance
(gi) and the gap-junction conductance (gc) are the two major
determinants of the IO firing (Llinas et al., 1974; Llinas and
Yarom, 1981; Best and Regehr, 2009). Our goal was to inversely
estimate these conductance values from the IO firing data.

This inverse problem contains two practical difficulties. One
is that it is an ill-posed problem because of the fact that IO
firing dynamic depends on the ratio of gi and gc rather than
their actual values and the other is because of the highly non-
stationary and complicated firing dynamics that are difficult for
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current IO network models to precisely simulate. To overcome
these difficulties, we tested a segmental Bayesian method.

The first difficulty is resolved by introducing a neuronal
commonality constraint such that gc remains unchanged
between PIX and control (CON) conditions, whereas gi remains
unchanged between CBX and CON conditions in one neuron.
The second difficulty was resolved by dividing whole spike trains
into short time segments, estimating the parameters in each
segment, and then integrating them into a single value according
to hierarchical Bayesian inference.

In the segmental Bayesian method, the following six steps
were applied to each neuron’s data (EXP) to estimate the
conductance values (gi,gc) of each neuron:

1. The network of IO neurons is simulated to generate spike
trains (SIM data).

2. We evaluated the IO firing dynamics in short time segments in
terms of a feature vector (FV) composed of multiple quantities
such as mean firing rate, auto- and cross-correlation, local
variation (LV), minimal distances (MDs), and spike distance
(SD).

3. We transformed the FVs into low dimensional principal
components according to feature extraction based on mutual
information and principal component analysis (PCA).

4. The likelihood function was estimated as a forward model
using the Gaussian mixture model in PCA space based on the
SIM data.

5. The likelihood of EXP data for segments was calculated.

6. Finally, single gi and gc values for the whole experimental
data in one neuron was estimated by a hierarchical Bayesian
inference, where a neuronal commonality constraint was
imposed as a hierarchical prior and the variability of gi and
gc in segments was represented as the model variance.

2.2.1. IO neuronal network simulation
The model was composed of 3 × 3 neurons (Figure 1C), each
of which consists of a soma, dendrite, and spine compartments
(Figure 1A). The neurons were connected to each other via gap-
junctions (Figure 1B). We simulated the IO firing according to
the equations representing the equivalent circuitry summarized
in Figures 1A–C (cf. Equations A1–A17, Onizuka et al., 2013).

The soma, dendrite and spine compartments received the
excitatory and inhibitory inputs through 10, 80, and 10 synapses,
respectively, driven by Gaussian noise generators. Synaptic
noise was used to produce spatiotemporal dynamics in the
simulation spike trains. We found that the length used for the
simulation data in the previous study (500 s) was insufficient to
cover the spatio-temporal dynamics of the IO spike data (cf.
Figures 3A–C), and therefore generated 10× longer (e.g, 5000 s)
simulation data.

Several studies have shown that IO neurons covey
heterogeneity in their membrane conductance (Manor et al.,
1997; Hoge et al., 2011; Torben-Nielsen et al., 2012). We assumed
comparable variations of gCal and gc, in our model, sampling
them from uniform distributions with the maximum deviation

FIGURE 1 | IO network model and representatives of EXP and SIM

spike trains. (A–C) A schematic diagram of the IO network model

consisting of 9 neurons, each of which consists of the soma (S), dendrite (D)

and spine compartments (SP). The S, D, and SP compartments contain five,

three, and one ionic channels defined by the modified Hodgkin–Huxley

equations (cf. Equations A1–A17, Onizuka et al., 2013) and the excitatory

and inhibitory input conductance (ge and gi ). Two neighboring neurons are

coupled via gap junctional conductance (gc) and axial spine conductance

(gdp/pd ). (D–F) Three representative pairs of EXP and SIM spike segment

(50 s) that showed the closest match in the 3D PCA space constructed of

the 25 FVs for the CBX, CON, and PIX conditions. EXP spike segments in

each condition are of different neurons.
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set at 5% of the mean.The two parameters of concern, gi and gc,
were varied in the range of [0–1.5mS/cm2] and [0–2.0mS/cm2],
respectively, with an increment of 0.05mS/cm2, whereas the
excitatory conductance ge was fixed at 0.03mS/cm2.

2.2.2. Feature Vectors
We also used the same FVs as those in a previous study adding
the spike distance metric (Kreuz et al., 2013) to characterize
the spatiotemporal properties of the spike train (cf. Methods,
Onizuka et al., 2013). To perform the segmental Bayesian
inference, we divided the experimental spike data into 10 50-
s segments. For each segment, 68 features were evaluated and
they were averaged across three neurons to improve the signal-
to-noise ratio. The first three classes of the FV represent temporal
properties, while the last three represent spatial properties of the
firing patterns.

1. The mean firing rate (FR) of spike segments was calculated as
the number of spikes in 1 s.

2. The local variation (LV) was calculated as

LV =
1

R− 1

R−1
∑

r= 1

3(Tr+1 − Tr)
2

(Tr+1 + Tr)2
(1)

where Tr(r = 1, 2...R) is the r-th inter-spike interval (ISI)
(Shinomoto et al., 2005).

3. The auto-correlogram for 20 delays (ACG 1–20) ranged from
0 to 1000ms with a bin size of 50ms.

ACGx,i(τ ) =

K
∑

k= 1

xi(tk)xi(tk − τ ) (2)

where xi(tk) represents the occurrence of spikes at the k-th
time step in i-th neuron and τ is the time delay.

4. The cross-correlogram for 20 delays (CCG 1–20)
corresponding to delays of 0–50ms, 50–100ms, . . .

950–1000ms were computed as:

CCGx,i,j(τ ) =

K
∑

k= 1

xi(tk)xj(tk − τ ) (3)

5. The minimal distance (Hirata and Aihara, 2009) (MD1–25)
was defined as a normalized distribution of

s
i,j

l
= 1− exp

(

−2minm |ti
l
− t

j
m|

d̄j

)

(4)

between the l-th spike of neuron i and a spike of neuron
j. Here, ti

l
is the time of l-th spike of the neuron i, d̄j is

the mean ISI of the j-th neuron, and m ranged from 1 to
the total number of spikes of neuron j. If the spike train
is generated by a random process, the distribution will be
uniformly distributed between 0 and 1.

6. The spike distance (Kreuz et al., 2013) (SD) was defined as

DS =
1

T

∫ T

t= 0
S(t)dt (5)

where S(t) are instantaneous dissimilarity values derived from
differences between the spike times of the two spike trains and
T is the recording time. SD is bounded in the range [0,1] with
the value zero obtained for perfectly identical spike trains.

2.2.3. Mutual Information and Feature Extraction
As described in Section 2.2.2, a total of 68 features were computed
from the firing data. To estimate the conductance parameters
efficiently, only the main features that contain rich information
on gi and gc were extracted from the FV according to the mutual
information (MI) between the FV and the conductance values.

We let g = (gi, gc) ∈ G as a pair of the conductance
parameters and x ∈ X denote one component of the FV. Then,
the MI that represents the amount of information of G conveyed
by x was computed as:

I(G; x) =
∑

g∈G

P(x, g) log

(

P(x, g)

P(x)P(g)

)

=
∑

g∈G

P(x|g)P(g) log

(

P(x|g)

P(x)

)

(6)

Here, the conditional distribution P(x|g) was approximated as a
histogram of x given a pair of (gi, gc), the distribution P(x) was
assumed to be a histogram of x, and P(g) was assumed to be a
uniform distribution. The 68 FVs were rated by the MI and top
25 FVs were selected for principal component analysis.

2.2.4. Principal Component Feature Vectors
To reduce the redundancy further, principal component analysis
(PCA) was conducted as a solution to the following equation:

(XTX)W = λW, (7)

where (XTX) is the covariance matrix of the 25 features of EXP
spike data X. We used a Statistical Toolbox (MATLAB R©) to
calculate the eigenvector W and eigenvalues λ. The principal
component vector Y was computed as the linear transformation
of the feature vector X as follows:

Y = XW (8)

Finally, the top three principal components of Y were selected
according to the highest eigenvalues (0.27, 0.21 and 0.09) for
construction of the forward model.

2.2.5. Forward Model
To evaluate the fitting between the experimental and simulation
data, we constructed a forward model as a likelihood function in
PCA space using the simulation data. The likelihood functions at
each grid point of g = (gi, gc) were approximated by Gaussian
mixture models:

P(y|g) =

K
∑

k= 1

πkN(µk, 6k), (9)

where N(µ,6) is the multivariate Normal (Gaussian)
distribution with mean µ and covariance 6. The number
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of components K, mixing coefficients πk, means µk and
covariance matrices 6k of Gaussian mixtures were estimated
from the simulated data for a given parameter set g using
the variational Bayes algorithm (Sato, 2001; Chapter 9 of
Bishop, 2006). The average number of component K, which
was automatically determined by the algorithm, was 8.55. The
performance of the fitting was confirmed by comparing the PC
scores of SIM with that predicted by the forward model by the
statistical energy test (Aslan and Zech, 2005).

2.2.6. Segment-Wise Neuronal Bayesian Model
Given the principal component features y as described in Section
2.2.4 (Equation 8), we needed to estimate the conductance
parameters gi and gc that generated the corresponding firing
dynamics of the IO neurons. Our model can be considered
as a kind of hierarchical Bayesian model (Chapter 5 of
Gelman et al., 2013), which consists of three probability
distributions: the likelihood function, prior distribution
and hyper-prior distribution. The likelihood function was
obtained as shown in Section 2.2.5. The prior and hyper-prior
distributions function as the constraints for the Bayesian
estimation. The model parameters were finally estimated
by computing the posterior distribution and the model
evidence.

• Bayesian model with the commonality constraint
First, a commonality constraint was introduced based on

the fact that PIX and CBX selectively reduce gi and gc,
respectively. This implies that gc remains unchanged between
the PIX and CON conditions, whereas gi remains unchanged
between the CBX and CON conditions. The commonality
constraint thus assumes that PIX andCONdata share the same
conductance value for gc in a prior distribution, while CBX and
CON data share the same gi.

We let yCON(t) and yCON = [yCON(1), yCON(2),
. . . , yCON(T)] denote the feature vector for time segment t
and the collection of the segment-wise feature vectors for
the control conditions, respectively. Similarly ypha(t) and
ypha were defined for the pharmacological condition, where
pha stands for either PIX or CBX. In addition, we let
[

gCONi , gCONc , g
pha
i , g

pha
c

]

denote the conductance parameters

for a neuron under the control and pharmacological
conditions.

Thus, the likelihood function of the model is

P
(

yCON , ypha
∣

∣

∣
gCONi , gCONc , g

pha
i , g

pha
c

)

= P
(

yCON
∣

∣gCONi , gCONc

)

P
(

ypha
∣

∣

∣
g
pha
i , g

pha
c

)

=
∏

t

P
(

yCON (t)
∣

∣gCONi , gCONc

)

P
(

ypha(t)
∣

∣

∣
g
pha
i , g

pha
c

)

, (10)

where P(y|gi, gc) is the probability density function
constructed from the forward model. As prior distributions,
we assume uniform distributions for gi and gc with
commonality constraints. In the case of pha = PIX,
gCONc = gPIXc , thus

P0

(

gCONi , gCONc , g
pha
i , g

pha
c

)

= P0
(

gCONi , gPIXi , gCONc

)

δ
(

gCONc − gPIXc

)

∝ δ
(

gCONc − gPIXc

)

(11)

where δ
(

gc
)

is the Dirac delta function. In the case of
pha = CBX

P0

(

gCONi , gCONc , g
pha
i , g

pha
c

)

= P0
(

gCONc , gCBXc , gCONi

)

δ
(

gCONi − gCBXi

)

∝ δ
(

gCONi − gCBXi

)

(12)

Equations (10), (11) or (10), (12) constituted the neuronal
Bayesian model.

• Hierarchical Bayesian model with the neuronal and
commonality constraints

In addition to the commonality constraint, a neuronal
constraint was introduced. This constraint dealt with the
estimation errors caused by the non-stationarity of the IO
dynamics as well as by the incapability of the model to
faithfully reproduce the complicated firing patterns of the
experimental data. To minimize such errors, we divided the
spike data of each neuron into segments, applied the above
Bayesian model to estimate gi and gc for every segment, and
then merged the segmental estimates into a single estimate
for each neuron. In this framework, the estimation errors
from non-stationarity can be treated as the variance of the
estimates.

This idea can be implemented by expanding the
Bayesian model to a hierarchical one that employs an
additional hierarchical prior distribution for merging the
segmental estimates. In this model, each segment of data
is generated from a segment-wise conductance parameters
[

gCONi (t), gCONc (t), g
pha
i (t), g

pha
c (t)

]

which vary around

neuronal conductance parameters
[

gCONi , gCONc , g
pha
i , g

pha
c

]

.

The variations in the conductance parameters are considered
to reflect discrepancies between the simulation dynamics and
the complex dynamics of real neurons.

Thus, the likelihood function became

P
(

yCON , ypha
∣

∣

∣
gCONi (1 : T), gCONc (1 : T), g

pha
i (1 : T), g

pha
c (1 : T)

)

= P
(

yCON
∣

∣gCONi (1 : T), gCONc (1 : T)
)

P
(

ypha
∣

∣

∣
g
pha
i (1 : T), g

pha
c (1 : T)

)

=
∏

t

P
(

yCON (t)
∣

∣gCONi (t), gCONc (t)
)

P
(

ypha(t)
∣

∣

∣
g
pha
i (t), g

pha
c (t)

)

, (13)

where gCONi (1 : T) =
[

gCONi (1), gCONi (2), . . . , gCONi (T)
]

are
collections of the segment-wise conductance, and similarly, for

gCONc (1 : T), g
pha
i (1 : T) and g

pha
c (1 : T).

We assume segment-wise conductance parameters vary
around neuronal conductance parameters following Gaussian
distribution with unknown variance parameters. Thus, the
prior distribution became

P
(

gCONi (1 : T), gCONc (1 : T), g
pha
i (1 : T), g

pha
c (1 : T)

∣

∣

∣
gCONi , gCONc , g

pha
i , g

pha
c

)

=
∏

t

P
(

gCONi (t), gCONc (t), g
pha
i (t), g

pha
c (t)

∣

∣

∣
gCONi , gCONc , g

pha
i , g

pha
c

)

(14)
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P
(

gCONi (t), gCONc (t), g
pha
i (t), g

pha
c (t)

∣

∣

∣
gCONi , gCONc , g

pha
i , g

pha
c

)

(15)

=



























N

(

[

gCONi gCONc

]

,

[

σ1 0
0 σ2

])

N

(

[

gPIXi gPIXc

]

,

[

σ3 0
0 σ2

])

if pha = PIX

N

(

[

gCONi gCONc

]

,

[

σ1 0
0 σ2

])

N

(

[

gCBXi gCBXc

]

,

[

σ1 0
0 σ3

])

if pha = CBX

Under the assumption of commonality constraints, gc
distributions of PIX and CON shared the same variance σ2,
and gi distributions of CBX and CON shared the unique
variance σ1 (Equation 15). Equations (13–15) constitute
the segment-wise neuronal Bayesian model, which has
hierarchical prior distributions.

Finally the commonality priors as given by (11) or (12) are
assumed in the hyper-prior distribution. Note that this model
is equivalent to the neuronal Bayesian model (Equations (10),
(11) or (10), (12)) above when all σ1, σ2, and σ3 are fixed to
zeros.

• Inference of conductance parameters and variance
parameters

Given the variance parameters, the conductance values can
be inferred by computing the posterior distribution of the
hierarchical Bayesian model above. The posterior distribution
for the four conductance parameters for a neuron is
given as:

P
(

gCONi , gCONc , g
pha
i , g

pha
c

∣

∣

∣
yCON , ypha

)

=
P
(

yCON , ypha
∣

∣

∣
gCONi , gCONc , g

pha
i , g

pha
c

)

P0
(

gCONi , gCONc , g
pha
i , g

pha
c

)

P
(

yCON , ypha
)

(16)

Here, the numerator, the likelihood distribution integrated
across all segments, is given by:

P
(

yCON , ypha
∣

∣

∣
gCONi , gCONc , g

pha
i , g

pha
c

)

=

∫ ∫ ∫ ∫

P
(

yCON , ypha
∣

∣

∣
gCONi (1 : T), gCONc (1 : T), g

pha
i (1 : T), g

pha
c (1 : T)

)

P
(

gCONi (1 : T), gCONc (1 : T), g
pha
i (1 : T), g

pha
c (1 : T)

∣

∣

∣
gCONi , gCONc , g

pha
i , g

pha
c

)

dgCONi (1 : T), dgCONc (1 : T), dg
pha
i (1 : T), dg

pha
c (1 : T) (17)

and the denominator, called the model evidence, is given by:

P
(

yCON , ypha
)

=

∫ ∫ ∫ ∫

P
(

yCON , ypha
∣

∣

∣
gCONi , gCONc , g

pha
i , g

pha
c

)

P0

(

gCONi , gCONc , g
pha
i , g

pha
c

)

dgCONi , dgCONc , dg
pha
i , dg

pha
c (18)

In general, these integrals are very difficult to evaluate.
However, since in our problem, the domain of (gi, gc) is
discretized with bins of 0.05 and the probability mass is
assumed on the grid points, the integrals appearing in
Equations (17), (18) were replaced by summation and
could be numerically evaluated without difficulty. Here, the

conductance parameters were estimated as the maximizer of
the posterior distribution.

• Inference of the variance parameters
The variance parameters were adjusted based on the model

evidence value P
(

yCON , ypha
)

for each neuron. We discretized
the space of the possible variance parameters with a bin size
of 0.025, computed the evidence (Equation 18) for all the
combinations of σ1, σ2 and σ3, and then selected those that
maximized the model evidence value.

2.2.7. Differences from Our Previous Approach
In this subsection, we briefly explain the main differences
between the current approach and our previous method
(Onizuka et al., 2013). In our previous method, the parameter
estimation for an experimental spike train in a short time
segment was given a best fit by g = (gi, gc) with which the
error between the experimental and simulation data in PCA
space was minimal over all of the generated simulation data.
From the Bayesian viewpoint, this can be interpreted as a
maximum likelihood estimation with the following Gaussian
mixture likelihood function P(y|g):

P(y|g) =

Ns
∑

n=1

1

Ns
N(yn(g), σ

2I) ≈ C exp

(

−
1

2σ 2
min
n

(y− yn(g))
2

)

, (19)

where yn(g) is the n-th simulation sample at (gi, gc), Ns is the
total number of simulation samples (n = 12,600) at (gi, gc)
and C is the normalization constant. Here, the variance σ 2 is
assumed to be infinitesimally small. This forward model is highly
dependent on the generated simulation data and tends to over-
fit the experimental data. The average component number K
for the present case was roughly three orders of magnitude
smaller than that for Onizuka’s case (8.55:12,600), indicating the
existence of this over-fitting in the latter case. Thus, our new
method prevents over-fitting by explicitly estimating the smooth
likelihood function using a small number of Gaussian mixtures.

In our previous study, the commonality constraint was
imposed at the condition level rather than the neuronal level.
Specifically, it was assumed that PIX and CON data share the
same gc, whereas CBX and CON data share the same gi across
the whole data set including different animals. In the current
study, we assumed a more biologically reasonable commonality
constraint at the neuronal level: (gi, gc) in that different time
segments were common to each neuron and the PIX and CON
data share the same gc, whereas CBX and CON data share the
same gi in each neuron.

2.3. Data Analysis
2.3.1. Sensitivity Analysis of Feature Vectors
Sensitivity analysis was conducted to evaluate how the FVs sense
gi and gc as the partial differential of FV with respect to the gi and
gc, e.g.,

∂FV
∂gi

and ∂FV
∂gc

. We constructed a 3D map for each FV as a

function of gi and gc, by normalizing FV by the peak value. The
sensitivity was determined as the mean of the partial differentials
across the entire range of gi or gc.
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2.3.2. Non-Stationary Analysis
We evaluated the non-stationarity of IO firing dynamics by three
measures, including LV [cf. Equation (1)], Kolmogorov–Smirnov
(KS) distance of the inter-spike intervals (ISIs) to the Poisson
model, and the standard deviation of the firing frequency.

3. Results

3.1. Network Simulation and Spike Train Analysis
Figures 1D–F show representative pairs of the EXP for the
three experimental conditions (CBX, CON, and PIX) and
the corresponding SIM spikes that were generated by the gi
and gc values estimated for those spikes. A total of roughly
16,000,000 spike data trains were generated for 31 × 41
combinations of gi and gc values each for 5000 s to cover the
spatiotemporal dynamics of the IO experimental (EXP) spike
data (cf. Figures 3A–C).

3.2. Feature Estimation
The Bayesian inference requires a forward model that is compact
and still informative of gi and gc. We tentatively selected 68 FVs—
including FR, LV, SD, ACGs, CCGs, and MDs—and conducted
the mutual information (MI) analysis concerning gi and gc to
select the FVs (Figure 2A and Table 1). ACG1 conveyed the
highest information (1.76 bits) and FR the next highest (1.41),
whereas MD2, LV, and CCG1 conveyed rather small information
(0.89, 0.56, and 0.34 bits, respectively).We selected the delay time
for ACG and CCG around their oscillatory peaks, which may
represent the time courses of auto- and cross-interaction within

and across the cells (ACG1, 50ms; CCG1, 50ms; etc.). Sensitivity
analysis indicated that some FVs (ACG1, FR in Figure 2B) were
only sensitive to gi, whereas others (MD2 and LV) were sensitive
to both gi and gc. This is probably due to the fact that gi
controls firing in the individual cells, while gc controls interaction
across the cells. The results indicate that FVs convey variable
information concerning gi and gc, and we need to select only
those conveying significant information concerning gi and gc for
construction of the forward model, eliminating those conveying
poor information.

We selected top three PCA axes to construct the forward
models for the following two reasons. First, eigenvalues were
high for the first two axes (0.27 and 0.21, respectively) and
sharply decreased for the third one (0.09), with the sum of
eigenvalues for the top three axes amounting up to 0.57.
Second, MI was accordingly high for the first two axes (1.6
and 1.1 bits, respectively), significantly reduced for the next axis
(0.63) and remained rather low for the remaining axes. These
findings indicate that the top three PCA axes conveyed reliable
information on the gi and gc.

We also studied the effects of number of FVs for three-
dimensional PCA space as the evidence for Bayesian estimation
(8.06E-5 for 15 FVs, 1.05E-4 for 25 FVs, and 4.88E-5 for 35 FVs),
and selected the 25 FVs that exhibited the highest evidence value.
They included ACG1, FR, etc., rejecting ACG2, ACG3, SD, etc.
(MI and rating, 0.0001 and 68th, 0.0017 and 67th, and 0.25 and
32nd, respectively). ACG1 conveyed rather high MI because it hit
the first peak of ACG, but ACG2, ACG3 conveyed lower MI since
they were off-focused from that peak. Those FVs were found to

FIGURE 2 | Mutual information of the 68 FVs and maps of five major

features for gi and gc. (A) Mutual information concerning gi and gc values

plotted in bits for the 68 FVs. Hatch and downward arrow indicate the 25

FVs selected for PCA. (B) 3D maps of the five representative FVs (ACG1, FR,

MD2, LV, CCG1) plotting the mean of FVs for gi and gc by pseudo-color

representation. The color-map is normalized to the peak values.
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TABLE 1 | Sensitivity of top ranked 25 FVs to changes of gi and gc.

FV Rank MI Sensitivity FV Rank MI Sensitivity

gi gc gi gc

ACG1 1 1.76 +++ n ACG15 14 0.48 + +

FR 2 1.41 +++ n ACG17 15 0.42 + +

ACG6 3 1.06 ++ + MD18 16 0.40 + +

MD2 4 0.89 ++ + ACG20 17 0.38 + +

ACG5 5 0.85 ++ n ACG14 18 0.38 + +

ACG11 6 0.67 + + CCG5 19 0.37 + +

MD1 7 0.65 + + CCG6 20 0.36 + +

ACG10 8 0.62 ++ + CCG1 21 0.34 + +

ACG7 9 0.56 + + MD6 22 0.33 ++ +

LV 10 0.56 +++ + ACG18 23 0.33 + +

MD3 11 0.52 + + MD19 24 0.33 + +

ACG16 12 0.50 + + ACG19 25 0.32 + +

ACG12 13 0.49 + +

List of top 25 FVs ranked by mutual information (MI) and its sensitivity to the changes of gi and gc which indicated by n/+/++/+++ for non/low/medium/high sensitivity, respectively.

convey more than 70% (hatched area in Figure 2A) of the gi and
gc information (downward arrow in Figure 2A).

3.3. Goodness of Fit of the Forward Model
PCA was conducted for a total of 1100 spike segments (10
segments each for the 110 IO neurons), containing 440 segments
for 44 neurons sampled in five PIX experiments, 110 segments
for 11 IO neurons sampled in two CBX experiments and 550
segments for 55 IO neurons sampled in seven CON experiments.
Bayesian inference requires for the forward model of SIM data to
completely cover the distribution of EXP data in the PCA space.
Figures 3A–C show that this requirement is satisfied by mapping
SIM (blue symbols) and EXP spike data for PIX, CBX, and CON
(red, green, and black symbols) into the 3D-PCA space. We
confirmed that SIM spike data completely cover the distributions
of EXP spike data except for a fraction of PIX data of one animal
(red diamonds).

We finally constructed the forward models as mixed
Gaussians fitted to the SIM spike data mapped in the PCA
space and evaluated the fitting as the 3-dimensional minimum
energy test of the model prediction and the SIM spike data. In
general, thematch was acceptable (Figure 4A), with the statistical
difference being not significant (p > 0.1) for most combinations
of gi and gc, except for few ones (about 2%) where the statistical
significance was rather high (p < 0.03) (Figure 4B).

3.4. Bayesian Inference with a Relaxed Neuronal
Constraint
We found that the EXP spike data were significantly non-
stationary (cf. Figures 8B–D), which may cause errors in the
Bayesian estimation of gi and gc. Those errors were minimized
by the segmental Bayes whereby the entire spike data for each IO
neuron was fractionated into 10 segments, Bayesian estimation
of gi and gc was conducted segment by segment, under the
commonality constraint that the gi estimates agree between
CBX and CON, and the gc estimates between PIX and CON,

respectively, and the segmental estimates were finally merged
into a single estimate for every neuron (cf. Methods, Section
2.2.6) under the neuronal constraint assuming a single gi and gc
for each neuron.

Figures 5A–D are pseudo-color representation of the
posterior probability of gi and gc estimated for a representative
IO neuron by the Bayesian inference under the commonality
and the relaxed neuronal constraint (σ = 10, cf. Equation
15). The estimates were diffused broadly for all of the three
conditions probably because of the fluctuations of the segmental
estimates. The probability of the gi and gc estimates for the IO
neuron for the three experimental conditions showed broad and
overlapping distributions (Figures 5E,F).

3.5. Bayesian Inference with a Neuronal
Constraint
By contrast, the gi and gc of the same IO neuron as in Figure 5

estimated by Bayesian inference under the optimized neuronal
constraint (σ was optimized in the range of [0.1–0.5]) were
sharper, with the peak of (gi, gc) at (0.75, 0.75mS/cm2) for
CBX, at (0.1, 1.3mS/cm2) for PIX and at (0.75, 1.25mS/cm2)
and (0.6, 1.3mS/cm2) for CON-CBX and CON-PIX, respectively
(Figures 6A–F). Figures 7A,B show the ensemble distributions
of gi and gc estimated by the segmental Bayesian inference for
the entire population of IO neurons in comparison with those
by the non-segmental Bayes whereby gi and gc were estimated
at once across the entire length of spike data (Figures 7C,D).
The gi and gc estimates by the segmental Bayes essentially agreed
with those by the non-segmental Bayes with the tendency for the
segmental Bayesian inference to give a sharper distribution than
the non-segmental Bayes. The gi value peaked at 0.6–0.7mS/cm2

for CBX and CON and at 0.1–0.2mS/cm2 for PIX (Figures 7A,C)
and the gc for PIX and CON was 1.3mS/cm2. The gc value for
CBX was distributed diffusely across a wide range. We noted
that the segmental Bayes gave rather conflicting estimates of gc
between the two animals. In one animal there was a marked
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FIGURE 3 | Scatter plots of EXP and SIM spike data in 3D-PCA space.

(A–C) 2D projection views (PC1-PC2; PC1-PC3; PC2-PC3) of the scatter

plots for 440, 550, and 110 spike segments for five, seven, and two animals

for the PIX (red), CON (black), CBX (green) conditions, and over fifteen-million

spike segments for SIM spike data (blue symbols) for 1271 combinations of

gi ([0–1.5mS/cm2 ]) and gc ([0–2.0mS/cm2 ]). Note that the distribution of the

SIM spike data perfectly covers that of the EXP data except for a fraction of

the EXP data for one animal (red diamonds). The color conventions that

represent the PIX, CON, and CBX conditions are the same in this and the

following figures.

FIGURE 4 | Goodness of fit of the forward model to the SIM spike data.

(A) 3D pseudo-color representation of the fitting error of the forward model

estimated as the energy test statistics between the predictions of the forward

model and the SIM data plotted for gi and gc. (B) statistical significance of the

error.

leftward shift of the peak between the CBX and CON conditions
(with a reduction of gc, filled area in Figure 7B) and conversely
a significant rightward shift in the other animal (open area). The
non-segmental Bayesian inference also showed the same results,
although the difference was less clear. The same tendency was
also found in our previous study (cf. Figure 7 in Onizuka et al.,
2013). Therefore this may represent reality rather than Bayesian
artifacts.

We hypothesize that the segmental Bayes minimizes the errors
of gi and gc estimation because of the failure for the forward
model to reproduce the non-stationary dynamics of IO firing.
This hypothesis was tested by comparing the performance of
the segmental and non-segmental Bayes in terms of the PCA
error rate (the difference in the PCA scores between the EXP
and the corresponding SIM spikes that were generated by the
gi and gc estimated for those EXP spikes). PCA errors for the
segmental Bayes were smaller than the non-segmental Bayes
across the three experimental conditions (F = 14.18, p =

0.0002), the difference being most significant for PIX, less for
CON, and insignificant for CBX (cf. solid and hatched columns
Figure 8A). Correspondingly, the non-stationarity of the EXP
spikes estimated as the KS distance between the distribution
of the inter-spike intervals for the EXP spikes and that of
Poisson and the standard deviations of the firing rate ranked
in the same order as that for the significance of the PCA error
difference between the segmental and non-segmental Bayes,
being high, medium and low for the PIX, CON, and CBX
conditions (cf. Figures 8A,C,D), respectively. These findings are
consistent with our view that the segmental Bayes minimizes
errors in gi and gc estimates because of the non-stationary
dynamics of IO firing. It is notable that the corresponding SIM
spikes rather faithfully reproduced the non-stationarity of the
EXP spikes for the two measures across the three experimental
conditions, while they were significantly smaller for the LV
(Figure 8B). This finding indicates that the present simulation
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FIGURE 5 | Segmental Bayesian estimates of gi and gc with relaxed

commonality constraints. (A–D) Posterior probability of the gi and gc

estimates for representative IO neurons under the relaxed commonality

constraint (σ = 10) for the two experimental (CBX and PIX) and two

corresponding control conditions (CON-CBX and CON-PIX). (E,F) The

profiles of gi and gc probability of the neurons plotted in (A–D).

FIGURE 6 | Segmental Bayesian estimates of gi and gc with optimized commonality constraints. (A–F) Similar posterior probability plots of gi and gc to

those in Figure 5 but with the optimized commonality constraints.
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FIGURE 7 | Segmental and non-segmental Bayes estimates for the

entire IO neuronal population. (A,B) the average gi and gc estimates by the

segmental Bayesian inference for the entire IO neuronal population. (C,D)

those similar to (A,B) but by non-segmental Bayesian inference where the

posterior probability was estimated across the entire spike train of the

individual IO neurons. Filled and open areas in green in (B,D) represent the

estimates for the two different animals in the CBX condition.

failed to precisely reproduce the non-stationarity estimated by
the LV.

Finally, we confirmed the superiority of the segmental
Bayesian inference over the minimum error method used in
our previous study (Onizuka et al., 2013) in terms of the PCA
error rate. The magnitude of the error rate was smaller for the
segmental Bayesian inference (solid columns in Figure 8A) than
that for our previous study (dotted columns) across the three
experimental conditions (statistical significance, F = 23.37, p <

0.0001 by ANOVA), and the statistical significance of the error
rate was largest (p < 0.0001 by t-test), moderate (p < 0.01) and
minimum (p > 0.7) for the PIX, CON, and CBX conditions,
respectively, corresponding to the degree of the non-stationarity
of the EXP spikes. It is notable that the average number of mixed
Gaussians per (gi, gc) grid of the forward models was three orders
of magnitude smaller in the segmental Bayes (n = 8.55) than that
in our previous study (n = 12, 600) and slightly larger than that
for the non-segmental Bayesian inference (n = 2.3), indicating
that there was over- and under-fitting in the previous study and
the non-segmental Bayesian inference, respectively, compared
with the segmental Bayesian inference used in the present study.

4. Discussion

The goal of the present study was to resolve the inverse problem
estimating the two important parameters of the IO network (i.e.,
gi and gc) by fitting the firing dynamics of the model network
with those of the IO network. The parameter estimation was
confronted with a huge mismatch of the model network with the
brain network in the system complexity such as the granularity,

the hierarchy, the degrees of freedom and the non-stationary
dynamics. Consequently, the inverse problem becomes severely
ill-posed (Prinz et al., 2004; Achard and Schutter, 2006), and
necessitates some stochastic approaches that find the most likely
solution among many possible ones according to various error
functions (Geit et al., 2008).

The previous study (Onizuka et al., 2013) defined the
error function as the distance between the experimental and
corresponding simulation spike data in the PCA space (PCA
error), constructed of various feature vectors (FVs) that are
derivatives of the ISIs of the experimental spike data such as the
firing rate, the auto- and cross correlation, the minimum distance
(MD), the spike distance (SD), and the local variance (LV),
representing the spatiotemporal firing dynamics and contained
strong redundancy. In that study, the FVs were determined
for short spike segments (50s) to compensate for the non-
stationarity of the experimental spike trains (Grun et al., 2002;
Quiroga-Lombard et al., 2013), PCA was conducted to remove
the redundancy, and the gi and gc were determined as the
ones giving the minimum PCA errors to the experimental spike
segments. The minimum error method can be regarded as the
extreme case of Bayesian inference where the forward model
translating the model parameters into the spike features was
constructed for each spike segment. This approach is equivalent
to assuming different Gaussians (i.e., parameter-spike feature
translation mechanisms) for every spike segment of the same
single neuron and may be regarded as over-fitting.

The present study maintained the segmental approach and
corrected the over-fitting by the hierarchical Bayesian inference
that estimated the gi and gc by fitting Gaussians to every
spike segment and merged them into single gi and gc estimates
according to the neuronal constraint that assumes the same gi
and gc for a single neuron (Figures 5, 6). This view is supported
by the fact that the number of Gaussians used for construction of
the forward model is three orders of magnitude smaller for the
present segmental Bayesian inference than that for the minimum
error method.

There were additional improvements in construction of the
firing feature space in two ways. First, the FVs were selected
according to the mutual information of the gi and gc (Figure 2)
and the number of FVs (n = 25) were optimized according
to the evidence function. Second, the length of the simulation
spike data was expanded 10 times more than that for the
previous study (from 500 to 5000 s) to ensure more satisfactory
reproduction of the IO firing dynamics (Figures 3, 4). The overall
performance of the segmental Bayesian inference estimated as
the PCA error that is the distance between the experimental
and corresponding simulation spike segments in the PCA space
was generally higher across the three experimental conditions
than those for the minimum PCA error method and the non-
segmental Bayesian inference that estimated the gi and gc across
the entire spike length (Figure 8A). The statistical significance
of the difference was high, modest and minimal in the PIX,
CON, and CBX conditions, respectively, in correspondence with
the non-stationarity of the IO firing evaluated as the three
metrics, including the KS distance of the ISIs from Poisson
distributions, the LV, and the standard deviation of the firing
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FIGURE 8 | Performance of the segmental and non-segmental

Bayesian inference and the minimum PCA error method and the

non-stationarity of EXP and SIM spike data. (A) PCA error rates of the gi
and gc estimates for the segmental (solid columns, Seg) and non-segmental

(hatched, NSeg) Bayesian inference and the minimum PCA error method

(dotted, MPE) averaged for the entire IO neurons for CBX, CON, and PIX

conditions. The colors represent the three experimental conditions and the

texture patterns represent the errors for the three methods of gi and gc

estimates. (B–D) Non-stationality of the spike data estimated as the three

metrics. (B): LV; (C): KS distance of the ISI distribution for the EXP (solid

columns) and SIM (blank) spike data from Poisson distribution; (D) standard

deviation of the instantaneous firing rate. The colors represent the three

experimental conditions and the texture patterns represent EXP and SIM

data. *p < 0.05, ***p < 0.001.

rate (Figures 8B–D). The segmental Bayes could be regarded as
a way to minimize estimation errors of gi and gc due to the errors
of the current forward model to precisely reproduce the non-
stationality of IO firing. Allowance of fluctuations for segmental
gi and gc estimates is equivalent to recent methods (Arridge et al.,
2006; Huttunen and Kaipio, 2007; Kaipio and Somersalo, 2007)
to reduce parameter estimation errors due to modeling errors by
assuming system noise.

These findings indicate that segmental Bayesian inference
performs better than the other two methods in cases of highly
non-stationary firing dynamics. The estimates of gi and gc by the
segmental Bayesian inference are in partial agreement with those
of our previous study. The point of agreement was the gc for
the CON and PIX conditions (1.21±0.2 and 1.16±0.43mS/cm2

for the present and previous studies) and those of disagreement
were gc for the CBX condition (1.24±0.6 and 0.75±0.51mS/cm2)
and gi for the CON (0.54±0.18, 1.10±0.36mS/cm2), PIX
(0.1±0.04, 0.51±0.41mS/cm2), and CBX conditions (0.65±0.15,
1.11±0.34mS/cm2). The present estimates may be more accurate
than the previous ones for the three reasons. First, we expanded
the gc range for simulation (from [0–1.6mS/cm2] in the previous
study to [0–2.0mS/cm2] in the present study), second, we
expanded the data length for simulation (from 500 to 5000 s)

for better simulation of experimental spike dynamics, and third,
the present estimates gave smaller PCA errors (0.39±0.05,
0.68±0.41, 0.39±0.07 under PIX, CBX and CON in present study
and 1.36±0.20, 0.86±0.42, 0.74±0.10 in our previous study).

The gc estimates for the CBX condition diverged between two
animals in the present study (Figure 7B), and the same tendency
was also found in our previous study, although this tendency
was less clear. The reason for this discrepancy between the two
animals is unclear. CBX is a nonspecific blocker of the gap-
junctional conductance and may act on other ionic conductances
than the gap-junction, affecting the gc estimates. The IO units
were sampled across many micro-zones of the cerebellum on
which the gap-junctional conductance was dependent, being high
and low in the same and different micro-zones, respectively. This
heterogeneity in the gc population may also be the cause of the
discrepancy.
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