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Modeling human aesthetic perception of visual textures is important and valuable

in numerous industrial domains, such as product design, architectural design, and

decoration. Based on results from a semantic differential rating experiment, we modeled

the relationship between low-level basic texture features and aesthetic properties

involved in human aesthetic texture perception. First, we compute basic texture features

from textural images using four classical methods. These features are neutral, objective,

and independent of the socio-cultural context of the visual textures. Then, we conduct

a semantic differential rating experiment to collect from evaluators their aesthetic

perceptions of selected textural stimuli. In semantic differential rating experiment, eights

pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural

context of the selected textures and to human emotions. They are easily understood

and connected to everyday life. We propose a hierarchical feed-forward layer model of

aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers.

Finally, we describe the generation of multiple linear and non-linear regression models

for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic

properties of visual textures as dependent and independent variables, respectively. Our

experimental results indicate that the relationships between each layer and its neighbors

in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted

well by linear functions, and the models thus generated can successfully bridge the gap

between computational texture features and aesthetic texture properties.

Keywords: visual texture, aesthetic emotion, texture analysis, psychological experiment, dimension reduction,

perception modeling, layered model architecture

INTRODUCTION

Texture is ubiquitous. It contains important visual information about an object and allows us to
distinguish between animals, plants, foods, and fabrics. This makes texture a significant part of the
sensory input that we receive every day. In the visual arts, texture is the perceived surface quality
of a work of art. It is an element of two- and three-dimensional designs and is distinguished by
its perceived visual and physical properties (Graham and Meng, 2011). From the research point
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of view, textures are classified into tactile and visual textures. The
former, also known as actual textures or physical textures, are
actual surface variations (Elkharraz et al., 2014), including, but
not limited to, fur, wood grain, sand, and the smooth surfaces of
canvas, metal, glass, and leather (Skedung et al., 2013). Physical
texture is distinguished from visual texture by a physical quality
that can be felt by touch (Manfredi et al., 2014). Visual texture is
the illusion of physical texture. Every material has its own visual
texture. Photographs, drawings, and paintings use visual texture
to portray their participant matter both realistically and with
interpretation (Guo et al., 2012). Above all, visual scientists have
realized that the rich resource they are provided with by artists in
the form of textures is worthy of scientific study (Zeki, 2002).

The challenge in aesthetic perception of visual textures and
art is to understand the aesthetic emotion and judgment that
are evoked when we experience beauty. To evaluate and explain
beauty in science, models of aesthetic perception and judgment
have been proposed in cognitive psychology and information
science. According to the information-processing stage model of
aesthetic processing, five stages-perception, explicit classification,
implicit classification, cognitive mastering, and evaluation are
involved in aesthetic experiences (Leder et al., 2004).

To discriminate between aesthetically pleasing and displeasing
images, Datta et al., employed support vector machines
and classification trees to perform explicit classification, and
applied linear regression to polynomial terms of features to
infer numerical ratings of aesthetics (Datta et al., 2006).
Additionally, Datta et al., developed multi-category classifiers to
recognize coarse-grained aesthetic categories and used support
vector machines to predict fine-grained aesthetic scores (Datta
et al., 2006). Jiang et al. used two model built algorithms
to study automatic assessment of the aesthetic value in
consumer photographic images (Jiang et al., 2010). Cela-
Conde et al. pointed out that investigating the cognitive and
neural underpinnings of aesthetic appreciation by means of
neuro-imaging has yielded a wealth of fascinating information
(Cela-Conde et al., 2011). Toet et al. explored the effects
of various spatiotemporal dynamic texture characteristics on
human emotions (Toet et al., 2011). Using structural equation
modeling, Leder et al. explored aesthetic perception by analyzing
expertise-related differences in the aesthetic appreciation of
classical, abstract, and modern artworks (Leder et al., 2012).
Simmons explored the relationship between color information
and the emotions they induced by measuring along two affective
dimensions, namely pleasant-unpleasant, and arousing-calming
(Simmons, 2012).

In their research, Cela-Conde et al. discussed adaptive and
evolutionary explanations for the relationships between the
default mode network and aesthetic networks, and offered
unique input to debates on the interaction between mind and
brain (Cela-Conde et al., 2013). Reviewing from definitional,
methodological, empirical, and theoretical perspectives of human
aesthetic preferences, Palmer et al. concluded that visual aesthetic
response can be studied rigorously and meaningfully within
the framework of scientific psychology (Palmer et al., 2013).
The research of Bundgaard addressed the phenomenology of
aesthetic experience, which showed why and how aesthetic

experience should be defined relative to its object and the tools
for meaning-making specific to that object and not relative to
the feeling (Bundgaard, 2014). Chatterjee andVartanian reviewed
recent evidence that approves aesthetic experiences emerge from
the interaction between sensory–motor, emotion–valuation, and
meaning–knowledge neural systems (Chatterjee and Vartanian,
2014). In experiment, Elkharraz et al. designed andmanufactured
3D tactile textures with predefined affective properties, and used
mixing algorithms to synthesize 48 new tactile textures that were
likely to score highly against the predefined affective properties
(Elkharraz et al., 2014).

However, surprisingly little funded research has been
conducted on the emotional qualities and expectations associated
with specific textures. In 2007, the project named “Measuring
Feelings and Expectations Associated with Texture” (SynTex)
was supported by the European Commission within the sixth
framework program. SynTex was coordinated by Profactor
GmbH and conducted in collaboration with six other research
institutes in the European Union. In fact, SynTex is the only
project to have ever attempted to measure, model and predict
the psychological effects of texture. Thumfart et al. summarized
the outcomes of this project (Thumfart et al., 2011). A further
outcome is in the work of Groissboeck, which focused on
synthesizing textures for predefined, desired emotions described
by a numerical vector in aesthetic space (Groissboeck et al.,
2010). We build upon this research, but go a step further in
terms of significantly enhanced texture analysis, feature selection,
and layered model-building for better interpretability, while
achieving improved accuracy in the prediction of several core
adjectives that define the aesthetic space. Expanding the aesthetic
space used in Thumfart et al. (2011), we introduced two new
adjectives in our experiments.

After reviewing related work in Section Introduction, we
present the four different categories of low-level features that
were extracted to objectively represent the visual textures in
Section Materials and Methods. Further, we describe feature
selection using Laplacian Score to reduce the complexity of
the aesthetic perception model. Section Results and Discussion
summarizes the semantic differential rating experiment, in which
we collected aesthetic perceptions from participants with selected
textural stimuli. We describe the modeling approaches in Section
Results and Discussion; Section Conclusions conclude the paper.

MATERIALS AND METHODS

Selected Textural Stimuli
The visual texture database of stimuli used in our experiment
consists of 151 selected high-resolution textural images, which
are also the experiment materials used in SynTex project. This
database is the Supplementary Material of the paper published
by Thumfart et al., in the proceedings of the 13th international
conference on Computer Analysis of Images and Patterns (CAIP
2009) (Thumfart et al., 2009). The project SynTex is by far
outdated and the link that provides the visual texture database has
been closed. The used visual textures for our study can be sent to
readers upon request via email or dropbox exchange. Readers can
contact us by using the email addresses given in the affiliations.
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It includes natural, artificial, regular and stochastic textures in
the textural stimuli, which were selected from various texture
databases. In detail, 73 textures were chosen from the Brodatz
texture album, 69 from the Outex texture database, 25 from
the UIUCTex database, 12 from the USC-SIPI image database,
and 64 from the VisTex database. Since the original sizes of the
textures selected from different database varied, they were resized
to a resolution of 480 × 480 pixels. Some examples of visual
textures from the SynTex database are shown in Figure 1.

In the SynTex database, some textures are artificial and
synthetic, some others are natural. So a nice diversity of different
sorts and types of textures is given.

Texture Analysis
Texture analysis refers to the characterization of image regions
by their textural content (Karu et al., 1996). Texture analysis
attempts to quantify intuitive qualities described by terms such
as rough, smooth, silky, and bumpy as functions of the spatial
variations in pixel intensities (Guo et al., 2012). Texture analysis
is used in a variety of applications, and can be helpful when
objects in an image are better characterized by their textures than
by intensity or traditional thresholding techniques (Bharati et al.,
2004).

In our experiment, four different texture analysis methods are
employed to extract statistical characteristics from visual textures,
which were then categorized into color and statistical features,
and perceptual and frequency-domain energy-based features. In
total, we initially derived a set of 106 features for each texture
image.

Color Characteristics
Colors play an important role in deciding what we like or dislike,
because they evoke complex psychological reactions and give
rise to relevant feelings (Ou et al., 2004a,b). In addition to
the studies of Simmons (2012) mentioned in the introduction,
there is growing interest in the understanding of human feelings
in response to seeing colors and colored objects, which are
also called “color emotions” in psychology (Lucassen et al.,
2011). Experimental results show that the emotional responses to
warm/cool, heavy/light, and active/passive are consistent across
cultures, but that the like/dislike scale exhibits some differences
(Ou et al., 2012). Visual perception of some emotions can
be linked to different colors (Augello et al., 2013). Regression
analysis is usually applied before product color design to reveal
the relationships between human responses on these scales and
the underlying color appearance attributes, such as lightness,
chroma, and hue (Hanada, 2013; Man et al., 2013).

Six color features were computed from HSV (hue-saturation-
value) space to describe each visual texture as the ones used in
the work of Romani et al. (2012). In detail, average, and standard
deviation of the HSV color matrix elements were calculated after
conversion of each texture image from RGB to HSV color space.

Gray Level Co-occurrence Matrix Characteristics
If texture is the dominant information in a small area, then this
area has statistically a wide variety of discrete textural features
(Baraldi and Parmiggiani, 1995). The simplest texture analysis
method uses statistical features computed from histograms.

Haralick et al., went a step further and proposed a gray-level
co-occurrence matrix (GLCM) in which the relative positions
of pixels with respect to each other are considered as well
(Haralick et al., 1973; Roberti et al., 2013). Given a spatial
relationship between pixels in a texture, such a matrix represents
the joint distribution of gray-level pairs of neighboring pixels
(Davis et al., 1979). Thus, a considerable amount of information
can be obtained by modifying the orientation θ or distance d
between pixels, where d specifies the distance between the pixel
of interest and its neighbor, and θ gives the direction from the
pixel of interest to its neighbor. If either θ or d is set, one GLCM
is generated. From each GLCM, four statistical characteristics
called contrast, correlation, energy, and homogeneity can be
calculated.

To research the effect of distance and orientation on statistical
features, we extracted 16 GLCMs, choosing the distance from
the set d = {2, 4, 6, 8} and the orientation from θ =

{0◦, 45◦, 90◦, 135◦}. Use of these orientation angles, restriction
to 135◦ is inspired by Haralick et al. They have been employed
in many published statistical representations of textures and
are deemed to provide sufficient information for building gray-
level co-occurrence matrices. In total, we extracted 64 statistical
features for each computed GLCM.

Tamura Texture Features
In color emotion research, an object usually has a uniform color.
However, this is rarely the case for real-life objects. Therefore, the
effect of texture on color emotion should be extended. Tamura,
Mori, and Yamawaki found in psychological studies that humans
respond best to coarseness, contrast, and directionality, and to
lesser degrees to line-likeness, regularity, and roughness (Tamura
et al., 1978). In most cases, only the first three Tamura features
capture the high-level perceptual attributes of a texture well and
are useful in visual art appreciation (Castelli and Bergman, 2002).
Thus, in contrast to statistical data measures, Tamura texture
features seem well suited to capture the emotional perception
of visual textures. In our experiment, coarseness, contrast, and
directionality were calculated as characteristics that represent the
psychological responses to visual perception.

Wavelet-based Energy Texture Features
Wavelets have been successfully used as an effective tool
to analyze texture information, as they provide a natural
partitioning of the image spectrum into multi-scale and
oriented sub-bands via efficient transforms (Brooks et al., 2001).
Furthermore, wavelets are used in major image compression
standards and are prominent in texture analysis (Dong and
Ma, 2011). Wavelet-based energy features can be extracted as
frequency features in conjunction with other spatial features to
capture visual texture information. The basic idea underlying
the wavelet energy signature is to generate textural features
from wavelet sub-band coefficients or sub-images at each scale
after wavelet transformation (Liu et al., 2011). Assuming that
the energy distribution in the frequency domain identifies
texture, we used L1 and L2 norms as measures in our work.
More specifically, we calculated L1 and L2 norms from the
high-frequency sub-bands of the first four levels that were
proposed by Do and Vetterli (2002). To describe the quality of

Frontiers in Computational Neuroscience | www.frontiersin.org 3 November 2015 | Volume 9 | Article 134

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Liu et al. Aesthetic perception of visual textures

FIGURE 1 | Some examples of visual textures from the SynTex collection.
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the information included in each sub-image to be reconstructed
with the corresponding wavelet coefficients, we also calculated
the Shannon entropy of each high-frequency sub-band.

When a texture image is decomposed at level j using a 2D
discrete wavelet base, 3 j sub-bands are generated. Then 6 j
energy signatures and 3 j entropy signatures are extracted. Since
we decomposed each texture image into 4 levels, we extracted 36
wavelet signatures from each texture image.

Feature Selection Using the Laplacian
Score
The goal of feature selection is to select the best features from a
set of features that not only achieve the maximum prediction rate
but can also reduce the complexity of model building (Vapnik,
1998). All feature selection approaches can be applied in either
supervised or unsupervised mode (Chandrashekar and Sahin,
2014). In supervised mode, each training sample is described
by a vector that consists of feature values with a class label.
The class labels are used to guide the search process toward
the optimal feature subset. In unsupervised mode, the training
samples are not labeled, and thus feature selection is more
difficult (Tabakhi et al., 2014). However, this mode provides more
general information which can be used by an arbitrary model
architecture.

Predicting aesthetic emotions linked to visual textures is a
typical example of data mining, where the inputs are low-level
texture features and the outputs are aesthetic properties of visual
textures. The aesthetics properties used as outputs for modeling
are not labeled by strings or 1-0 codes (class labels), as is usual
in classification problems, but by discrete real decimal numbers.
Ideally, as discussed above, the feature selection method should
be independent of the chosen model architecture and also
of the hierarchical layered structure (Breiman et al., 1993).
Furthermore, we sought to optimize the information content of
the feature space while reducing its complexity, with the aim
of obtaining one unique reduced set with good interpretation
capability.

In a kind of filter selection stage, we thus focused on an
unsupervised feature selection scheme called Laplacian Score
(LS). LS is a relatively recent unsupervised method for selecting
top features (He et al., 2005). It is able to reduce truly redundant
and correlated information content of the extracted features—
note that only truly redundant features can be discarded without
significant information loss (see Guyon and Elisseeff, 2003).
In detail, firstly a nearest-neighbor graph was constructed for
the original feature set. Secondly, the Laplacian scores for all
features in the original feature set were computed using the LS
algorithm. Thirdly, the features were ranked according to their
Laplacian scores in ascending order. Finally, the last d features
were discarded, and the feature set was updated with only the
remaining features.

Psychological Experiments and Perception
Modeling
Aesthetic experiences are very common in modern life, even
we don’t deliberately care about them. There is yet no

scientifically comprehensive theory that explains what constitutes
such experiences. As mentioned in the Introduction section,
several scientific methods have been used to explore the
complex systems that involve in aesthetic experiences. Except
for measurements of physiological signals using bio-sensors,
psychological experiments are also important tools in exploring
cognitive challenges of aesthetic experience and judgments. This
section describes the semantic differential rating experiment that
was conducted to collect their aesthetic perceptions of visual
textures from 10 male and 10 female subjects. The aesthetic
properties were assigned to three different layers of the proposed
aesthetic perception model.

Definitions of the Aesthetic Properties
Before the semantic differential experiment, we had to select
and define the aesthetic properties. Which types of aesthetic
properties should be defined and how many pairs of aesthetic
antonyms should be selected are hot research topics in semantic
analysis. The definition of the eight core adjectives as shown
in Table 1 has been derived from the findings in Levinson
(2006) which emphasized that six of these define the aesthetic
core space. The two additional ones (dark-light and disordered-
harmonious) were considered because of the contents of the
textures selected for experiment and the suggestions coming
from the 20 subjects.

Before the semantic differential experiments, we explained the
meaning of each pair of aesthetic antonyms to the 20 participants
and showed them some typical samples. In experiment, we
emphasized that these samples were not their only references.We
further suggested that knowledge about and preference for—or
even prejudice against—some types of visual texture they would
encounter should also be considered.

As shown in Table 1, the 8 pairs of aesthetic antonyms are also
assigned to three emotion layers defined in Thumfart’s work. In
fact, the 8 pairs of aesthetic antonyms are assigned to effective,
judgment or emotional layer by the 20 subjects after surveying
100 persons in 3 days. The logic relationships between these
emotion layers are explained in Section Aesthetic Perception
Model of Visual Textures.

Semantic Differential Experiment
Semantic differential experiments are commonly used to explore
perceptual and emotional dimensions of visual art and music. In
our case, a semantic differential experiment was carried out—
with the approval of the ethical committee of Jiangnan University
for experiments with human participants—to collect participant
ratings for the eight aesthetic properties defined in Table 1.

TABLE 1 | Eight pairs of aesthetic properties are divided into three layers.

Aesthetic property Emotion layer Aesthetic property Emotion layer

Warm-cold Affective layer Inelegant-elegant Judgment layer

Rough-smooth Affective layer Simple-complex Judgment layer

Dark-light Affective layer Artificial-natural Judgment layer

Disordered-harmonious Judgment layer Like-dislike Emotional layer
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In the semantic differential experiment, 20 highly motivated
Jiangnan University undergraduate students (aged 19–23) served
as participants to rate 151 visual textures in terms of eight
aesthetic antonyms. Before experiment, we introduced our
research purpose, experimental procedures, and how long it takes
to participate to all participants, and provided a written informed
consent form to each participant.

After signing a written informed consent form, each
participant enrolled for at least 5 daily sessions of 2 h and
received payment. The purpose of the experiments was concealed
from all participants, and they were trained to use a program
we developed called Texture Aesthetic Annotation Assistant to
rate the defined aesthetic properties. In each test, participants
briefly (300ms) viewed one visual texture, which was followed
immediately by a perceptual mask (200ms) presented at the same
location. The viewing distance was 75 cm (screen to participant).
After training, the 20 participants participated in the semantic
differential experiment in our lab at their own leisure.

The participants operated the Texture Aesthetic Annotation
Assistant which automatically displayed the texture and stored
the ratings in a e. A visual texture and a rating bar were shown in
the center and at the bottom of the display. The subject could drag
the scrollbar to rate the texture according to the labeled aesthetic
antonyms (placed at opposite ends of the scrollbar), and the eight
pairs appeared sequentially as listed in Table 1. Rather than the
seven point rating scale, we used a continuous rating scale within
the interval [−100, 100] (Chuang and Chen, 2008). This kind of
rating method is useful to build a continuous regression model
with sufficiently fine granularity.

In the semantic differential experiment, each participant
randomly evaluated each texture five times, and the ratings
for each texture were stored in a text file. After completion
of the semantic differential experiment, the ratings for each
visual texture evaluated by the 20 participants (i.e., 100 ratings
per texture) were averaged and used as final ratings to build a
prediction model for aesthetic emotions (see below).

As the aim of this research was to gain general insights
and explore potential relationships between human texture
perception and low-level features of visual textures, we did not
use individual experimental data to build an individual model
for each subject, but created a general model that may be valid
for a wider range of applications and purposes and reduces
development costs.

Aesthetic Perception Model of Visual Textures
Axelsson summarized five theoretical models that are most
important for the development of psychological aesthetics: (1)
Berlyne’s Collative-Motivational Model, (2) the Preference-for-
Prototypes Model, (3) the Preference-for-Fluency Model, (4)
Silvia’s Appraisal-of-Interest Model, and (5) Eckblad’s Cognitive-
MotivationalModel (Axelsson, 2007). However, these fivemodels
were developed in theoretical psychology and can hardly be
explained in information-processing and mathematical terms
because the input factors are specific human emotions that
cannot be quantified. The hierarchical layer structure of these
models, however, provides a reference for our work, and some
aesthetic properties involved there are also helpful to us.

Achievements in neuroaesthetics are the most important basis
for building a hierarchical structure of aesthetic perception,
especially the research of Ishizu and Zeki provides powerful
support (Ishizu and Zeki, 2013). Also, Thumfart et al. applied
a similar hierarchical layer structure, in which we extended
with two additional properties, “dark-light” and “disordered-
harmonious.” The structure of the hierarchical feed-forward
model of aesthetic texture perception is shown in Figure 2.

In the hierarchical feed-forward model, the function of the
affective layer is to complete the descriptions of the general
and primary physical properties of the visual texture. Thus, the
aesthetic antonyms selected for the affective layer are used to
capture the primary emotions when we first skim the visual
textures. In the judgment layer, the selected aesthetic antonyms
should describe higher-level and more aggregate properties
that are in part anchored in the subconscious, especially those
induced after statistical and logical judgment. The emotions
we feel when interacting with the textures are described in
the emotional layer. The aesthetic antonyms selected for the
emotional layer should describe the overall feelings people have
and wish to express.

Building an Aesthetic Perception Model
Traditional machine learning techniques such as neural
networks and support vector regression are useful prediction
tools. However, they become completely impractical when
interpretability of the implicit relations between low-level
features and core adjectives is desired, because they are black
boxes and cannot provide any meaningful and understandable
insights. Hence, we propose a hierarchical feed-forward layer
model of aesthetic texture perception with high interpretability
that combines neuroaesthetics and information processing
theory. In the layered structure model, each layer has a set of
interpretable aesthetic antonyms.

As illustrated in Figure 2, there are three perception channels
similar to neural circuits in neuroscience. In the first channel,
the low-level texture features are used to model the aesthetic
properties of the affective layer. In the second channel, the
properties of the judgment layer are modeled using low-level
features and aesthetic properties of the affective layer. Finally, the
properties of the emotional layer are built accordingly by inputs
from all previous layers and low-level features.

We set Mp =

{

A
p
i ,B

p
j ,C

p

k
, . . .

}

as the low-level feature set

of the pth visual texture, where i = 1, 2 . . . n, j = 1, 2 . . . s,
k = 1, 2 . . . t represents the number of different texture feature
subsetsA,B,C, etc. The aesthetics values of the affective layer, the
judgment layer and the emotional layer for the pth visual texture

are represented by Gp =

{

g
p
1 ; g

p
2 ; g

p
3

}

, TP =

{

t
p
1 ; t

p
2 ; t

p
3 ; t

p
4

}

,

and Qp =
{

qp
}

, respectively. Considering the ideas conveyed
in Figure 2, we employ six activation functions to construct the
three perception channels.

The perception model of the affective layer is given by:

G = F1(M)+ R0 (8)

that of the judgment layer by:
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FIGURE 2 | Structure of the hierarchical feed-forward model of aesthetic perception of visual texture, the horizontal arrows indicate input flows to the

different layers: e.g., the inputs to the judgment layer are low-level features (gray arrow) plus properties of the affective layer (white arrow).

T = F2(M)+ F3(G)+ R1 (9)

and that of the emotional layer by:

Q = F4(M)+ F5(G)+ F6(T)+ R2 (10)

where F1, F2, F3, F4, F5, and F6 are the six activation functions
that can be linear or non-linear, and R0, R1, and R2 refer to
the emotion thresholds. The symbol “+” indicates emotions
accumulated through different perception stages. Note that in
our model-building cycles (as explained in the Results section), a
particular set of activation functions best suited to the problem at
hand is automatically applied. A standard procedure consists of a
weighted linear combination of these activation functions where
the weights are derived by least-squares optimization to obtain
an optimal solution within a closed analytical formula, see Ljung
(1999) or Lughofer (2011).

When aesthetic emotions are predicted for new incoming
textures, the adjectives in the affective layer G(1), G(2), and
G(3) are predicted using the low-level feature set stored inM
and applying the activation function F1. Next, the adjectives
in the judgment layer T(1), T(2), T(3), and T(4) are predicted
using the low-level feature setM and the predicted adjective
values G(1) to G(3) by applying activation functions F2 and F3.
Finally, the emotional layer adjective (“like-dislike”) is predicted
using the low-level feature set M, the predicted adjective values
G(1) to G(3) and the predicted values T(1), T(2), T(3), and T4)
by applying activation functions F4, F5, and F6. Alternatively,

if adjective values for G(1) to G(3) and/or T(1) to T(4) are
already given by humans, these can be used in place of the
predictions.

RESULTS AND DISCUSSION

The Selected Top Features
After feature selection, the original 106-D features were ranked
according to their Laplacian scores. The first and most important
15 features are listed in Table 2.

The first 15 texture features are listed in Table 2 according to
their Laplacian score in ascending order. The first feature is the
mean saturation, which is extracted from the HSV space. The
number of contrast and homogeneity calculated using GLCMs
is eight, which accounts for 53%. The ranks of coarseness and
directionality are the seventh and the eighth, respectively. The
ranks of the wavelet-based energy texture features (L1 norm and
L2 norm) calculated from the horizontal and vertical sub-band at
the first level are the ninth, the tenth and the fifth.

Visualization of the Selected Features
The magnitudes of the features extracted using the algorithms
mentioned in Section Materials and Methods are different. In
Figure 3, the feature set after normalizing to the interval [−1, 1]
using feature scalingmethod is visualized. In our experiment, 151
selected visual textures are used and 106 features are calculated
for each visual texture. So, the size of the feature database is
151× 106.
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TABLE 2 | Feature list after selection using the Laplacian score.

ID Laplacian score Category Parameters Name

f1 0.9742 Color characteristics Mean of saturation Mean of saturation

f2 0.9101 GLCMs d = 8, θ = 45◦ Contrast

f3 0.8995 GLCMs d = 6, θ = 45◦ Contrast

f4 0.8855 GLCMs d = 8, θ = 135◦ Contrast

f5 0.8785 GLCMs d = 8, θ = 90◦ Contrast

f6 0.8778 GLCMs d = 4, θ = 45◦ Contrast

f7 0.8690 Tamura texture Coarseness

f8 0.8656 Tamura texture Directionality

f9 0.8551 Wavelet-based energy horizontal sub-band at level 1 L2 norm

f10 0.8434 Wavelet-based energy vertical sub-band at level 1 L2 norm

f11 0.8434 Tamura texture Contrast

f12 0.8427 GLCMs d = 8, θ = 45◦ Homogeneity

f13 0.8367 GLCMs d = 8, θ = 135◦ Homogeneity

f14 0.8306 GLCMs d = 6, θ = 45◦ Homogeneity

f15 0.8282 Wavelet-based energy horizontal sub-band at level 1 L1 norm

FIGURE 3 | The full feature matrix comprising 106 features and 151 textures.

In Figure 3, one color represents each type of features that
locate in each dimensionality. We can find that the majority
of the feature values compactly locates at the bottom of the
space and only a few sparsely scatter among the concentrated
feature stripes. One possible conclusion is that the features
extracted using the algorithms mentioned in Section Materials
and Methods are highly redundant, correlative and there is a
quite low diversity of the features. In order to further examine this
issue, the cross correlation coefficients of the 106-D features are
calculated and illustrated in Figure 4. There are 1370 correlation

coefficients that are larger than 0.75 in their absolute values,
which accounts for 12.19% in total.

The first 10 features are visualized in Figure 5.
In Figure 5, the normalized 10 features regularly locate in

the feature space. The features in the first feature vector, are
much larger than the left ones. We also found that the first 10
selected feature vectors can be divided into two clusters, which
locate on two poplars of the feature space. The structural risk
and the computation complexity of the model will be under
constraints through controlling the number of features that are
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used as inputs. Thus, in the model building process, the features
with a Laplacian score lower than 0.85 are not used, which means
that we used the first 10 features to build the aesthetic perception
model.

Building a Model of Aesthetic Perception
Below, we discuss model building by means of Eureqa Desktop.
Eureqa is a tool that uses a recent breakthrough in machine
learning to unpick intrinsic relationships within complex data
and explains them as simple mathematical formulas (Schmidt
and Lipson, 2009). When the target expressions are defined
by Equations (8–10), the basic, trigonometric and exponential

FIGURE 4 | The colored cross correlation coefficients matrix.

functions are selected in the formula building blocks of
Eureqa Desktop. In detail, the basic functions include addition,
subtraction, multiplication, division and the constant operation.
The trigonometric functions include sine, cosine and tangent
functions. The exponential functions include exponential,
natural logarithmic, factorial, power and square-root functions.

Before model building, the 10 selected features and emotion
values were smoothed, outliers removed and normalized with the
default algorithms embedded in Eureqa Desktop. The 151 visual
textures were divided into two sets. One set is for model building
and the other is for model test. The training set included 90% of
the total number of textures, and was used for model building.
The test set was used to evaluate the performance of the models
built on the training set, to measure the expected quality on new
textures.

We used a parameter called R∧2 goodness of fit to evaluate
the quantitative goodness of fit between each model and the used
data. The model with the greatest R∧2 is considered to be the
best. The models thus selected for the eight pairs of aesthetics
properties distributed in the hierarchical feed-forward model are:

G(1) = 0.03 · f1 + 598.16 · f3 − 234.19 · f5 − 348.67 · f7 · · ·

· · · + 189.82 · f9 − 304.29 · f10 + 22.17 (11)

G(2) = −1.31× 10−13 · f10 − 1.73 (12)

G(3) = 0.29 · f1 + 83.14 · f7 − 53.82 · f5 − 214.60 · f9 · · ·

· · · − 0.34 · f1 · f7 + 216.71 · f∧29 + 19.22 (13)

T(1) = 0.03 · f1 + 119.55 · f6 − 106.46 · f7 + 18.21 · f9

− 51.51 · f10 + 0.76 · G(3)+ 2.86 (14)

FIGURE 5 | The first 10 selected features.
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T(2) = 0.09 · f1 + 691.81 · f3 − 737.98 · f4 − 609.32 · f6

+ 683.64 · f7 · · · − 66.11 · f8 + 0.33G(3)− 9.60 (15)

T(3) = 1135.64 · f2 − 1123.31 · f3 − 582.81 · f4 + 571.40 · f7 · · ·

· · · − 364.15 · f8 + 376.91 · f9 − 14.60 (16)

T(4) = 185.17 · f2 + 68.26 · f3 − 215.02 · f4 − 99.79 · f8 · · ·

· · · + 129.36 · f9 − 0.15 · G(1)+ 24.37 (17)

Q = 123.09 · f2 − 144.83 · f3 − 113.49 · f8 − 148.05 · f9 · · ·

· · · + 0.64 · T(1)+ 0.12 · T(3)+ 1.14 (18)

where fi,i = 1, 2 · · · 10 represents the 10 features selected using
the Laplacian score algorithm.

In fact, 13 different non-linear terms are chosen for model
building in Eureqa, which automatically selects those terms
which are most feasible for establishing a high quality model
(within a cross-validation procedure). During cross-validation,
the training set is split into different folds, and always a separate
test fold is used to elicit the error for each training fold
combination. According to Hastie et al. (2009), CV is a good
method to estimate the expected prediction error on future
samples well. Furthermore, in order to overcome over-fitting, we
studied how the models listed above performed on a separate test
set. We should note the number of variables used to build each
model is different. In detail, an input dimensionality of 10 in case
of G(1) to G(3), of 13 in case of T(1) to T(4) and of 17 in case of Q.

Surprisingly, we found out that for all models linear terms
were sufficient to reach the highest possible quality in terms of
R∧2 goodness of fit for explaining the targets. The exception was
for themodel for G(3), which uses two quadratic terms. However,
these do not boost the quality of this model (cf. Table 3). This is
the most noteworthy results of our experiment, as it keeps the
model complexity low and thus emphasizes high interpretability
capability. Even though the low-level texture features were
integrated using non-linear models, the models bridging the gap

TABLE 3 | Statistical measures and qualities of models on the training

data set (CV-based), the results after the slashes correspond to the

results reported in (Thumfart et al., 2011) (if available), we offer two

additional models for disordered-harmonious (T(4)) and dark-light (G(3)).

Aesthetic R∧2 Basic Enhanced Correlation RMSE

property complexity complexity coefficient

G(1) 0.57 6/3 23 0.80 07.5/8.87

G(2) 1.00 1/6 5 1.00 00.00/7.83

G(3) 0.28 6 17 0.44 10.80

T(1) 0.92 6/12 19 0.97 02.42/05.02

T(2) 0.84 7/5 25 0.93 04.31/04.81

T(3) 0.82 6/6 23 0.91 03.39/04.56

T(4) 0.47 6 29 0.93 1.53

Q 0.95 6/6 23 0.98 01.55/03.35

between computational texture features and aesthetic texture
properties turned out to be linear. Additionally, Equations
(14–18) indicate that the higher level aesthetic properties in the
judgment layer and emotional layers cover—with the exception
of the texture features—the aesthetic properties in the lower-level
layer. Interestingly, G(3) is an important adjective in the models
for T(1) and T(2), whereas T(1) and T(3) have a direct influence
on the “like-dislike” feeling.

The R∧2 goodness of fit values of the eight models [shown in
Equations (11–18)], are listed in Table 3. Complexity, correlation
coefficient and the root mean squared error are also provided to
fully evaluate goodness of fit and predictive power. Complexity
is important to measure the model’s capability in terms of
interpretability because of higher complex models are always
suffering from interpretability. The root mean squared error
shows the expectation deviation between observed and predicted
aesthetic property values. Correlation coefficient denotes the
correlation between predicted and observed values. Thus, a value
close to 1 indicates a nearly perfect prediction; usually, a value
of 0.5 and below denotes a useless model. Eureqa’s complexity
metric (or size) is measured by the number of variables and
the relative weights of each of the building blocks used in the
solution. This is referred to as “enhanced complexity” in Table 3.
Additionally, we report the basic complexity, which is simply
the number of input terms in each model. These values are
directly comparable with the values in Thumfart et al. (2011)
and are directly related to the transparency and understandability
of the model (a model with 100 terms can be hard to read and
understood, for instance).

InTable 3, the R∧2 (goodness of fit) forG(2),T(1),T(2),T(3),
and Q are greater than 0.8. In other words, the models
for G(2),T(1),T(2),T(3), and Q are instantiated that provide
suitable representations of the aesthetic perceptions. However,
it can be seen that the R∧2 goodness of fit values for G(1),T(4)
and particularly G(3) are obviously lower than those of the
other models. And, the MSEs of G(1) and G(3) are significantly
greater when compared with the others. The models for T(1)
and Q are fully useable and highly precise in case when real
G(3) values are available for new textures. Another finding is
that our new models based on specifically selected features can
significantly outperform the models proposed by Thumfart in
terms of prediction error (much lower MSE values).

Note that in model training and evaluation cycles, we always
used the original data gotten from the semantic differential. In
particular, for establishing a model for T(1) and Q, which both
use G(3) as input, the original G(3) values from the interview data
were used and not the predictions of the G(3) model (which were
particularly poor as can be seen in Table 3). Model building and
the final models for T(1) and Q were therefore not affected.

The aesthetics properties predicted using these models
[according to Equations (11–18)] and the values from the
interview-based test set that comprises 14 textures are plotted
in Figures 6–8 for the three most interesting and challenging
properties “artificial-natural,” “disordered-harmonious,” and
“like-dislike.” The statistical measures of the predicted and real
aesthetic property values from interviews for the test set are given
in Table 4.
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FIGURE 6 | The predicted and the interviewed test sample values for T(3).

FIGURE 7 | The predicted and the interviewed test sample values for T(4).

As shown in Figures 6–8, the prediction power of G(1), G(2),
T(1), T(2), and T(3) is better than that of G(3), T(4), and Q.
However, the predictive power of G(3) and T(4) is much better on
the test set than on the training set, at least for T(4). We therefore

conclude that the models can be used to calculate the properties
of textures. In fact, the maximum correlation coefficient of the
training set is greater than that of the test set in all cases, as can be
seen in Table 3, 4. In other words, the multiple linear regression
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FIGURE 8 | The predicted and the interviewed test sample values for Q.

TABLE 4 | Statistical measures for the test set.

Aesthetic property Correlation coefficient RMSE

G(1) 0.99 1.74

G(2) 0.99 1.13

G(3) 0.76 9.28

T(1) 0.99 1.79

T(2) 0.99 2.51

T(3) 0.98 3.77

T(4) 0.94 5.68

Q 0.97 4.73

models can predict the aesthetic property well for some new
visual textures that were not used in the training stage, even
though the correlation coefficient on the overall training set is
unsatisfactory. Another indication is that the bias is higher than
the variance error, and thus over-fitting does not take place. On
the other hand, we could find out that also the models for G(3)
and T(4) can perform well on a subset of the whole texture set,
which makes them promising for other textures collected in the
future.

CONCLUSIONS

In this paper, we have proposed a hierarchical feed-forward layer
structure built by multiple linear regression to investigate the
relationship between human aesthetic texture perception and
computational low-level texture features. Rather than black-box
models, we sought to build nearly white-box models that can be

interpreted both in terms of structure and interrelations between
aesthetic properties and texture features according to feature
weights.

First, we carried out a texture analysis and calculated 106
color and texture features for each visual texture. To achieve
the best possible prediction rate and reduce the complexity of
model building, feature selection using the Laplacian Score was
employed to choose the best feature subset (finally comprising
10 features). Then, the aesthetic properties of a set of 151 visual
textures were collected in a semantic differential experiment with
20 subjects. Eight pairs of antonyms were selected to describe
aesthetic properties for emotion perception in different affective
layers. Finally, we utilized multiple regression techniques
employing a variety of functional terms to bridge the gap between
computational texture features and aesthetic emotions in form of
mappings within a hierarchical layered structure model.

The best model for each of the 8 aesthetic properties (except
for the “dark-light” pair) is a linear function, even though non-
linear terms were selected in Eureqa Desktop when models
are initialized. Furthermore, these built models are in low
dimensionality. In other words, the models only use a quite low
number of terms, namely 7 maximal, and in most cases 6. This is
helpful to the readability, interpretability and understandability
for psychologists. The 8 models have lower errors than the
models designed in Thumfart et al. (2011) for all aesthetic
properties, which confirms the feasibility and applicability of our
models in future works. Additionally, the experiment indicates
that—with the exception of texture features—the higher level
aesthetic properties in the judgment and emotional layers cover
the aesthetic properties in the lower-level layer.
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As part of future work, we will select more visual texture
samples and include more subjects in the semantic differential
experiment, especially to investigate the influences of the types of
features and functions selected for model building. This should
help to improve the lower quality models, especially that built for
G(3). Additional future work will include:

1. Considering more complex non-linear regression modeling
architectures (rather than plain transformations), especially
regression trees and/or fuzzy systems, which both offer
interpretability from another viewpoint. Their structures are
readable as IF-THEN rules and provide better insights into the
relations between input features and targets.

2. Perceptionmodeling that considers different groups of people,
e.g., a gender study or a study with respect to age, education
etc.: the interview data is split into different groups and a
model is created for each group. This could provide interesting

answers to questions such as “Do women or men rate textures
more consistently?” or “Do women or men trigger creation of
different models?”
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