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Research in neural information processing has been successful in the past, providing
useful approaches both to practical problems in computer science and to computational
models in neuroscience. Recent developments in the area of cognitive neuroscience
present new challenges for a computational or theoretical understanding asking for
neural information processing models that fulfill criteria or constraints from cognitive
psychology, neuroscience and computational efficiency. The most important of these
criteria for the evaluation of present and future contributions to this new emerging field
are listed at the end of this article.
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THE DEVELOPMENT OF THE FIELD OF NEURAL INFORMATION
PROCESSING

Beginning with the theoretical foundations of cybernetics and information theory by Wiener
(1948) and Shannon (1948), the field of theoretical neuroscience started to develop in the
direction of neural information processing. At that time, scientists were inspired by the
idea that the same theoretical ideas can be employed both in technological developments
and in the understanding of biological, environmental or even sociological systems. Many
new concepts in the areas of control, pattern recognition, sensory and motor physiology,
neurology, and brain research in general were invented, and it often remains obscure
whether the first inspiration comes from biological or neurological observations on one hand
or from cybernetical or engineering inventions on the other. An example is the idea of
the ‘‘receptive field’’ of neurons in the visual system and of edge or line detectors, called
‘‘simple cells’’, in particular, that were substantiated by the Nobel prize winning research of
the neurophysiologists Hubel and Wiesel (e.g., Hubel and Wiesel, 1968; Hubel et al., 1977).

After the initial phase of concerted progress towards both technical applications
and neuroscientific insights, the field of neural information processing started to
split into technology oriented research (neurocomputing and computational learning
theory) and neuroscience oriented research (computational neuroscience) in the 1980s.
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On the technological side the driving forces or ‘‘biological
inspirations’’ came from two observations:

1. The brain consists of a huge number of computational
units (the neurons) working in parallel, apparently without
a substantial amount of coordinating or synchronizing
‘‘overhead’’. This inspired computer scientists to think in the
direction of non-conventional massively parallel computing
architectures (e.g., Palm and Palm, 1991; Heittmann and
Rückert, 1999; Zhu and Hammerstrom, 2002). Unfortunately,
many of these early ideas were not so successful in terms
of applications, because during the time needed to develop
such architectures, algorithms, and programming languages
for them, the available conventional computing hardware
became 100–1000 times faster (‘‘Moore’s law’’), easily equaling
or surpassing the speed-gain achieved by new massively
parallel architectures. This trend, however, seems to come
to an end these years, and consequently during the last
5–10 years many of the ‘‘old’’ ideas concerning massively
parallel architectures (e.g., in Krikelis and Weems, 1997
or in Ramacher et al., 1991) have been rediscovered or
reinvented. Notably, this development of new unconventional
computational architectures is declared as one major goal
of the new large European Human Brain Project (HBP),
the other, of course, being the understanding of the human
brain.

2. The neurons in the brain are able to learn (mostly by
synaptic plasticity, i.e., by changing the weights of the network
connections). The first successful applications of artificial
neural networks were based on this learning ability. The
neural network architectures used in these days were utterly
simple (mostly 2- or 3-layer feedforward networks with
supervised learning by gradient descent) and the rule for
changing the connections was not so close to biological
reality, but the learning was often successful leading to useful
applications and it still was in many ways similar to or
‘‘inspired by’’ learning processes in real neurophysiological
networks.

During the 90’s and to a large degree initiated and guided by the
mathematically beautiful statistical learning theory developed by
Vapnik (1998), the practical and technical approaches to learning
systems became much more sophisticated (for an overview, see
Bishop, 2006), but the new machinery used for learning lost
much of its direct appeal to neuroscience. On the other hand, the
architectures employed for learning have become more complex
and modular (e.g., ‘‘deep’’ multilayer networks, Bengio, 2009;
Bengio et al., 2013; Abdel-Rahman et al., 2012; Hinton et al.,
2012; LeCun et al., 2015), involving hierarchical configurations
and even recurrent networks (reservoir computing, e.g., Maass
et al., 2002; Jaeger and Haas, 2004), and also the forms of
learning have become modular and perhaps more ‘‘biological’’,
moving from ‘‘supervised’’ learning (requiring a ‘‘teacher signal’’
or ‘‘label’’ for the data points) towards various combinations of
supervised, partially supervised, and unsupervised learning (e.g.,
Chapelle et al., 2006; Schwenker and Trentin, 2014). Many of
these more complex architectures and mechanisms for learning
now require a scheduling of the order or sequence in which

(different parts of) the learning material is presented to different
parts of the network, reminiscent of the ‘‘critical’’ periods (of
presumably higher synaptic plasticity) known in neuroscience,
whose timing may differ in different areas of the cortex.

On the neuroscientific side, neural modeling has been vastly
extended, both in detail and in size. In particular, the processes
and mechanisms involved in the spatio-temporal integration
of activity in the dendrites (e.g., backpropagation of the spike;
Stuart and Sakmann, 1994; Markram et al., 1995; Stuart et al.,
1997) and in synaptic transmission, encompassing various
forms of synaptic plasticity at several time-scales (e.g., STDP,
Markram et al., 1997; Bi and Poo, 1998; Ziegler et al., 2015),
have been investigated, analyzed, and simulated in more detail.
Notably these simulations have often added a ‘‘computational’’
or functional dimension concerning the potential use or
purpose of such mechanisms to a purely descriptive biophysical
analysis. On the other hand, much larger networks of more
simplified model neurons could be simulated due to the quickly
increasing available computer power. Such larger scale or even
‘‘systemic-level’’ simulations were mostly guided by functional
or computational ideas concerning information processing in
neural networks that is able to realize interesting behavioral or
even cognitive functionalities.

These investigations have led to the establishment of the
discipline of computational neuroscience as evidenced by
several books, conferences, and journals (e.g., Churchland
and Sejnowski, 1992; Dayan and Abbott, 2001; Arbib, 2002;
the NIPS conferences, Journals ‘‘Neural Computation’’,
‘‘Neurocomputing’’, ‘‘Neural Networks’’).

An important issue within the community of computational
neuroscience has been ‘‘neural coding’’ and more generally the
use of information theory in the evaluation of single neuron
responses and neural networks. The question of the neural code
has been debated heatedly since the late 1960s (Perkel and
Bullock, 1967). The main issue was the interpretation and use
of neural spike responses in terms of single spike timing or
spike frequency evaluation. Much of this research was driven
by the perhaps naive question, why the brain uses spikes for
communication and maybe also for computation. Many sensor
and motor functions have been implemented by networks of
spiking neurons and there are large-scale hardware realizations
for this (e.g., Mead, 1989; Mahowald and Douglas, 1991), some
of which are currently under development (e.g., Merolla et al.,
2014 or in the HBP1, Markram et al., 2015), with the vague
prospect of being useful for technical applications. For hardware
realizations of associative memories spiking activity may be
useful because it fits well with the required sparseness of activity
patterns (Palm, 2013). Also correlations or synchrony of activity
may be easier to compute by counting coincident spikes (see the
literature on ‘‘binding’’, e.g., Engel and Singer, 2001). However,
no convincing general theoretical argument for a principled
computational advantage of spikes vs. continuous potentials has
been put forward yet.

In this context and also in the analysis and evaluation of
peripheral (sensory ormotor) neural responses and of the storage

1humanbrainproject.eu, artificialbrains.com
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and retrieval capacity of rules for synaptic plasticity, information
theory, in particular maximization of mutual information, was
often used in computational neuroscience, neural modeling and
sometimes even in experimental neuroscience (see Grün and
Rotter, 2010; and citations in Palm, 2012, ch. 12).

On the technical side this is paralleled by a quite common
use of ideas from information theory in neurocomputing and
learning theory, in particular the use and optimization of
the logarithm of a posteriori probabilities or the Kullback-
Leibler information distance for the derivation of learning rules
(citations in Palm, 2012, ch.11) and the interpretation of neural
activation as Bayesian inference (e.g., Rao et al., 2002; Doya et al.,
2006).

NEW CHALLENGES

The further we move away from the periphery into central
information processing and true human cognitive abilities, the
sparser gets the amount of insight or inspiration we can find
in current computational neuroscience. At the same time many
sophisticated behaviors now are labelled as ‘‘cognitive’’, which
is often far from the original meaning (cf. Webster’s). There
are some computational ideas concerning mirror neurons and
language processing (e.g., Yu and Ballard, 2004; Arbib, 2006;
Markert et al., 2007, 2009), or more complex visual tasks
involving for example perceptual learning, the establishment of
visual routines, or the recognition of complex objects (e.g., Rao
and Ballard, 1999; Riesenhuber and Poggio, 1999; Roelfsema
et al., 2003), but what is missing in these interesting approaches
is a detailed integration of the purely visual subtasks into a
complete cognitive behavior.

This situation is reminiscent of the development of the field
of artificial intelligence during the last 40 years. After very
broad and general claims and initial successes in solving various
particular problems (e.g., chess playing, theorem proving) in
isolation by particular methods, the community started to ask
for more integrated solutions demonstrating the embedding
of ‘‘symbolic’’ artificial intelligence-methods into a broader
behavioral context [called symbol grounding (Harnad, 1990)
or embodiment], the generalization of solutions from just
one particular and often artificial type of problem to a
wide variety of naturally occurring or ‘‘real world’’ problems
(Artificial General Intelligence2), and the development of so-
called cognitive architectures (e.g., Anderson, 1983, 2007; Newell,
1990; Laird, 2012) which can be used to realize thesemethods and
solutions using well-established building blocks from cognitive
psychology (e.g., Wickelgreen, 1979). Also this development
points in the direction of more integrated behavioral approaches
and perhaps even the use of neural or brain-like structures
and processes in the realization of complex cognitive tasks
possibly involving symbolic information processing (neuro-
symbolic integration3).

Of course, the realization of serious cognitive abilities or of
artificial intelligence, with brain-like neural networks is a hard

2agi-society.org
3neural-symbolic.org

task, since it requires an understanding and design of networks
at the system level, and complete cognitive tasks typically involve
a substantial part of the whole brain and in particular of the
cerebral cortex (Palm et al., 2014), so that we cannot restrict
our modeling to a relatively small subnetwork or subsystem.
However, this kind of modeling and understanding is definitely
needed even in medicine when we want to model for example the
use and effect of drugs in the treatment of central neurological,
psychiatric or psychological disorders.Wewill be able to improve
medical treatments substantially when we know in more detail
the effects of the application of a drug, neurotransmitter or -
modulator, at a particular location in the brain, maybe even at
particular neurons or particular (types of) synapses.

On the experimental side, the new field of cognitive
neuroscience (e.g., Baars and Gage, 2010), which emerged during
the ‘‘decade of the brain’’ (the 1990s), could have complemented
this new direction of neural information processing theory, but
it rather increased the terminological confusion. Neuroscientists
who had previously refrained from addressing concepts like
consciousness, began discussing its localization in the brain
based on the new technique of fMRI, which led to a revival
of brain localization of higher cognitive functions in thousands
of experimental studies and of philosophical debates about
consciousness (e.g., Koch and Tononi, 2011; Tononi, 2012) and
cognition in animals and for example, the attribution of some
commonsense psychology to monkeys, using the strange label
of ‘‘theory of mind’’ (Call and Tomasello, 2008). Of course,
all sorts of animals are able to show very intriguing and
sophisticated kinds of behavior, but even if it may be fashionable,
it is not generally useful to call it ‘‘cognitive’’. If we want to
study human cognitive abilities like language understanding,
we can at best do it in animals that are evolutionary close
to us. Neurophysiology in humans is possible by non-invasive
methods like EEG and fMRI, but fMRI does not provide
the spatial and temporal resolution to study in detail how a
computation is performed, it only allows to narrow down where
it is performed. Among other things, these experiments do not
tend to substantiate localist claims, since it is not at all obvious,
where to localize consciousness, working memory, language
understanding and most components of cognitive architectures
in the brain (e.g., Sarter et al., 1996; Uttal, 2003; Ranganath et al.,
2004; Ranganath and Blumenfeld, 2005; Kiefer and Pulvermüller,
2012; Pulvermüller et al., 2014; Ulrich et al., 2014). This does
not contradict the possibility of modularity in brain organization
(Fodor, 1983), but it still remains unclear, what these modules
might be (beyond sensory modalities, for example) and how they
relate to the particular modules often postulated in mainstream
cognitive psychology.

Based on these developments leading to the present
state of affairs, it should now be the time to further
the theoretical understanding of complex cognitive abilities,
including computationally demanding tasks as in artificial
intelligence and psychologically and socially important faculties
like introspection, empathy, consciousness and free will. The
development of such theories should be guided or constrained
by our accumulated knowledge from neuroscience, psychology,
and computer science.
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In order to foster the advancement of computational
neuroscience in this direction, it may be useful, but it is certainly
not sufficient to organize the collection and distribution of
more complete and better experimental neuroscientific data
in order to model these data (as in the HBP1 or the BAM
project, Alivisatos et al., 2012), because this will at best lead to
a biophysical understanding of brain activity. In addition, it is
necessary to develop synthetic ideas of how certain cognitive
abilities involving image or language understanding, planning
and non-factual reasoning could be realized adequately in brain-
like neural networks, i.e., to understand the neural mechanisms
for deliberate decision making and the sequential concerted
organization of massively parallel computations (Palm and
Bonhoeffer, 1984), or to develop artificial intelligence in brain-
like neural networks (see Palm, 1982 for an early attempt).

Kahnemann (2011) has distinguished two kinds of processes
that are involved in decision making: slow and fast. Many
complex behavioral abilities, for example in perception,
reinforcement learning andmotor control, have been understood
quite well in computational neuroscience so far, but they typically
deal with the ‘‘fast system’’ that we share with many animals. The
‘‘slow system’’ of decision making which is related to ‘‘mental
energy’’ (which requires physical energy, but may not be exactly
the energy consumption measured in functional MRI) and
interacts in interesting and subtle ways with the fast system, is
not easily amenable to neuroscience and has hardly been studied
or modelled in computational neuroscience, although we cannot
deny its psychological reality. It would be a good candidate for
the ‘‘conductor’’ mentioned in the title. Psychological models
of these processes (e.g., Anderson, 1983, 2005; Baddeley et al.,
1996; Baddeley, 2007; Lewandowsky and Farrell, 2010; Cooper,
2013) are able to describe some of this, but are still far from
detailed neurocomputational realizations (Barak and Tsodyks,
2014). If we take cognition seriously and not just use it as a fancy
label, we will open a new emerging field of interdisciplinary
research between computer science, neuroscience and cognitive
psychology.

Criteria for a good neurocomputational cognitive model can
be combined from criteria already demanded by neuroscientists,
computer scientists and psychologists; some of them that
immediately come to mind, are listed below. Certainly any good
cognitive model should address several of these criteria.

The basic demand is of course that the model really solves
a cognitive task. For this we need a behavioral description of
the task, an outline of the solution and a computer program
or simulation of it that can be tested on a variety of problem
instances. This program should be realized in (or demonstrably
convertible into) a neural network architecture. Based on this we
can produce a list of criteria:

1. Scalability
2. Efficiency (in real time with realistic size)
3. Neural plausibility
4. Introspective plausibility
5. Reusability (the model should be usable for several related

problems)
6. Evolutionary plausibility (how could it have evolved?)
7. Learnability (how could it be learned?)
8. Degradability (it should not immediately break down —

‘‘graceful degradation’’).

Perhaps in this new kind of large-scale or system-level
computational modeling some of the recent developments in
the application oriented branch of neural information processing
need to be reunited with the neuroscience oriented branch. After
all, during evolution the development of intriguing cognitive
abilities in the human brain has been pushed forward by the need
to solve various complex tasks in the real world by reorganizing
the same basic neural machinery. So in order to understand the
concerted cooperation of several cortical areas and subcortical
structures in the solution of complex cognitive tasks it may
in fact be useful to consider the more sophisticated network
architectures and learning schemes that have recently been put
forward in order to solve complex practical problems in various
fields of applications.

REFERENCES

Abdel-Rahman, M., Dahl, G. E., and Hinton, G. (2012). Acoustic modeling using
deep belief networks. IEEE Trans. Audio Speech Lang. Process. 20, 14–22.
doi: 10.1109/tasl.2011.2109382

Alivisatos, A. P., Chu, M., Church, G. M., Greenspan, R. J., Roukes, M. L., and
Yuste, R. (2012). The brain activity map project and the challenge of functional
connectomics. Neuron 74, 970–974. doi: 10.1016/j.neuron.2012.06.006

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard
University Press.

Anderson, J. R. (2005). Human symbol manipulation within an
integrated cognitive architecture. Cogn. Sci. 29, 313–341. doi: 10.
1207/s15516709cog0000_22

Anderson, J. R. (2007).How Can the Human Mind Occur in the Physical Universe?
New York: Oxford University Press.

Arbib, M. A. (ed.). (2002). The Handbook of Brain Theory and Neural Networks.
2nd Edn. Cambridge, MA: MIT Press.

Arbib, M. A. (ed.). (2006). Action to Language via the Mirror Neuron System. New
York, NY: Cambridge University Press.

Baars, B. J., and Gage, N. M. (2010). Cognition, Brain and Consciousness.
Introduction to Cognitive Neuroscience, 2nd Edn. Burlington, MA, San Diego,
CA, Oxford, UK: Elsevier Ltd.

Baddeley, A. D. (2007). Working Memory, Thought and Action. Oxford: Oxford
University Press.

Baddeley, A. D., Della Sala, S., Robbins, T. W., and Baddeley, A. (1996). Working
memory and executive control. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351,
1397–1403. doi: 10.1098/rstb.1996.0123

Barak, O., and Tsodyks, M. (2014). Working models of working memory. Curr.
Opin. Neurobiol. 25, 20–24. doi: 10.1016/j.conb.2013.10.008

Bengio, Y. (2009). Learning deep architectures for AI. Found. Trends Mach. Learn.
2, 1–127. doi: 10.1561/2200000006

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: a review
and new perspective. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828.
doi: 10.1109/TPAMI.2013.50

Bi, G., and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal
neurons: dependance on spike timing, synaptic strength, and postsynaptic cell
type. J. Neurosci. 18, 10464–10472.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York, NY:
Springer.

Call, J., and Tomasello, M. (2008). Does the chimpanzee have a theory of
mind? 30 years later. Trends Cogn. Sci. 12, 187–192. doi: 10.1016/j.tics.2008.
02.010

Chapelle, O., Schölkopf, B., and Zien, A. (2006). Semi-Supervised Learning.
Cambridge, MA: MIT Press.

Frontiers in Computational Neuroscience | www.frontiersin.org 4 January 2016 | Volume 10 | Article 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Palm Neural Information Processing

Churchland, P. S., and Sejnowski, T. J. (1992). The Computational Brain.
Cambridge, MA: MIT Press.

Cooper, R. P. (2013). Modelling High-Level Cognitive Processes. New York, NY,
Hove, UK: Psychology Press.

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience. Computational and
Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press.

Doya, K., Ishii, S., Pouget, A., and Rao, R. P. N. (ed.). (2006). Bayesian Brain.
Probabilistic Approaches to Neural Coding. Cambridge, MA: MIT Press.

Engel, A. K., and Singer, W. (2001). Temporal binding and the neural correlates of
sensory awareness. Trends Cogn. Sci. Regul. Ed. 5, 16–25. doi: 10.1016/s1364-
6613(00)01568-0

Fodor, J. A. (1983). The Modularity of Mind. Cambridge, MA: MIT Press.
Grün, S., and Rotter, S. (ed.). (2010). Analysis of Parallel Spike Trains. Springer

Series in Computational Neuroscience. New York, Dordrecht, Heidelberg,
London: Springer.

Harnad, S. (1990). The symbol grounding problem. Physica D 42, 335–346. doi: 10.
1016/0167-2789(90)90087-6

Heittmann, A., and Rückert, U. (1999). ‘‘Mixed mode VLSI implementation of a
neural associative memory,’’ in Proceedings of the 7th International Conference
onMicroelectronics for Neural, Fuzzy and Bioinspired Systems (Granada: IEEE),
299–306.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., et al. (2012).
Deep neural networks for acoustic modeling in speech recognition. IEEE Signal
Process. Mag. 29, 82–97. doi: 10.1109/MSP.2012.2205597

Hubel, D. H., andWiesel, T. N. (1968). Receptive fields and functional architecture
of monkey striate cortex. J. Physiol. 195, 215–243. doi: 10.1113/jphysiol.1968.
sp008455

Hubel, D. H., Wiesel, T. N., and Le Vay, S. (1977). Plasticity of ocular dominance
columns in monkey striate cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 278,
377–409. doi: 10.1098/rstb.1977.0050

Jaeger, H., and Haas, H. (2004). Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication. Science 304, 78–80.
doi: 10.1126/science.1091277

Kahnemann, D. (2011). Thinking, Fast and Slow. London: Penguin Books.
Kiefer, M., and Pulvermüller, F. (2012). Conceptual representations in mind and

brain: theoretical developments, current evidence and future directions. Cortex
48, 805–825. doi: 10.1016/j.cortex.2011.04.006

Koch, C., and Tononi, G. (2011). A test for consciousness. Howwill we knowwhen
we’ve built a sentient computer? By making it solve a simple puzzle. Sci. Am.
304, 44–47. doi: 10.1038/scientificamerican0611-44

Krikelis, A., and Weems, C. C. (1997). Associative Processing and Processors. Los
Alamitos, Washington, Brussels, Tokyo: IEEE Computer Society Press.

Laird, J. E. (2012). The Soar Cognitive Architecture. Cambridge, MA: The MIT
Press.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.
doi: 10.1038/nature14539

Lewandowsky, S., and Farrell, S. (2010). Computational Modeling in Cognition:
Principles and Practice. Thousand Oaks, CA: SAGE Publications.

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing
without stable states: a new framework for neural computation
based on perturbations. Neural Comput. 14, 2531–2560. doi: 10.
1162/089976602760407955

Mahowald, M., and Douglas, R. (1991). A silicon neuron. Nature 354, 515–518.
doi: 10.1038/354515a0

Markert, H., Kaufmann, U., Kara Kayikci, Z., and Palm, G. (2009). Neural
associative memories for the integration of language, vision and action in
an autonomous agent. Neural Netw. 22, 134–143. doi: 10.1016/j.neunet.2009.
01.011

Markert, H., Knoblauch, A., and Palm, G. (2007). Modelling of syntactical
processing in the cortex. Biosystems 89, 300–315. doi: 10.1016/j.biosystems.
2006.04.027

Markram, H., Helm, P. J., and Sakmann, B. (1995). Dendritic calcium transients
evoked by single backpropagating action potentials in rat neocortical pyramidal
neurons. J. Physiol. 485, 1–20. doi: 10.1113/jphysiol.1995.sp020708

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275,
213–215. doi: 10.1126/science.275.5297.213

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah,
M., Sanchez, C. A., et al. (2015). Reconstruction and simulation of

neocortical microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.
09.029

Mead, C. (1989). Analog VLSI and Neural Systems. Boston, MA: Addison-Wesley.
Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with a
scalable communication network and interface. Science 345, 668–673. doi: 10.
1126/science.1254642

Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard
University Press.

Palm, G. (1982). Neural Assemblies. An Alternative Approach to Artificial
Intelligence. New York, NY: Springer, Berlin, Heidelberg.

Palm, G. (2012). Novelty, Information and Surprise. New York, NY: Springer,
Berlin, Heidelberg.

Palm, G. (2013). Neural associative memories and sparse coding. Neural Netw. 37,
165–171. doi: 10.1016/j.neunet.2012.08.013

Palm, G., and Bonhoeffer, T. (1984). Parallel processing for associative and
neuronal networks. Biol. Cybern. 51, 201–204. doi: 10.1007/bf00346141

Palm, G., Knoblauch, A., Hauser, F., and Schüz, A. (2014). Cell assemblies in the
cerebral cortex. Biol. Cybern. 108, 559–572. doi: 10.1007/s00422-014-0596-4

Palm, G., and Palm, M. (1991). ‘‘Parallel associative networks: the pan-system
and the Bacchus-chip,’’ in Proceedings of the 2nd International Conference
on Microelectronics for Neural Networks, eds U. Ramacher, U. Rückert, and
J. A. Nossek (München: Kyrill & Method Verlag), 411–416.

Perkel, D. H., and Bullock, T. H. (1967). Neural coding. Neurosci. Res. Program
Bull. 6, 223–344.

Pulvermüller, F., Moseley, R. L., Egorova, N., Shebani, Z., and Boulenger, V.
(2014). Motor cognition–motor semantics: action perception theory of
cognition and communication. Neuropsychologia 55, 71–84. doi: 10.1016/j.
neuropsychologia.2013.12.002

Ramacher, U., Rückert, U., and Nossek, J. A. (eds.). (1991). Proceedings 2nd
International Conference on Microelectronics for Neural Networks. Munich:
Kryll & Method.

Ranganath, C., and Blumenfeld, R. S. (2005). Doubts about double dissociations
between short- and long-term memory. Trends Cogn. Sci. 9, 374–380. doi: 10.
1016/j.tics.2005.06.009

Ranganath, C., Cohen, M. X., Dam, C., and D’Esposito, M. (2004). Inferior
temporal, prefrontal and hippocampal contributions to visual workingmemory
maintenance and associative memory retrieval. J. Neurosci. 24, 3917–3925.
doi: 10.1523/jneurosci.5053-03.2004

Rao, R. P. N., and Ballard, D. H. (1999). Predictive coding in the visual cortex:
a functional interpretation of some extra-classical receptive-field effects. Nat.
Neurosci. 2, 79–872, 79–87. doi: 10.1038/4580

Rao, R. P. N., Olshausen, B. A., and Lewicki, M. S. (eds.). (2002). Probabilistic
Models of the Brain. Perception and Neural Function. Cambridge, MA: MIT
Press.

Riesenhuber, M., and Poggio, T. (1999). Hierarchical models of object recognition
in cortex. Nat. Neurosci. 2, 1019–1025. doi: 10.1038/14819

Roelfsema, P. R., Khayat, P. S., and Sperkreijse, H. (2003). Subtask sequencing in
the primary visual cortex. Proc. Natl. Acad. Sci. U S A 100, 5467–5472. doi: 10.
1073/pnas.0431051100

Sarter, M., Berntson, G. G., and Cacioppo, J. T. (1996). Brain imaging and
cognitive neuroscience. Toward strong inference in attributing function to
structure. Am. Psychol. 51, 13–21. doi: 10.1037/0003-066x.51.1.13

Schwenker, F., and Trentin, E. (2014). Pattern classification and clustering: a
review of partially supervised learning approaches. Pattern Recognit. Lett. 37,
4–14. doi: 10.1016/j.patrec.2013.10.017

Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst. Tech.
J. 27, 379–423, 623–656. doi: 10.1002/j.1538-7305.1948.tb00917.x

Stuart, G. J., and Sakmann, B. (1994). Active propagation of somatic action
potentials into neocortical pyramidal cell dendrites.Nature 367, 69–72. doi: 10.
1038/367069a0

Stuart, G., Spruston, N., Sakmann, B., and Häusser, M. (1997). Action potential
initiation and backpropagation in neurons of the mammalian central nervous
system. Trends Neurosci. 20, 125–131. doi: 10.1016/s0166-2236(96)10075-8

Tononi, G. (2012). Integrated information theory of consciousness: an updated
account. Arch. Ital. Biol. 150, 56–90. doi: 10.4449/aib.v149i5.1388

Ulrich, M., Adams, S. C., and Kiefer, M. (2014). Flexible establishment of
functional brain networks supports attentional modulation of unconscious
cognition. Hum. Brain Mapp. 35, 5500–5516. doi: 10.1002/hbm.22566

Frontiers in Computational Neuroscience | www.frontiersin.org 5 January 2016 | Volume 10 | Article 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Palm Neural Information Processing

Uttal, W. R. (2003). The New Phrenology: The Limits of Localizing Cognitive
Processes in the Brain. Cambridge, MA: MIT Press.

Vapnik, V. N. (1998). Statistical Learning Theory. New York: Wiley-Interscience.
Wickelgreen, W. A. (1979). Cognitive Psychology. Englewood Cliffs, NJ: Prentice-

Hall.
Wiener, N. (1948). Cybernetics: or Control and Communication in the Animal and

the Machine. New Jersy, NJ: Wiley.
Yu, C., and Ballard, D. (2004). A multimodal learning interface

for grounding spoken language in sensory perceptions. ACM
Transactions on Applied Perception 1, 57–80. doi: 10.1145/1008722.
1008727

Zhu, S., and Hammerstrom, D. (2002). ‘‘Simulation of associative neural
networks’’, in Proceedings of the 9th International Conference on Neural
Information Processing (Singapore: IEEE), 1639–1643.

Ziegler, L., Zenke, F., Kastner, D., andGerstner,W. (2015). Synaptic consolidation:
from synapses to behavioral modeling. J. Neurosci. 35, 1319–1334. doi: 10.
1523/JNEUROSCI.3989-14.2015

Conflict of Interest Statement: The author declares that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Palm. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution and
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 January 2016 | Volume 10 | Article 3

http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive

	Neural Information Processing in Cognition: We Start to Understand the Orchestra, but Where is the Conductor?
	THE DEVELOPMENT OF THE FIELD OF NEURAL INFORMATION PROCESSING
	NEW CHALLENGES
	REFERENCES


