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Estimation of emotions is an essential aspect in developing intelligent systems intended

for crowded environments. However, emotion estimation in crowds remains a challenging

problem due to the complexity in which human emotions are manifested and the

capability of a system to perceive them in such conditions. This paper proposes a

hierarchical Bayesian model to learn in unsupervised manner the behavior of individuals

and of the crowd as a single entity, and explore the relation between behavior and

emotions to infer emotional states. Information about the motion patterns of individuals

are described using a self-organizing map, and a hierarchical Bayesian network builds

probabilistic models to identify behaviors and infer the emotional state of individuals

and the crowd. This model is trained and tested using data produced from simulated

scenarios that resemble real-life environments. The conducted experiments tested the

efficiency of our method to learn, detect and associate behaviors with emotional states

yielding accuracy levels of 74% for individuals and 81% for the crowd, similar in

performance with existing methods for pedestrian behavior detection but with novel

concepts regarding the analysis of crowds.

Keywords: crowd behavior, emotion estimation in crowds, estimation of individual and collective emotions

1. INTRODUCTION

The tendency of the urban development toward Smart cities (Chourabi et al., 2012) poses a number
of research and engineering challenges among which crowd emotion management and prevention
of escalations is of vital importance. Furthermore, with the fast growth of population in urban areas
around the world, the phenomenon of crowds is set to become commonplace in the near future.
The purpose of this work is to present an approach for estimating emotions of single individuals
and of a crowd as a whole. In this work, we use the working definition of the crowd as a group of
people in proximity, where a common motivation or set of emotions may exist as in the case of
sports events and concerts, or merely individuals with different motivations and emotions walking
around a busy area. In both instances, the term crowd behavior refers to the behavior adopted by
individuals when becoming part of a crowd.

Research on crowd emotions differs significantly from the research on individual emotions in
several ways. de Gelder (2006) and Huis in ’t Veld and De Gelder (2015) propose that crowd
emotions are a delicate balance between the emotions of the individuals and the emotions of the
crowd. They found that the interactive or panicked crowds, as opposed to the individually fearful
crowds, triggered more anticipatory and preparation action activity, whereas the brain was less
sensitive to the dynamics of individuals in a happy or neutral crowd.
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Despite the dissimilarities among themost prominent theories
addressing crowds from psychologists and sociologist such as
Le Bon (2001), Freud (1921), and Allett (1996) among others,
there is a consensus on the important role of emotions in
the phenomenon of crowd behavior (Challenger et al., 2009).
Emotions can be thought as manifestations of our internal
state of well-being utilizing psychophysiological and behavioral
reactions. In more practical terms, emotions serve as a response
to internal or external events experienced by a subject and are
manifested over brief periods of time (Plutchik, 2011). Also,
supported by the work done by Matsumoto (2004), Ekman
et al. (1987) and Keltner and Ekman (2000) we have learn that
emotions are discrete and measurable, also that certain emotions
appear to be universally recognized despite cultural context or
learned associations.

The use of facial and vocal expressions to infer emotions
becomes unfeasible in crowded environments. Hence, in this
work we propose the use of behaviors described as motion
patterns to identify emotional states. This approach is supported
by de Gelder et al. (2010), Van den Stock (2007) and Frijda
(2010) where they suggest that the whole body expressions of
emotion are primary carriers of emotion and action information
and may thus play a more important role in a crowd situation
than facial expressions. Emotions expressed by dancers and
music instrument players have been simulated on robot agents
by Barakova and Lourens (2010). The relationship between
emotional states and behaviors is further supported by Damasio’s
Somatic Marker hypothesis (Bechara and Damasio, 2005) in
which he explains that decision making involves both cognitive
and emotional processes. However, it is important to point
out that the relationship between emotions and behaviors is
not straightforward as shown in appraisal theory (Moors et al.,
2013) proposed by Arnold and developed Lazarus to explain
how the same event can provoke different emotions in different
individuals and occasions. Moreover, the contemporary appraisal
theories define emotions as processes rather than states (Moors
et al., 2013), which is in line with the modeling of the movement
behavior of the individuals in the crowd.

The work presented in this paper proposes a hierarchical
Bayesian model suited for crowded environments. Our model
is capable to learn behaviors and associate them with emotions
during the training phase, and to estimate emotional states based
on partial observations of behaviors during the testing phase; we
apply this for both the individuals in the crowd and the crowd as
a whole. We consider two types of entities, namely the individual
and the crowd. The entity individual describes the behavior
and associated emotion of individual people walking across the
observed environment. Hence, an instance of entity individual
is implemented for each pedestrian detected. The entity crowd
describes the whole congregation of people as a single being
subjected to the laws of mental unity as explained in Le Bon
(2001), hence having its own behavior and associated emotional
state. In this work, we limit to describe emotional states in one
dimension, ranging from positive to negative according to the
principle of valence (Rosenhan and Messick, 1966).

In the proposed approach, the topology of an environment
is learned from observed trajectories of individuals employing a

self-organizing map SOMI , where each node of SOMI represents
a mutually exclusive zone. The path of individuals is expressed as
a sequence of transitions among these zones, and a hierarchical
Bayesian network builds probabilistic models to describe and
group similar behaviors. The learned behaviors are associated
with certain emotional states in an empirical fashion.We describe
the configuration of the crowd in a given instant with a state
vector containing the estimated density level in each zone of the
environment. Employing a second self-organizing map SOMC

we cluster similar configurations of the crowd into a node of
SOMC, enabling us to describe the behavior of a crowd as a
transition of nodes of SOMC using a similar hierarchical Bayesian
network. The proposed hierarchical Bayesian model is presented
in Figure 1. Finally, the emotional states are associated to crowd
behaviors in an empirical way. The association between behaviors
and emotions is done empirically because the interpretation of a
behavior greatly depends on the context of the environment, for
example, a fast-paced walk with sudden turns during rush-hour
in a train station could have a different emotion associated if the
same behavior was displayed in a museum.

The remaining of this work is organized as follow: Section 2
presents a brief survey of previous approaches to estimate
emotions. A comprehensive description of our proposed model
is presented in Section 3. Experiments and results to validate our
model are given in Section 4. Finally, in Section 5 we state our
conclusions and intended future work.

2. RELATED WORK

Most of the existing literature in the subject of human emotion
recognition has been focused on individuals rather than crowds
(Horlings et al., 2008; Izar, 2013). Facial and vocal expressions
are useful indicators to infer emotional states, Ekman proposed
in Ekman and Friesen (2002) a system based on sets of action
units (AU) to recognize emotions based on facial movements.
Juslin and Scherer explore the use of pitch and context to
infer emotions, as presented in Juslin and Scherer (2008).
However, the use of facial and vocal expressions to identify
emotions is not feasible in crowded environments. Observation
of behaviors seems more appropriate for estimating emotions
in crowded scenarios but the relationship between behaviors
and emotions is not straightforward as shown in Moors et al.
(2013) as it varies depending on the context of the situation
and environment. However, promising research has emerged in
recent years proposing solutions to this problem. An interesting
experiment in Novelli et al. (2013) tested a self-categorization
theory to estimate positive and negative emotional responses to
crowded environments under different circumstances. Inspired
from the highly crowded cities in China, Liu et al. (2013) analyze
the contagion of emotions among individuals, particularly under
abnormal (panic) scenarios. A more relevant research and the
starting point for the work presented here was done by Baig
et al. (2014) with a probabilistic model to estimate emotional
state of individuals as positive or negative based on the time and
trajectory taken to traverse a simple scenario. Our contribution
differs from Novelli et al. (2013) and Liu et al. (2013) in that
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FIGURE 1 | Hierarchical bayesian model for entities individual and crowd.

FIGURE 2 | (A) Simulation of a crowded environment. (B) Plot of individual’s trajectories, colors are assigned randomly.

we provide a method for online estimation of emotions of both
individuals and the crowd as a whole. Also, unlike the work in
Baig et al. (2014) that models only individuals that have the same
motivation, we provide a more robust and adaptable framework
that treats individuals and the crowd as separate entities to
estimate emotions under environments where multiple types of
behaviors are observed.

3. METHODS

This section describes the proposed hierarchical Bayesian model
to describe behaviors and associated emotional states of both

entities individual and crowd. In this work, we define a behavior
as the way in which an entity transits among different states to
achieve its goal (destination). For individual, a state corresponds
to a physical region of the environment whereas for the crowd
a state corresponds to a given configuration of people’s density
distribution in the observed environment. Behaviors for both
individual and crowd are labeled empirically by a human operator
knowledgeable of the environment using the labels of positive,
normal or negative to denote the emotional state.

In overall, our approach starts by learning the topology of
the observed environment from the trajectory of individuals
using a self-organizing map (SOM) (Kohonen, 1990) which
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FIGURE 3 | (A) Training data (green) and the self-organizing map SOMI (red

edges and blue nodes). (B) Environment partitioned into zones, colors are

assigned to zones in a random fashion. (C) Clustering distribution of training

data among zones.

divides the physical space into regions. Trajectories of individuals
are represented as transition of regions, and all trajectories
with similar destination are classified to a same behavior, to
finally build a probabilistic model that describe this behavior.
Likewise for the crowd, similar sequences of state transitions are
grouped into a same behavior which is described by means of
a probabilistic model. The bayesian network for both individual
and crowd entities is presented in Figure 1.

Once the topology of the environment and behaviors of
both the individual and the crowd are learned, we can
test the ability of the model to produce estimation of
emotions.

3.1. Environment Representation
We first address the problem of obtaining a topological
representation of the environment of interest as this is necessary
to describe behaviors of individuals. Let us consider an
environment monitored by a surveillance camera that captures
the motion of individuals as illustrated in Figure 2A. By applying
state of the art techniques for multi-target tracking in camera
networks (Antonini et al., 2006; Ali and Shah, 2008) it is possible
to obtain the trajectory of each individual and collect this data
into a training set X

X = {x̂1t , ..., x̂Nt }
τk
t= 1 (1)

where x̂it ∈ R
2 is a coordinate estimation of individual ϑi

at time t, in a period of observation from 1 to τk for a
total of N individuals. Using X we train a self-organizing map
SOMI containing a set of nodes S = {s1, ..., sm×n} where
m is the number of rows and n is the number of columns
in an hexagonal topology. As a result of the training phase,
SOMI provides a complete topological representation of the
environment, where node sj ∈ S represents a mutually exclusive
zone in the environment as shown in Figures 3A,B. Representing
the environment utilizing a self-organizing map encompasses
several advantages including (a) unsupervised learning of the
environment’s topological configuration, (b) clustering and
reduction of data and (c) a simpler way to describe individual’s
trajectories.

3.2. Entity Individual
We describe each observed individual ϑi in the environment with
an instance of the entity Individual hence in a crowd with N
people detected, a total of N instances will be implemented. The
hierarchical model of entity Individual is presented in Figure 1.
We describe the trajectory of ϑi as a discrete-controlled process
with a state vector xit ∈ R

2

xit = xit− 1 + git (2)

and observation vector zit ∈ R
2

zit = xit + hit (3)

Where gik and hik represent the process and observation
noise, both assumed to be independent, white, with Gaussian
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distribution. Applying an Extended Kalman Filter (EKF) over the
observation and state vectors we obtain an estimation x̂it . The
trajectory Xi of ϑi is described as a sequence of estimations

Xi = {x̂it1 , ..., x̂itk ; tk ≥ 1} (4)

and {Xk}
N
k=1

represents the trajectories of individuals {ϑk}
N
k=1

.
Using the zones of S and SOMI produced in Section 3.1, we
can cluster every estimation x̂it ∈ Xi into a zone sk ∈ S as
SOMI(x̂it ) = sk. Furthermore, we can express the trajectory Xi

as a sequence of zones

wi = {s1, ..., sq; sj ∈ S, q ≥ 1} (5)

where wi is called a word. Words are grouped into a vocabulary
Vl = {w1, ...,wq} given the condition that ∀wa,wb ∈ Vl, s1 ∈

wa = s1 ∈ wb and sn ∈ wa = sm ∈ wb where |wa| = n and
|wb| = m, that is, words with similar origin and destination. The
notion of words provides a simplified way to describe trajectories
whereas the notion of vocabularies allows to group trajectories
that correspond to the same behavior, aiming to reach the
same destination. Hence, each vocabulary Vl indicates a different
behavior. Each learned behavior is modeled with two conditional
probability distributions (CPDs)

�l
sα ,sβ ,sb+ 1,wa:b

= p(sα, sβ , sb+ 1|wa:b) (6)

and

3l
1t,sb+ 1,sb

= p(1t|sb+ 1, sb) (7)

where sα is the initial state, sβ is the final state and sb+1 is the
predicted next state given the partial observed trajectory wa:b

from time instant a to b in Equation (6). 1t is the transition
time given the current state sb and the predicted next state sb+1

in Equation (7). The purpose of Equation (6) is to estimate the
origin, destination and next state of ϑi by matching wa:b to the
most similar existing word wk with the highest likelihood. On
the other hand, Equation (7) estimates the time required for the
next transition time. Notice that in both Equations (6) and (7),
the superscript l is used to indicate the behavior (vocabulary) to
which the CPDs correspond to. Given the estimation of trajectory
(Equation 6) and transition time (Equation 7) we can proceed to
estimate the emotional state using Bayes rule (Equation 8)

p(E,wa:b+ 1,1t) = p(E)p(sα, sβ , sb+ 1|wa:b)

p(1t|sb+ 1, sb) (8)

where E is the emotional state labeled as positive, normal or
negative, and p(E) is the prior probability learned from the
training data and assumed to be uniform. We evaluate Equation
(8) for each possible value of E in order to find the emotional state
with the highest likelihood. Given that the association between
behavior and emotion depends on the context of the situation,
the rules for labeling are to be determined for each particular
scenario. However, in Section 4 we explain the labeling criteria
applied to the experiments presented here.

TABLE 1 | Parameters of training and testing datasets produced from

simulations.

Parameter Training dataset Test dataset

Duration of dataset 5 h 5 h

Number of positive trajectories 978 894

Number of normal trajectories 1770 1815

Number of negative trajectories 252 291

Total number of trajectories 3000 3000

3.3. Entity Crowd
Supported by the work presented in Le Bon (2007) and Reicher
(2012) we argue that a crowd behaves as a collective minded
entity and therefore we can model behaviors and infer emotional
states for the entity crowd in a similar way to that of the entity
individual. One single instance of the entity crowd is employed in
a given environment.We start our description of the entity crowd
by defining a state vector XCt

XCt = {x1t , ..., xNt ; xit ∈ R
2} (9)

and observation vector ZCt

ZCt = {z1t , ..., zNt ; zit ∈ R
2} (10)

where xit and zit are the state and observation vectors of ϑi as
defined in Equations (2) and (3), respectively, for a total of N
individuals. In a similar way we could define X̂Ct = {x̂it }

N
i=1 as

an estimation of the state vector of entity Crowd, however the
difficulty of using that definition is that X̂Ct is prompt to irregular
dimensionality between samples as individuals join or leave the
crowd. Instead we define X̂Ct as

X̂Ct = {ŷ1t , ..., ŷm×nt } (11)

where ŷkt is an estimated amount of individuals in zone sk ∈ S
at time t, for a total of m × n zones in S as produced by SOMI

in Section 3.1. In this sense, the crowd’s state vector estimation
is implicitly dependent on the estimation of the individuals’
trajectories. This definition of X̂Ct is more advantageous as it
provides a vector with uniform dimensionality while maintaining
meaningful information. Also, since the focus of X̂Ct is density
estimation rather than trajectory tracking, we could employ
crowd density algorithms (Cho et al., 1999; Rahmalan et al.,
2006) to achieve this task. We collect the estimations X̂Ct into a
training set

XT
C = {X̂Ct1

, ..., X̂Ctk
; tk ≥ 1} (12)

and use this set to train a self-organizing map SOMC that
further reduces dimensionality and provides a representation
of states transitions. It is important to mention that SOMC

does not provide topological information as SOMI does. SOMC

is composed by p rows, q columns and a set of nodes C =

{c1, ..., cp×q} where the node ck represents a state of the crowd.
This enables us to classify each estimation to a state.
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FIGURE 4 | Examples of learned behaviors from the trajectories in the training phase, a total of 41 different behaviors where identified. Colors are

assigned randomly.

For the entity crowd we do not define words to describe state
transition sequences because unlike the entity individual where
there is a finite trajectory, the sequence of state transitions in
a crowd emerges as a cyclic process with people continuously
joining and leaving the crowd. As explained in Section 5 we
aim to explore the cyclic behaviors of a crowd in a more
comprehensive way in future work, but for the work presented
here we describe a crowd behavior as a first order Markov process
with two CPDs to estimate the change of states and transition

time

ϒck,ck+ 1
= p(ck+ 1|ck) (13)

and

91t,ck = p(1t|ck+ 1, ck) (14)

where ck and ck+1 are the current and next state, respectively,
and 1t is the transition time. The emotional state of the crowd
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is assigned to be the same as the experienced for the majority
of individuals, hence no labeling is applied to specific state or
transition time of the entity crowd.

4. EXPERIMENTS AND RESULTS

To validate our proposed model we employ data produced
by a realistic crowd simulator first introduced in Chiappino
et al. (2012, 2015), based on social forces (Helbing and Molnar,
1995) where each individual in the environment is treated as a
particle subject to 2D forces, deriving its motion equations from
Newtons law F = ma and accounting for its motivation as an
attraction force pulling the individual toward its destination and
repulsive forces from physical objects and other individuals in the
environment. We have recreated a scenario similar to that of a
train station as shown in Figure 2A, the produced trajectories are
plotted in Figure 2B. The information of individual’s trajectories
is provided directly from the crowd simulator, hence the steps
for detection and tracking of people are omitted. Simulations
were carried out under different levels of crowdedness, details for
the training and testing datasets produced from simulations are
presented in Table 1.

The self-organizingmaps SOMI and SOMC are initialized with
similar parameters. The set of neurons on each SOM is initialized
with random weights and in a hexagonal arrangement spread
across the corresponding input space. Distance between neurons
is calculated by the number of links among them. The initial
neighborhood size is 3 with 100 steps for the ordering phase. The
training phase is done over 500 epochs by competitive layer but
without bias, updating the winning neuron and all other neurons
within the given neighborhood using Kohonen rule.

The first task addressed is to use the trajectory of individuals to
obtain a topological representation of the environment with the
help of a self-organizing map SOMI as shown in Figures 3A,B.
We can observe from Figure 3C the distribution of training data
among zones after the clustering process, which is important
when describing trajectories, larger zones indicate that more
trajectories traverse this area whereas the opposite is also true
for smaller zones. The decision of how many zones to employ
to describe trajectories has a direct impact on the reliability of
our model to estimate the emotion of individuals; this happens
because we describe the behavior of individuals by transition
of zones, and with fewer zones there is a higher uncertainty
of the motion of individuals. In these experiments, SOMI is
composed of 100 zones (10 rows and 10 columns) in a hexagonal
topology. After testing our model with different dimensions, we
found this size to be a suitable balance between predictability and
topological representativeness.

Employing SOMI , the trajectories of the training set were
evaluated, and a total of 41 different behaviors were identified,
a few examples of the learned behaviors are shown in Figure 4.

The scenario replicated in the experiments corresponds to that
of a train station. Hence, the criteria for labeling behaviors follows
from the assumption that people aim to reach their destination
in the briefest possible time. The behaviors with the minimum
number of state transitions and the shortest transition time are

FIGURE 5 | (A) Overall success rate in behavior prediction of individuals. (B)

Online emotion estimation of individuals.

labeled with a positive emotion. The behaviors with the higher
frequency of occurrence are associated with a normal emotion.
Finally, the behaviors with the highest number of transitions and
longer transition time are assigned a negative emotion. During
the testing phase, for the purpose of estimating emotional state on
individuals, our hierarchical model predicts the zones transitions
and transition time for each individual in real time based on the
learned behaviors. In our model, the accuracy level to estimate
the emotion of individuals depends on the model’s capability
to predict the individual’s behavior. In Figure 5A we show the
behavior prediction success rate during a period of 100 s where
the average rate was of 76%. Throughout the entire length of
the simulations, the prediction success rate oscillated between
74 and 82%. A summary of the model’s performance to estimate
emotional states is presented in Table 2. In Figure 5B we present
a snapshot of the online emotion estimation of individuals.

The behavior of the crowd is described with a second self-
organizing map SOMC, also composed of 100 zones (10 rows
and 10 columns), which allow us to build a probabilistic model
for its behavior. However, unlike SOMI , a plot of SOMC does
not provide a visual semantic due to the high dimensionality of

Frontiers in Computational Neuroscience | www.frontiersin.org 7 July 2016 | Volume 10 | Article 63

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Urizar et al. A Hierarchical Bayesian Model for Crowd Emotions

TABLE 2 | Confusion matrix of emotional state estimation based on

individuals’ behavior.

Actual Estimation

Positive (%) Normal (%) Negative (%)

Positive 71 23 6

Normal 14 83 3

Negative 4 21 75

its state vector. Using the same simulations applied to test our
model for individuals, we test the ability of the crowd model
to predict its behavior, that is, the next state and transition
time among states of SOMC. In Figure 6A we can observe the
behavior prediction success rate of the crowd oscillating more
consistently between 50 and 94%, with an average rate of 81%.
In the work proposed here, the emotional state of the crowd
is not correlated to its behavior, instead is assigned to be the
same as the experienced for the majority of individuals. In
Figure 6B we display the summary of detected emotions in an
observation period of 600 s, during which a positive emotion
becomes predominant as the number of individuals joining the
crowd increases.

5. CONCLUSIONS AND FUTURE WORK

In this work, we presented a robust model for the estimation
of emotions on single individuals and the crowd as a whole,
under complex crowded environments. In comparisonwith (Baig
et al., 2014), our approach provides significant improvements:
(1) accounts for scenarios with multiple origin and destination
points, (2) introduces the idea of vocabularies to describe
behaviors which help to reduce data sparsity, and (3) explores the
idea of the crowd as a single entity with its own behavior and
emotional state.

Our overall hypothesis is that crowd emotion is a combination
of individual’s emotion estimation, as suggested by neuroscience
studies (de Gelder et al., 2010). In this particular study, we have
a rather simple model that treats the crowd emotion as a sum of
the emotions of the individuals in the crowd. The emotion of the
crowd is estimated by a deviation of normal patterns and speed
of movement identified in normal situations.

The approach presented here is applicable to real-life crowded
environments for monitoring automation intended to identify
and prevent dangerous situations as well as to improve crowd
control. Furthermore, contributions of this nature are essential
for the development of robust cognitive dynamic systems
intended for smart cities.

Future development of this work will focus on extending
the model to consider the interaction of individual and crowd
emotions enabling us to explore causality and contagion of
emotional states among individuals and its impact in the crowd
as a whole. The result of the simulations performed show the
behavior of the crowd to emerge in a cyclic manner; we are
interested in further explore this phenomenon and to provide a
more comprehensive model for describing such behavior of the

FIGURE 6 | (A) Success rate in behavior prediction of crowd entity. (B) Online

emotion estimation of the crowd.

crowd. Finally, we aim to extend this model to enable its use in
first person perspective models and applications.
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