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The amazing imitation capabilities of songbirds show that they can memorize sensory

sequences and transform them into motor activities which in turn generate the original

sound sequences. This suggests that the bird’s brain can learn (1) to reliably reproduce

spatio-temporal sensory representations and (2) to transform them into corresponding

spatio-temporal motor activations by using an inverse mapping. Neither the synaptic

mechanisms nor the network architecture enabling these two fundamental aspects of

imitation learning are known. We propose an architecture of coupled neuronal modules

that mimick areas in the song bird and show that a unique synaptic plasticity mechanism

can serve to learn both, sensory sequences in a recurrent neuronal network, as well

as an inverse model that transforms the sensory memories into the corresponding

motor activations. The proposed membrane potential dependent learning rule together

with the architecture that includes basic features of the bird’s brain represents the first

comprehensive account of bird imitation learning based on spiking neurons.

Keywords: mirror neurons, inverse problem, songbird, sensory motor learning, synaptic plasticity, precise spike

times, recurrent networks, sequence learning

1. INTRODUCTION

Inverse sensor-motor models serve to generate a desired sensory input by appropriate motor
actions. In this sense they attempt to “invert” the action-sensation mapping given by the physical
world. While in general this mapping is not stationary, sound sequence imitation represents a
comparatively well controlled situation. Therefore, it was tempting to propose inversemodels as the
mechanism enabling many bird species to imitate previously heard acoustic signals (Hanuschkin
et al., 2013). The underlying hypothesis is that inverse models in the bird’s brain perform a
transformation of memorized sensory representations of sound sequences into spatio-temporal
patterns of activities in motor areas that in turn generate the same sound sequences. This enables
imitation of arbitrary sound sequences within the realm of the possible sounds the bird can
produce. A crucial prediction of such so called causal inverse models are mirror neurons active
during both singing as well as playback of a recording of the birds song. The responses of these
mirror neurons to a playback would be delayed relative to the bird itself singing the song. This
delay reflects the loop time it takes for motor activations to produce sound, which produces sensory
activations that are looped back to the respective motor area (e.g., about 40 ms in zebra finches).
Indeed, a recent study has found evidence for such delayed mirroring in area LMAN of the song
bird (Giret et al., 2014) (for a review on auditory-vocal mirroring in songbirds see Mooney, 2014).

The unambiguously clear mirroring with roughly zero delay discovered in neurons in area
HVCx of swamp sparrows (Prather et al., 2008), however, is at odds with previous explanations
using causal inverse models. It was suggested to reflect a “predictive inverse model” that could
emerge from hebbian learning of a single stereotyped (i.e., predictable ) song (Hanuschkin et al.,
2013). If this was true, these neurons could not be (directly) involved in imitation of arbitrary
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sound sequences, i.e., their zero delay mirroring would represent
a highly specific epiphenomenon emerging from a system
enabling reproduction of a limited set of memorized sensory
experiences of sounds.

Here, we propose an alternative causal inverse model in which
zero-delay mirroring rather reflects a delayed feedback from
motor areas backwards to HVC that compensates for the loop
delay. The architecture consists of three interacting neuronal
modules that could be identified with corresponding areas in the
song bird involved in sound production. In particular, it includes
the hypothetical feedback which for conceptual simplicity is
realized by delay-lines (see Figure 2A).

The delayed feedback turns out to be particularly beneficial
for solving the problem of learning inverse models when they
are based on precise spatio-temporal spike patterns, because
it can then be mapped to the problem of associative learning
precisely timed spikes in response to spatio-temporal input
patterns (chronotron learning, compare Gütig and Sompolinsky,
2006; Ponulak and Kasiński, 2010; Florian, 2012;Memmesheimer
et al., 2014). We propose an extension on membrane potential
dependent plasticity (MPDP), a recently proposed biologically
plausible synaptic mechanism that was shown to be quite
powerful for learning chronotrons (Albers et al., 2015). We show
that our extended learning mechanism (MPDP2) not only solves
the chronotron problem, but is similarly potent for learning the
mappings of spatio-temporal spike patterns to spatio-temporal
spike patterns as required in inverse models. In particular, we
show that zero-delay mirroring in our model emerges in HVCx

neurons that by chance or because of anatomical constraints
receive no direct memory input, but are rather activated
via the feedback lines from the motor population m during
singing.

For the reproduction of a song, a second problem needs to
be solved: A memory template of spatio-temporal spike patterns
needs to be learned from exposure to the tutor song. It is
possible to imprint spatio-temporal spike patterns on recurrent
networks such that, when the network is initialized with the
beginning of a target sequence, the network’s dynamics will
associatively complete the full temporal sequence. There are
plasticity rules for sequence imprinting (Memmesheimer et al.,
2014), which, however, are quite artificial. Here, we show that the
samemechanism that self-organizes the inversemodel also allows
for learning the synaptic connections in a recurrent network
to robustly reproduce sequences of neuronal activations. We
discuss the plausibility of the proposed integrative framework
for explaining the sound sequence imitation capability and its
experimentally testable predictions.

2. MATERIALS AND METHODS

2.1. Neuron Model
In the first part of this study, we use two different neuron
models to show that the learning algorithm we suggest here
does not depend on the specifics of one particular neuron model
to be capable of learning precise spike times in response to
spatio-temporal input patterns. For simplicity, we use the simple
integrate-and-fire model for all other parts.

2.1.1. The Simple Integrate-and-Fire Neuron
We investigate plasticity processes in several different network
setups. In each of these setups, a neuron j receives input from
other neurons i via plastic synapses. We denote the time of the
k-th spike of presynaptic neuron with index i as tki . The neuron
is modeled as a simple leaky integrate-and-fire neuron. We here
use the formulation of the SRM0 model to facilitate the derivation
of the plasticity rule (Gerstner and Kistler, 2002). The neuronal
voltage V(t) is given by the sum of weighted synaptic input
kernels ε(s) (postsynaptic potentials, PSPs) and reset kernels R(s),
which model the neuronal reset after a spike. External input
currents Iext(t) are low-pass filtered with a response kernel κ(s).
The full equation reads

V(t) =
∑

i

wi

∑

k

ε(t − tik − tdelay)+
∑

tj

R(t − tj)

+

∞
∫

0

κ(t − s)Iext(s)ds. (1)

Here, wi is the weight from presynaptic neuron j to the
postsynaptic neuron. κ = exp

(

−(t − s)/τm
)

is the passive
response kernel by which external currents are filtered. We also
include a delay of synaptic transmission tdelay. The other kernels
are

ε(s) = 2(s)
1

τm − τs

(

exp(−s/τm)− exp(−s/τs)
)

R(s) = 2(s)(Vreset − Vthr) exp(−s/τm).

(2)

τm is the membrane time constant of a LIF neuron determining
the decay of voltage perturbations, and τs = 2ms is the decay
time constant of synaptic currents, which turns up as the rise
time of the PSP kernel. 2(s) is the Heaviside step function. If
there is no input, the voltage relaxes back to Veq = 0. Spiking
in this model is deterministic: If V(t′) = Vthr = 20mV , the
neuron spikes and a reset kernel is added at time t′ = tpost . The
formulation of the kernel makes sure that the voltage is always
reset to Vreset = −60mV < Veq.

2.1.2. The Conductance Based LIF Neuron
The simple model above suffers from the fact MPDP2 (to be
defined below) is agnostic to the type of synapse. In principle,
MPDP Albers et al. (2015) can turn excitatory synapses into
inhibitory ones by changing the sign of any weight wi. Since this
is a violation of Dale’s law, we present a more biologically realistic
scenario involving MPDP2. We split the presynaptic population
into Nex excitatory and Nin inhibitory neurons. The postsynaptic
neuron is modeled as a conductance based LIF neuron governed
by

Cm
dV

dt
= −gL(V − VL)− (gsl + gf )(V − Vh)− gex(V − Vex)

−gin(V − Vin) , (3)

where V denotes the membrane potential, Cm = 0.16µF the
membrane capacitance, VL = −70mV the resting potential,
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gL = 20 the leak conductance, Vi = −75mV and Vex = 0mV
the reversal potential of inhibition and excitation, respectively
and gin and gex their respective conductances. The spike after-
hyperpolarization is modeled to be biphasic consisting of a fast
and a slow part, described by conductances gf and gsl that keep
the membrane potential close to the hyperpolarization potential
Vh = Vi. When the membrane potential surpasses the spiking
threshhold Vthr = −50mV at time tpost , a spike is registered and
the membrane potential is reset to Vreset = Vh. All conductances
are modeled as step and decay functions. The reset conductances
are given by

τf ,slġf ,sl = −gf ,sl + 1gf ,sl
∑

tpost

δ
(

t − tpost
)

, (4)

where 1gsl = 5 resp. 1gsl = 1000 is the increase of the fast and
slow conductance at the time of each postsynaptic spike. They
decay back with time constants τf = τs < τsl = Cm/gL. The
input conductances gex and gin are step and decay functions as
well, that are increased by wi when presynaptic neuron i spikes
and decay with time constant τs = 2ms. wi denotes the strength
of synapse i.

2.2. The Learning Rule MPDP2

We derive the plasticity rule from the demand of a balanced
membrane potential: the neuron should not be hyperpolarized
nor too strongly depolarized. This is a sensible demand, because
it holds the neuron at a sensitive working point and keeps
metabolic costs down. To that end, we introduce two thresholds,
ϑP < ϑD < Vthr , between which we would like the membrane
potential to stay. The weight change is chosen such that,
whenever ϑD = 10mV is surpassed, all weights that contribute
to the rise of the membrane potential are depressed, weighted by
their respective influence given by the PSP-kernel ε. Whenever
the membrane potential drops below ϑP = VL, all synapses
that contribute to the membrane potential at that point in
time are potentiated, such that for a repetition of the pattern
the membrane potential is deflected to stay between bounds.
Additionally, we bound the weights to stay below a maximum
weight wmax, symbolizing a maximal synaptic strength.

ẇi = η (wmax − |wi|)
(

−γ
[

V(t)− ϑD

]

+
+

[

ϑP − V(t)
]2

+

)

∑

k

ε

(

t − tki − tdelay

)

. (5)

γ is a factor that scales inhibition to excitation. We choose γ =
650 for the simple integrate-and-fire neuron and γ = 150 for the
concutance-based integrate-and-fire neuron.

Obviously, the PSP-kernel used in the learning rule only
has a very direct interpretation in the case of simple integrate-
and-fire neurons. However, in the learning rule, this term
only serves to estimate the extent to which the postsynaptic
membrane potential depends on the input of one particular
neuron. Hence, we track and use the equivalent quantity as well
for the case of the conductance-based Integrate-and-fire neuron
(with τm = Cm/gL). Furthermore, for the conductance-based
Integrate-and-fire neuron, the upper threshold is chosen to lie

between resting potential and firing threshold: ϑD = −53mV .
For the inhibitory synapses coming into play for conductance-
based neurons between the inhibitory presynaptic neurons and
the output neurons, the learning rule is adapted such that the
effect of learning on the membrane potential is preserved. To
that end, we choose the same learning rule as for the excitatory
synapses, just with the opposite sign:

ẇinh = −ẇ (6)

2.2.1. Chronotron
In this section, we introduce the basic setting for the Chronotron
problem, a pattern classification task. In a simple feed-forward
network, the output neuron is supposed to be trained to respond
to sets of input patterns with spikes a particular moments in
time and silence at all other times. To allow for this learning
to be possible, a teacher signal has to be given to the output
neuron to inform it, when to spike and when not to spike. In our
model, this teacher signal is just a strong input. Consider a feed-
forward network consisting of N = 200 presynaptic neurons and
one postsynaptic neuron. For illustration purposes, each input
neuron spikes once in each of the five patterns used during
training. To train the output neuron to spike at a specific time
in response to each input pattern, a single spike is induced at a
fixed time tpost = 100ms by a supplementary external (teacher)
input

Iext = a exp

(

−
t − tpost

τs

)

2(t − tpost). (7)

a = 0.3 is the amplitude of the teacher input. The shape of the
current is chosen to mimic a synaptic input and induce a PSP-like
voltage perturbance (see Equation 2).

While in the case of the simple integrate-and-fire neuron, we
consider synapses that can change signs, for the conductance-
based positive and negative inputs need to be separated. To
that end, the output neuron receives inhibitory input from
Nin = 200 inhibitory presynaptic neurons and excitatory input
fromNex = 200 excitatory presynaptic neurons. An input pattern
for learning thus consists of a set of one excitatory and one
inhibitory input pattern. In each pattern, each input neuron
spikes once.

2.2.2. Inverse Model
To investigate learning of inverse models, we construct a model
of connected neuronal populations reflecting the brain anatomy
of songbirds (see Figure 2A). A motor population m, which
during learning is driven from an external source (not shown in
the figure), activates the muscles in the syrinx for singing. The
bird’s cochlea converts sounds into activations sensory neurons
in population s. We use a simple model of the sound generation
and perception process (see below). s feeds into a sensorimotor
area sm via plastic synapses that will be adapted to form the
inverse model. A subpopulation s2m2 of sm sends a copy of
its own activity into the motor area m via a monosynaptic
connection. In the other subpopulation sxmx of sm, also receiving
sensory input from ssens via synapses subject to the same learning
rule, mirror neurons with zero delay form. In the songbird,
m could be equivalent to RA, the source of noise equivalent
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to LMAN and sm could be a model of HVC, in particular
could sxmx be a model of HVCx and the mirror neurons
therein.

A population of Nm = 20 motor neurons in the motor area
m via the model of the world feeds into Ns sensory neurons in
population s. The membrane time constants of the neurons in
the respective areas are τmm = 70ms and τ sm = 8ms. To model
the bird hearing its own vocalizations, spatio-temporal activity
in m is converted to input in s through several delayed linear
transformations. We create Nw = 40 sparse matrices Mr with
r ∈ 1, . . . , 40, where each entry in a matrix is either zero, or a
positve constant with probability Pp or a negative constant with
probabitity Pn = Pp = 2.5 · 10−3. Spikes in the motor population

at time t are denoted Exm with entries
∑

k δ(t − tki ), i.e., a sum

of delta functions at spike times tki of neuron i. This is low-pass

filtered by τsĖy = −Ey+ Exm.
The birds’ auditory input into neuron j in the sensory

population s from self-generated sounds is then given by a sum of
linearly transformed versions of the motor activity with different
delays differing by 1delay = 1ms

I
j
ext(t) =

Nw
∑

r= 0

M
j
rEy(t − (r − Nw/2)1delay − τloop). (8)

This temporally spreads the self-generated sounds around the
loop delay.

Mimicking the “babbling” young birds presumably use to
establish the relation of motor activities with the corresponding
sensations of self-generated sounds, the motor neurons are fed
strong delta-shaped current pulses of height h = 0.5 with
a frequency of rexplor = 1Hz (resp. rexplor = 2Hz) during
an exploration phase. The firing rate of the neurons in motor
populationm is limited by the long hyperpolarization in this area
introduced by the long membrane time constant τmm . This long
hyperpolarization serves to suppress cyclic activity between areas
m andm2s2.

Consequently, the spatio-temporal motor activity is
transformed into input into the sensory neurons, which in
turn create spatio-temporal sensory spike patterns.

Note that the sensory area s is split into two sub-populations
ssens and srecall receiving the same input given by Equation (8).
Only srecall will be activated during recall, while ssens only receives
sensory input.

At all times, a copy of the motor activations in m is sent
as teacher input to a population of sensorimotor neurons in
s2m2 (τ smm = 8ms) with a delay τloop equivalent to the loop
delay. We simplify the possible complex process that provides
a feedback to the sensorimotor population from the motor
population to a simple delay line, considering only the resulting
effective connection.

By this teacher input of strength a = 0.3, the spatio-temporal
spike patterns activated in sensory memory area srecall can be
mapped back onto the delayed copy of the motor patterns in
the sensorimotor population s2m2. The sensorimotor population
s2m2 then gives a copy of its own activation as input into
the motor population. The synaptic weights from the sensory

population s to the sensorimotor population s2m2 are plastic
according to Equation (5).

Before learning the inverse model, a target pattern is created
by choosing one particular random pattern in motor area m as
it would also be created during babbling with input rate rexplor
and the respective sensory pattern, which are stored for later
comparison to be able to evaluate the quality of the inverse model
over time (for details see below). Over the course of learning, we
evaluate the distance between the stored motor pattern and the
motor pattern that is evoked when the tutor sensory pattern is fed
into the sensory population (recall case). During recall, initially,
only smem is activated by imposing the target pattern, which
activates s2m2, which in turn activatesm to—if the inverse model
was successfully learned—reproduce the target motor pattern.
We then use this motor pattern to test which sensory pattern
it would evoke to be able to evaluate the relevant distance in
sensory representations. Note that the activation inm entrails an
activation of sm via the feedback loop and not generated from
sensory input. This leads to the precise zero delay mirroring in
sxmx.

To quantify the learning process, in each trial we measure
the Victor- Purpura distance (Victor and Purpura, 1997) between
tutor and recall spike patterns, while minimizing with respect to
a global shift.

2.2.3. Recurrent Networks
Here, we investigate whether the same mechanism used for
learning the inverse model can also serve to imprint spatio-
temporal patterns on recurrent networks. For this purpose, we
consider an all-to-all network of N neurons. During learning,
all synapses within the network are considered to be plastic and
to obey Equation (5). For proof of principle, the desired spatio-
temporal patterns are taken to consist of N equidistant spikes
with a distance of d = 2ms, where the order of spikes is randomly
assigned. The patterns are looped twice during each learning
epoch lasting T = 2Nd to allow for cyclic recall. All patterns
are shown to the network in batch mode and then the synaptic
weights are updated. The patterns to be memorized are fed into
the network by giving the respective neurons an input which
mimics a synaptic input from a different neuron population
(see Equation 7) with height a = 0.3. During learning, all
neurons receive additional gaussian noise of standard deviation
σ = 0.5mV . Recall is performed without noise.

3. RESULTS

In this study, we consider the same learning algorithm in three
tasks: The chronotron problem, the learning of inverse models
(see Figure 2A) and imprinting of spatio-temporal spike patterns
onto recurrent networks.

3.1. The Chronotron Problem
We use the task of associative learning of precisely timed output
spikes in response to specific spatio-temporal input patterns
(the Chronotron task) to explain the fundamental learning
mechanism that crucially depends on the dynamics of the
membrane potential of the target neuron.
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To show that the learning mechanism is independent of the
specifics of the neuron model, we show this for two different
model neurons: In the conceptually simpler case, we use a simple
Integrate-and-fire neuron (see Figure 1A) and in amore complex
version, we use a conductance-based integrate-and-fire neuron
(see Figure 1B).

The teacher input at tpost drives the neuron to spike. The
membrane potential subsequently goes to the reset potential,
from where it relaxes back to equilibrium. Since the reset
potential is below the plasticity threshold ϑP, synapses of

presynaptic neurons that were active shortly before the output
spike are potentiated to bend the membrane potential above the
threshold for the next repetition of the input pattern. Likewise,
when the membrane potential crosses the upper LTD-threshold
ϑD, synapses that were active shortly before will depress to bend
the membrane potential away from the threshold. Note that for
inhibitory synapses, potentiation and depression are reversed,
such that the net effect of learning on the membrane potential
is preserved. By this mechanism, the hyperpolarization after the
spike will be filled up during learning (green trace in Figure 1).

FIGURE 1 | Learning progress in Chronotron toy model for different neuron models. (A) Simple integrate-and-fire neuron; (B) conductance-based

integrate-and-fire neuron. During teaching (green line), a regular, but strong input evokes a spike at the desired spike time. Due to the hyperpolarization after the

teacher spike, the neuron adapts its synapses to generate extra input around the spike, which produces a spike when the teacher input is omitted (recall trial, red line).

Here, we show the learning progress for several different stages of learning. Precise spike times can be learned in response to several input patterns independent of

the specifics of the model neuron.
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In the process, the membrane potential will become steeper just
before the spike with synaptic input concentrated close to the
teacher spike. This extra-input needed for compensation of the
spike after-hyperpolarization during learning will, in absence of
the teacher input, cause the neuron to spike shortly after the
desired time. While the membrane potential becomes more and
more deflected during learning, the output spike shifts a little
bit forward in time and the hyperpolarization is more and more
compensated. Since the potentiation of synapses depends on
the distance of the membrane potential to the upper threshold
quadratically and the depression of synapses depends on the
distance of the membrane potential to the threshold linearly, for
increasing additional input in the vicinity of the teacher spike,
the contribution to potentiation shrinks more quickly than the
contribution to depression, such that ultimately plasticity comes
to a halt.

Note that for the simple integrate-and-fire neuron model,
the hyperpolarization is very pronounced to provide a strong
learning signal. For more sophisticated neuron models, the
hyperpolarization does not need to be as pronounced, because
it will not be linearly filled up during learning, such that the
membrane potential can stay in a biologically realistic realm.

For the more sophisticated neuron models, inhibitory and
excitatory synapses are separated. While this is necessary in
biological systems, here, we collapse the input populations into
a single one and allow for synapses to change sign in the simple
integrate-and-fire neuron for simplicity. Since the learning rule
only acts to influence the net effect of input on the membrane
potential, the learning algorithm does not depend on the specifics
of how the change in net effect is achieved.

Additionally, the simple integrate-and-fire neuron is
advantageous for conceptual clarity and for speed of simulations.
Hence, we will be using this model for the rest of this study.

3.2. Inverse Model Learning
To investigate learning of inverse models, we construct a model
of connected neuronal populations reflecting the brain anatomy
of songbirds (see Figure 2A). A population m in the motor
area activates the muscles in the syrinx for singing. The bird’s
cochlea converts sounds into activations of neurons in sensory
area s . To model the bird hearing its own vocalizations, spatio-
temporal activity in m is converted to input in s through
several delayed linear transformations. This temporally spreads
the self-generated sounds around the loop delay. Mimicking
the “babbling” young birds presumably use to establish the
relation of motor activities with the corresponding sensations
of self-generated sounds, the motor neurons are driven with
noise during an exploration phase (not shown in Figure 2A, see
Figure 2B for an example pattern). Consequently, the spatio-
temporal motor activity is transformed into input into the
sensory neurons, which in turn create spatio-temporal sensory
spike patterns (see Figure 2E).

A successful inverse model then has to map these sensory
patterns, when retrieved from memory, back onto the relatively
sparse motor patterns that have generated the respective sensory
inputs, which is a task similar to the Chronotron task. Note that
the sensory area s is split into two sub-populations ssens and srecall

receiving the same input given by Equation (8). Only srecall will
be activated during recall, while ssens only receives sensory input.

Before learning the inverse model, a target pattern is created
by choosing one particular random pattern in motor area m
and the respective sensory pattern, which are stored for later
comparison to allow for comparison during the learning process.
Since we choose the target pattern to be a particular pattern with
the same statistics as the training set, it could by chance occur
during the babbling phase. Due to the stochastic nature of the
exploration, however, this is highly unlikely. This choice of target
pattern is equivalent to assuming that the tutor bird has the
same mapping frommotor activity to sound and thus to auditory
activity. We do this to ensure that the resulting song (i.e., sensory
activation) can in principle be generated perfectly by our model
bird.

During learning, we compare the stored motor pattern to the
motor pattern that is evoked when the tutor sensory pattern
is fed into the sensory population (recall case). We then use
this motor pattern to test which sensory pattern it would evoke.
Figures 2B,E show spike raster plots of the target motor resp.
sensory activity (black dots) and recalled activity via the inverse
model (red stars) for rtarget = rexplor = 1Hz. After learning, the
tutor pattern is very well reproduced in both the motor and the
sensory area with a time delay of about τloop. To quantify the
learning process, in each trial we measure the Victor- Purpura
distance (Victor and Purpura, 1997) between tutor and recall
spike patterns, while optimizing for a global shift. The resulting
error over the course of learning is displayed in Figures 2C,F. The
error drops quickly and then settles on a low level.

So far, exploration was done with the same firing rate as the
tutor song, which raises the question if the forward mapping is in
fact reversed or if the target pattern is just approximated during
learning closely enough. To control for that, we investigate if
tutor songs with a firing rate of rtarget = 1Hz can also be
reproduced if exploration is done with a firing rate twice as
high texplor = 2Hz. The respective learning curves are shown in
Figure 3.We find that the target pattern is reproduced reasonably
well and thus conclude that in fact, an inverse model is learned.

The above picture assumes that the neurons in s2m2 all receive
their input from srecall. The bird’s brain, however, contains also
neurons in adjacent area sxmx that receive their inputs from the
primary sensory area ssens, as well as from the motor area m. We
assume that here the same setting applies, i.e., that the feedback
from m is delayed and the connections from ssens to sxmx are
plastic according to the same learning mechanism. We find that
then the neurons in sxmx after learning indeed respond at similar
times during both, active singing and passive listening, i.e., they
represent zero delay mirror neurons as found experimentally in
area HVCx (Prather et al., 2008) (see Figure 2D ). During singing
its song, due to the activation in m, the same neurons in sxmx

are activated via the feedback lines at the same time relative to
the song as they would be during passive hearing of the same
song.

3.3. Recurrent Network
Up to this point, we took for granted that an area feeding
into or being identical with srecall can reproduce sequences of
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FIGURE 2 | (A) Sketch of the system setup: A motor population m, which during learning is driven from an external source (not shown in the figure), activates the

muscles in the syrinx for singing. The bird’s cochlea converts sounds into activations sensory neurons in population s. s feeds into a sensorimotor area sm via plastic

synapses (green) that will be adapted to form the inverse model by MPDP2. A subpopulation s2m2 of sm sends a copy of its own activity into the motor area m via a

monosynaptic connection. In the other subpopulation sxmx of sm, also receiving sensory input from ssens via synapses subject to the same learning rule, mirror

neurons with zero delay form. (D) Mirror neurons in sxmx . Black dots mark activity caused by motor input only, red stars activity caused by auditory input only. (B,E)

Motor resp. sensory pattern. Black dots mark target spike times and red stars mark recall activity. For the sensory pattern, only half of the Ns = 400 sensory neurons

are displayed. (C,F) Error in motor/sensory reproduction of target pattern over learning time. Learning curves for motor resp. sensory neurons. Learning converges

quickly and robustly.

spatio-temporal spike patterns representing the memories of
previously encountered acoustic signals.

The extra-input into a neuron around each teacher spike from
the other neurons in the network emerging during learning will
make the membrane potential steeper around the spike and cause
the spikes to shift forwards in time during learning. However,
during learning the hyperpolarization, the signal for LTP, is
slowly filled up, while at the same time the rise of the membrane
potential before the spike becomes steeper. After the net effect of
these two influences cancels, the learning comes to a halt.

Since after learning, around each spike for each neuron extra
input is generated by the network, the network will fill in
the missing teacher activity after learning, if the sequence is
initialized by the first few spikes during an initialization period of
Tinit = 30ms. However, the resulting sequence may be stretched
with respect to the original input sequence.

To test for stability of recall, we check if and for how long the
network is able to reproduce the sequence and compare it to both,
the initial response of the network to the input before learning
and the response of the network after learning. Since spikes may
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FIGURE 3 | Learning curves for motor (left) and sensory (right) population (Ns = 200) in the case of exploration with a firing rate (rexplor = 2Hz)

different from the tutor song (rtarget = 1Hz).

FIGURE 4 | Spike raster plots at different stages of learning. Black pentagons are original activity of the network in response to the teacher input before

learning, green stars are activity during learning and red dots are recall; the vertical black line demarks the end of the initialization sequence. From top to bottom after

100, 250, 800, 1200, 5000 learning cycles.

shift over time, the sequence slightly changes. Figure 4 shows
raster plots of three different patterns imprinted on the same
neuronal network with N = 100 for t < T for different stages
of learning.

Figure 5 shows a rasterplot of the activity in the network
during and after initialization for different patterns as it evolves
for longer times. We tested recall over ten cycles, but here only

show six for clarity. After learning, recall is cyclic and stable even
for longer times.

We here only investigate the arguably simplest case of patterns
that have only one spike per pattern. However, since we are able
to imprint several of those patterns onto a network at the same
time, we are confident that our learning mechanism is able to also
learn more complex patterns.
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FIGURE 5 | Spike raster plots for long times after learning. Black

pentagons are original activity of the network in response to the teacher input

before learning, green stars are activity during learning and red dots are recall;

the vertical black line marks the end of the initialization sequence. The learned

patterns are cyclic and stable after learning.

4. DISCUSSION

In this study, we introduce a homeostatic, biologically plausible
learning rule for learning precise spike times in response to spatio
-temporal spike patterns (Chronotron). We demonstrate this
capability in a toy model feed-forward network.We then go on to
show that our learning algorithm can also realize inverse models
based on spatio-temporal spike patterns in a newly proposed
network architecture based on the song system of the bird.
Finally, we show that the same plasticity mechanism can serve
to learn weights in recurrent networks to produce temporally
precise sequences of spikes.

Synaptic plasticity is known to depend on the values
of the membrane potential. The homeostatic objective of
keeping the membrane potential between two bounds yields a
learning rule (MPDP2) with a priori anti-hebbian characteristics.
Paradoxically, the interaction with spike after- hyperpolarization
turns this rule into a biologically plausible hebbian mechanism
that allows for associative learning of precise spike times yielding
a capacity for chronotrons that is comparable to more artificial
rules (Albers et al., 2015). In particular, this mechanism can
explain the hebbian spike timing dependent plasticity (STDP)
of inhibitory synapses (Haas et al., 2006), as well as indications
that also excitatory synapses can exhibit anti - hebbian STDP
(Froemke et al., 2005; Sjöström and Häusser, 2006). We would
like to point out that spike time learning with such a mechanism
works irrespective of whether excitatory or inhibitory synapses
are plastic, because only the net effect on the membrane
potential matters for learning. We proposed a new variant of
this mechanism (MPDP2) and showed that it can not only learn
Chronotrons, but also connections in recurrent networks as well
as inverse models. While we here do not investigate the storage
capacity of the learning rule introduced here, we expect it to be in
the same order of magnitude as MPDP (Albers et al., 2015).

Previous learning rules that accomplish learning of precise
spike times in response to spatio-temporal spike patterns are
supervised relying on a teacher signal which is provided from
an outside entity. One class of these learning rules performs a
perceptron classification on the static membrane potential (Xu

et al., 2013; Memmesheimer et al., 2014). They are technical
solutions that provide insight into the maximal capacity of
Chronotron learning, but not into how learning could be
implemented in real synapses. Another class of learning rules
observes the entire output(s) of the neuron in response to the
input spike pattern(s) and then evaluate them against the target
output(s). Here, E- Learning (Florian, 2012) performs a gradient-
decent on the Victor- Purpura distance (Victor and Purpura,
1997) between both spike trains. As a consequence, the weight
changes associated with one spike can depend on distant output
spikes. This strong non-locality in time is difficult to implement
in a biological neuron. Another learning mechanism that was
recently introduced is FP-Learning. Here, the output of the
neuron is directly compared to the desired output, while allowing
for a margin of error. When an output error is detected, the
trial is interrupted and the weights contributing to that error are
changed. Plasticity after the error is suppressed, which also would
be difficult to implement in a real biological neuron.

All these learning rules suffer from no clear interpretation
of how a comparison between the target state and the actual
state of the neuron can realistically be achieved. As for the
original MPDP (Albers et al., 2015), the modification explored
here, MPDP2, provides such a mechanism in the combination
of spike-after hyperpolarization with a homeostatic plasticity
mechanism. The teacher provides information about the desired
spike times by simply providing a strong input, thereby driving
the output neuron to spike at the desired time. The subsequent
after- hyperpolarization provides a means to compare the
output generated by the network to the desired output without
inducing spurious spikes detrimental for learning. The more the
hyperpolarization is compensated by self-generated input, the
closer the self- generated activity would be to the target output.
In MPDP2, this emerges naturally: Potentiation is stronger for
more hyperpolarized states, such that plasticity works to shift
self-generated activity toward the target activity. On the other
hand, subthreshold depolarization in absence of a teacher spike
is suppressed which suppresses spurious spikes.

In the case of a simple integrate-and-fire neuron, the
hyperpolarization needs to be very pronounced to provide
a strong learning signal, which is at odds with biological
realism. We show that in a more realistic neuron model, such
as a conductance-based integrate-and-fire neuron, this overly
strong hyperpolarization is not necessary, because a sufficiently
strong hyperpolarization that becomes filled non-linearly during
learning can be provided by an additional conductance. We
found that the general learning principle introduced here allows
for learning of precise spikes also in Hodgkin-Huxley-type
neurons, if the influence of the additional learning signal
provided by the spike is clipped (not shown).

Suppression of spurious spikes is particularly important in
learning of recurrent networks, since there, additional spikes
would cause the entire pattern to fail. Here, we show that MPDP2

is also suitable for learning of sequences in recurrent networks.
The introduction of noise during learning has been shown

before to be beneficial for stability by Laje and Buonomano
(2013). In their study, Laje and Buonomano showed that in a
network of rate neurons, stable activation patterns can be learned,
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if innate activation patterns of the network were additionally
trained with the addition of noise. This generates an attractor
around the desired activation pattern sequence. Using innate
patterns that the network would generate spontaneously before
learning has the added benefit of guaranteeing that the pattern
can in fact be learned. In our study, the slight variability of the
spiking pattern due to the shifting of individual spikes during the
learning process, which is a result of a real teacher input, may
be similarly beneficial for the selection of patterns that can be
learned. In the model presented here, additive noise is used as
well for the stabilization of the recall yielding stable sequences
similar to what was shown in studies in non-spiking neurons
(Jaeger and Haas, 2004; Sussillo and Abbott, 2009).

We applied an algorithm that was originally devised for
Chronotron learning to learning in recurrent networks. This is
based on the insight that for each individual neuron, the situation
in both setups is very similar: The neuron has to produce
precisely timed spikes in response to a given input pattern, which
in the case of recurrent networks is generated by the rest of the
network. Another algorithm devised for Chronotron learning
(FP-learning) has been successfully applied to the learning in
recurrent networks before Memmesheimer et al. (2014). There,
the finite precision that is required during the learning process
allows the spikes to slightly move around during the learning
process, whichmay be similarly effective for stabilizing sequences
as the addition of noise.

The interplay between the neuronal dynamics in the form
of the hyperpolarization and the learning rule is particularly
important for the learning mechanism. In their study, Brea
et al. (2013) similarly propose that the learning algorithm
should match the neuronal dynamics. They devise a learning
rule starting from the given dynamics of the neuron, which
optimizes the recall properties after learning. However, their
learning algorithm only serves to approximate a given target
spiking distribution, and thus does not operate on single spikes.

Both, the learning rule proposed by Brea et al. (2013) and
FP-Learning Memmesheimer et al. (2014) suffer from an unclear
interpretation of the teacher input. Here, in contrast, the teacher
input is just a regular synaptic input, albeit of high amplitude.

These favorable properties of MPDP2 are also shared by
the original MPDP (Albers et al., 2015). However, MPDP
was conceived for a rather abstract teacher signal of arbitrary
strength, which is nice for pattern classification, but does not
provide enough flexibility of spiking times during learning for
learning in recurrent settings. MPDP2, however, allows for spikes
to slightly shift forward in time during learning, allowing for
stability also in the absence of the (extra) teacher input.

We then go on to show that our learning algorithm can also
realize inverse models based on spatio-temporal spike patterns.
We use this in a new architecture consisting of coupled neuronal
networks mimicking the anatomy of the songbird’s brain to
explain the reproduction of previously encountered acoustic
signals. Crucially, it assumes the existence of delayed feedback
from a motor area to a sensorimotor region which serves as
an intermediate relay for realizing the inverse model that has
been suggested to underlie the bird’s sound imitation capabilities.
In our model, we assume a simple delay line to provide this

feedback. Of course, in the songbird, the feedback would be
realized in a more complex way, which we here simplify to only
consider the effective connection. The existence of zero delay
mirror neurons in birds (Prather et al., 2008) provides strong
evidence for such a feedback. Note, that in our model the zero
delay mirror neurons represent an epiphenomenon which serve
no function. In fact, in our model zero delay mirror neurons
naturally emerge from the same learning mechanism acting on
synapses that feed only sensory input, but notmemory input, into
areas that also receive delayed feedback. Interestingly, the singing
related activity of the zero-delay mirror neurons found in HVC
is not distorted by acoustic manipulations disrupting auditory
feedback during singing, suggesting that these neurons receive
purely motor- related input when the bird sings (Prather et al.,
2008).

Furthermore, our model predicts mirror neurons with a delay
equivalent to the loop delay in the respective sensory and motor
areas involved in recall. This delay was linked to causal inverse
models before (Hanuschkin et al., 2013). In fact, experimental
evidence for this type of delay was found, albeit in songbird brain
area LMAN (Giret et al., 2014). In their study, Hanuschkin et al.
(2013) suggest a simple hebbian learning rule, which relies on the
comparison between self-generated and target input. As for the
learning rules for Chronotron learning discussed above, there is
no clear biological interpretation of how this comparison could
be done. Additionally, in their study, they only discuss a linear
model of sound generation and perception which is local in time
suitable for analytical tractability. In the songbird, however, the
process of sound generation and perception can be assumed to
be both, non-linear, and non-local in time. In the present study,
we include non- linear spiking neurons for sound perception as
well as for the motor-sensory mapping that includes interactions
that are not local in time.

Our model requires a switch to suppress singing activity
during passive playback, which could be implemented by strong
inhibitory input into the motor area m. This hypothesis is
supported by experimental evidence, since while in awake birds,
motor neurons downstream of HVC are not responsive to
auditory stimuli, in anesthetized birds, playback of the birds own
song excites neurons in all nuclei in the song system downstream
of HVC (Doupe and Konishi, 1991; Dave and Margoliash, 2000;
Sturdy et al., 2003).

In contrast to other models (Hanuschkin et al., 2013),
however, we do not need auditory input to be explicitly gated
off during singing, because echoing is automatically suppressed
by the self-inhibition induced by long hyperpolarizations in the
motor area m. This self-inhibition comes with a characteristic
dip of the length of the loop delay in the spike auto-correlation
of the involved motor neurons, which could be experimentally
accessible.

In conclusion, our results suggest that MPDP2 provides a
unique and novel learning mechanism for establishing both,
inverse models as well the connections in recurrent networks that
putatively underlie the memories of sound sequences. Together
with the novel architecture, the proposed membrane potential
dependent learning mechanism to our knowledge provides the
first comprehensive account of sound sequence imitation in
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birds that is completely based on sub-millisecond precise spatio-
temporal spike patterns.
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