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We investigate a discrete-time network model composed of excitatory and inhibitory

neurons and dynamic synapses with the aim at revealing dynamical properties behind

oscillatory phenomena possibly related to brain functions. We use a stochastic neural

network model to derive the corresponding macroscopic mean field dynamics, and

subsequently analyze the dynamical properties of the network. In addition to slow

and fast oscillations arising from excitatory and inhibitory networks, respectively, we

show that the interaction between these two networks generates phase-amplitude

cross-frequency coupling (CFC), in which multiple different frequency components

coexist and the amplitude of the fast oscillation is modulated by the phase of the slow

oscillation. Furthermore, we clarify the detailed properties of the oscillatory phenomena

by applying the bifurcation analysis to the mean field model, and accordingly show that

the intermittent and the continuous CFCs can be characterized by an aperiodic orbit

on a closed curve and one on a torus, respectively. These two CFC modes switch

depending on the coupling strength from the excitatory to inhibitory networks, via the

saddle-node cycle bifurcation of a one-dimensional torus in map (MT1SNC), and may

be associated with the function of multi-item representation. We believe that the present

model might have potential for studying possible functional roles of phase-amplitude CFC

in the cerebral cortex.

Keywords: phase-amplitude cross-frequency coupling, dynamic synapse, excitatory and inhibitory networks,

mean field model, bifurcation analysis, MT1SNC bifurcation, discrete-time neuron model

1. INTRODUCTION

Neurons in the brain, process information through diverse neural dynamics emergent from
interactions among neurons via synapses. How neural networks formed by the interactions can
generate functional dynamics, such as oscillatory or synchronized activity and more specifically,
cross-frequency coupling (CFC), largely remains to be explored.

A variety of oscillatory phenomena in the brain have been studied often through the
measurement of the local field potential or an electroencephalogram, both of which include
macroscopic information of neural networks (cell assemblies), different from single-unit
recordings. The recordedmacroscopic neural activity can provide useful indices of distinctive brain

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
https://doi.org/10.3389/fncom.2017.00018
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2017.00018&domain=pdf&date_stamp=2017-03-30
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:sase@sat.t.u-tokyo.ac.jp
https://doi.org/10.3389/fncom.2017.00018
http://journal.frontiersin.org/article/10.3389/fncom.2017.00018/abstract
http://loop.frontiersin.org/people/260792/overview
http://loop.frontiersin.org/people/56749/overview
http://loop.frontiersin.org/people/73916/overview


Sase et al. Neural Oscillations with Dynamic Synapses

functions, where such indices show a possibility that the
oscillatory phenomena correlate with the brain functions
(Buzsáki and Draguhn, 2004). Further, the recorded neural
activity represents various types of oscillatory waveforms and
can be categorized according to the frequency, whose bands,
for example, theta and gamma bands, can temporally coexist
in the same or different brain regions (Steriade, 2001; Csicsvari
et al., 2003). Among the sorted frequency bands, neighboring
bands recorded in the same brain region may differ with the
brain functions (Klimesch, 1999; Kopell et al., 2000; Engel
et al., 2001; Csicsvari et al., 2003). The oscillatory frequency
is nearly inversely proportional to the power in general as
observed from the power spectrum (Freeman et al., 2000).
This inversely proportional property of the power suggests that
spatially widespread slow oscillations can modulate the local
neural activity (Steriade, 2001; Csicsvari et al., 2003; Sirota
et al., 2003). Specifically, when the slow and fast oscillatory
components interact with each other, CFC phenomena emerge.

The mechanism underlying the oscillatory phenomena
is thought to be based on the following three elements:
neurons, synapses, and connectivity, all of which are necessary
to constitute neural networks and to generate diverse
macroscopic oscillations such that sensory input reflecting
external environmental input can be correctly encoded in the
oscillations.

First, a neuron generates spike trains stochastically and
irregularly; that is, the neuron itself may not possess the reliability
to generate clear rhythms, although evidence that a single neuron
can produce different rhythms has been obtained on the other
hand. There exist, at least, two types of neurons in the cerebral
cortex, namely, excitatory and inhibitory neurons, which exhibit
different response properties (Lux and Pollen, 1966; Connors
et al., 1982; Connors and Gutnick, 1990; Kawaguchi and Kubota,
1997; Nowak et al., 2003; Tateno et al., 2004). In particular, an
excitatory neuron typically shows a low firing rate whereas an
inhibitory neuron shows a high firing rate (Tateno et al., 2004).

The second fundamental element for the oscillatory
phenomena is a synapse, intermediating between neurons
with its transmission efficacy. It had been considered that the
synaptic efficacy is nearly constant over time or changing very
slowly; more specifically, peaks of the synaptic current, induced
by releases of neurotransmitters from presynaptic vesicles, had
been thought to be independent of the timing of neural firings.
During the last few decades, many reports have shown, however,
that synapses involve fast plasticity mechanisms, enabling
neurons with such synapses to generate more flexible dynamics
compared to those with ‘static’ synapses. In particular, synapses
that exhibit rapid changes in the coupling strength between
neurons with a short-term plasticity mechanism are called
dynamic synapses (Markram and Tsodyks, 1996; Markram et al.,
1998; Thomson, 2000; Wang et al., 2006). Two types of dynamic
synapses exist, namely, short-term depression and facilitation
synapses, which are characterized by the transiently decreasing
ratio of releasable neurotransmitters and by the transiently
increasing calcium concentration in presynaptic terminals,
respectively. The synaptic transmission efficacy decreases or
increases depending on the ratio of the two time constants

associated with the recovery from the aforementioned transient
decrease or increase (Markram et al., 1998; Thomson, 2000). The
distribution of the dynamic synapses in the brain differs among
brain regions. For example, many depression synapses appear in
the parietal lobe, while many facilitation synapses appear in the
prefrontal lobe (Wang et al., 2006).

The third element for generating the oscillatory phenomena
is connectivity, which enables neurons to interact with each
other and to form a neural network via synapses. Although
each neuron fires stochastically and the resulting spike trains
do not show clear rhythmicity, the neural network can
macroscopically generate rhythmic oscillations. When excitatory
neurons aggregate to be structured as a cell assembly receiving
input from inhibitory neurons, rhythmic dynamics on networks
macroscopically appears and possesses reliability (Yoshimura
et al., 2005). In particular, interactions between two types of
networks, i.e., excitatory and inhibitory networks, would underlie
the emergence of CFC (Aru et al., 2015; Hyafil et al., 2015).
Notably, a network composed of the excitatory and inhibitory
subnetworks can generate either slow or fast oscillations. Thus,
the interaction between this network and another, which is also
composed of the excitatory and inhibitory subnetworks, can be
one origin of CFC; this coupling structure has been called as
bidirectional coupling (Hyafil et al., 2015).

Here, stochastic neural network models have been utilized
to elucidate the relationship between irregular spike trains
and rhythmic macroscopic oscillations. The process of the
macroscopic oscillations generated from such irregular dynamics
can be explained by a network receiving the following two
types of input: strong external noise and strong recurrent
inhibition (Brunel and Hakim, 1999; Brunel and Wang, 2003).
The fast repetition of such noisy input causes short-term synaptic
depression, and then, the network induces the destabilization of
attractors (Cortes et al., 2006) and chaotic oscillations (Marro
et al., 2007).

Additionally, the stochastic neural network models with
dynamic synapses have been intensively investigated. Synaptic
depression triggers a large fluctuation in sustained periods
between the up and down states (Mejias et al., 2010), and
the level of the synaptic depression changes the property of
the sustained activities of these two different states (Benita
et al., 2012). Moreover, the synaptic depression contributes to
the destabilization of network activity, the generation of an
oscillatory state, and the spontaneous state transitions among
multiple patterns in an associative memory network (Katori et al.,
2013). Additionally, the synaptic depression can be a suitable
mechanism to explain critical avalanches in self-organized neural
networks (Bonachela et al., 2010). On the other hand, synaptic
facilitation enhances the working memory function (Mongillo
et al., 2008). Both synaptic depression and facilitation are related
to the storage capacity of attractor neural networks (Bibitchkov
et al., 2002; Torres et al., 2002; Matsumoto et al., 2007; Mejias and
Torres, 2009; Otsubo et al., 2011; Mejias et al., 2012). Bibitchkov
et al. have shown that depression synapsesmay reduce the storage
capacity (Bibitchkov et al., 2002). Torres et al. investigated this
negative effect of depression synapses on the storage capacity in
general (Torres et al., 2002). However, Matsumoto et al. argued
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that the storage capacity is not influenced by synaptic depression,
when noise is not considered in the network (Matsumoto et al.,
2007). Otsubo et al. reported that a network with both depression
synapses and the noise would reduce the storage capacity (Otsubo
et al., 2011). Then, Mejias and Torres found that the combination
of depression and facilitation synapses can enhance the storage
capacity (Mejias and Torres, 2009) and furthermore, Mejias et al.
generated phase diagrams, indicating that synaptic facilitation
enlarges the memory phase region (Mejias et al., 2012). Further,
dynamic synapses play a role in stochastic resonance, where a
weak input signal to a network can be detected in an output
signal under certain conditions (Pantic et al., 2003; Mejias and
Torres, 2008, 2011; Torres et al., 2011; Pinamonti et al., 2012;
Torres and Marro, 2015). Pantic et al. have shown that a
neuron with depression synapses is capable of detecting noisy
input signals with a wider frequency range, compared to one
with static synapses, under a certain firing threshold (Pantic
et al., 2003). Mejias and Torres found that the inclusion of
facilitation dynamics in depression synapses would enhance the
detection performance (Mejias and Torres, 2008). Moreover,
they have shown that such combination of depression and
facilitation synapses can generate two suitable noise levels to
detect input signals; where it has been argued that this bimodal
resonance is caused by the interplay between the adaptively
varying firing threshold and the dynamic synapses (Mejias
and Torres, 2011). Torres et al. demonstrated that a model
with this interplay can predict experimental data of stochastic
resonance (Torres et al., 2011). Furthermore, Pinamonti et al.
demonstrated that stochastic resonance is well enhanced near
phase transitions among patterns in an associative memory
network (Pinamonti et al., 2012). Then, Torres and Marro
generated a detailed phase diagram embedding many patterns
associated with stochastic resonance, such that multiple noise
levels are well responsible for optimizing input signals (Torres
and Marro, 2015). Additionally, it has been reported that the
combination of depression and facilitation synapses contributes
to flexible information representation, from the viewpoint of
both data analysis and mathematical modeling (Katori et al.,
2011).

In particular, the stochastic neural network models and the
corresponding mean field models have been effectively used for
analyzing the properties of neural networks, including those with
dynamic synapses (Pantic et al., 2002; Torres et al., 2007; Igarashi
et al., 2010; Katori et al., 2012).While Pantic et al. and Torres et al.
have derived mean field models by taking the population average,
with respect to stochastic variables, based on the assumption of
ergodicity (Pantic et al., 2002; Torres et al., 2007), Igarashi et al.
and Katori et al. have recently introduced dynamic mean field
theory in which two types of mean field models, i.e., microscopic
and macroscopic mean field models, are in turn derived (Igarashi
et al., 2010; Katori et al., 2012).

However, one of the key oscillatory phenomena, CFC
described above, has not been well understood, although this
coupling phenomenon could contribute to complex information
processing in the brain, thanks to the presence of oscillations
with two different timescales. On the other hand, much attention
to phase-amplitude CFC has been attracted, because it has been

suggested that this kind of CFC plays a crucial role in adjusting
neural communications among distant brain regions (Canolty
et al., 2006; Jansen and Colgin, 2007; Canolty and Knight,
2010). To elucidate possible mechanisms generating the CFC,
the continuous-time neuron models have been investigated so
far (Malerba and Kopell, 2012; Fontolan et al., 2013), but little
is known about discrete-time neuron models, which have been
shown to be suitable for simulating, reproducing, and predicting
neural phenomena in the brain (Rulkov, 2002; Ibarz et al., 2011).
Thus, in this study, we extend the previously proposed discrete-
time network model (Katori et al., 2012), which only includes
excitatory neurons, to that including also inhibitory neurons, and
clarify the bifurcation structure underlying the phase-amplitude
CFC.

In this study, we hypothesize that the CFC is generated by the
bidirectional coupling between the two subnetworks as described
above, where one subnetwork includes an excitatory population
while the other includes an inhibitory population, both of which
receive input from another excitatory or inhibitory population
and generate slow or fast oscillations (Figure 1A) (White et al.,
2000; Kramer et al., 2008; Roopun et al., 2008; Hyafil et al.,
2015). Each subnetwork can be regarded as a pure excitatory or
a pure inhibitory network because the unidirectional input may
be equivalent to change of the neural firing threshold. Therefore,
hereinafter, we call the above two subnetworks as an excitatory
network/subnetwork and an inhibitory network/subnetwork,
respectively, for the sake of simplicity (Figure 1A). Accordingly,
we focus on a stochastic network composed of excitatory
and inhibitory neurons with dynamic synapses. Furthermore,
the proposed model considers the decay process of the
synaptic current. We analyze a macroscopic mean field model
reproducing the overall network dynamics associated with the
stochastic model. Upon the adjustment of parameters specifying
the properties of the synaptic current and dynamic synapses,
rich bifurcation structures of the network dynamics are expected
to be found. In the following sections, first, we describe a
network model with stochastic neurons connected via dynamic
synapses. Then, we derive a macroscopic mean field model
capturing the macroscopic dynamics of the network model.
Subsequently, we analyze the bifurcation structures of the present
model and illustrate various solutions included in the dynamical
systems of not only an excitatory or an inhibitory network,
but also a network composed of both the excitatory and
the inhibitory subnetworks. Finally, we discuss the dynamical
properties revealed from the standpoint of neuroscience, and
consider possible future directions of this research.

2. MATERIALS AND METHODS

This section consists of three parts. The first part describes
the mechanism of signal transmission on synapses with short-
term plasticity. The second part explains the stochastic model,
composed of excitatory and inhibitory binary neurons and
dynamic synapses. The third part introduces the mean field
theory in which the stochastic model is converted into the
corresponding microscopic and macroscopic mean field models.
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FIGURE 1 | A hypothesis of emergent dynamics considered in the present model. (A) The cross-frequency coupling (CFC) phenomena can emerge by the

bidirectional coupling between networks 1 and 2, both of which consist of excitatory and inhibitory neurons interacting via dynamic synapses and generate either slow

or fast oscillations. In network 1 (2), an excitatory (inhibitory) population, indicated by the red filled triangles (the blue filled circles), receives its recurrent connection and

input from either another excitatory or inhibitory population. Network 1 (2) is equivalent to a pure excitatory (inhibitory) network since the input can be regarded as

external input, depicted in the red (blue) arrows. (B) A mechanism of synaptic transmission with short-term plasticity. The action potential (¬) of the presynaptic neuron

causes a transient decrease in the releasable neurotransmitters and a transient increase in the calcium concentration () and triggers the synaptic current (®) on the

postsynaptic membrane. If many action potentials arrive successively, and time constants of the transient decrease and increase differ considerably, the synaptic

current reflects the property of the dynamic synapses, namely, short-term synaptic depression or facilitation.

The microscopic mean field approximation is used for extracting
the average neural activity on realization of stochastic variables.
In contrast, themacroscopicmean field approximation is used for
extracting the average neural activity over population dynamics,
and thereby, a low-dimensional discrete-time dynamical system
is derived, such that we can identify bifurcation structures.

2.1. Mechanism of Synaptic Transmission
Here, we describe the signal transmission mechanism
on dynamic synapses with the short-term plasticity. This
mechanism can be explained by the following three processes
(Figure 1B): First, an action potential is generated on the
presynaptic neuron and transmitted to the terminals of the
synapses (¬). Second, voltage-dependent calcium channels
are opened by the action potential, and calcium ions flow
into the synaptic terminals via the channels (). Third,
chemical reactions with these calcium ions cause the fusion
of the presynaptic membrane and synaptic vesicles, including
neurotransmitters, which are released into the synaptic cleft.
The released neurotransmitters attach to the postsynaptic
membrane, and then, a synaptic current is generated (®). The
amplitude of the synaptic current decays with a certain time
constant, dependent on the properties of the postsynaptic
receptors.

Arrival of many action potentials within a short period of
time causes a transient decrease or increase in the efficacy of the
synaptic transmission. This is because of changes in the amount
of neurotransmitters and in the calcium concentration in the
presynaptic terminal. Finally, the synaptic vesicles are retrieved

and the neurotransmitters are restored in the reusable synaptic
vesicles (Markram and Tsodyks, 1996; Markram et al., 1998;
Thomson, 2000; Wang et al., 2006).

2.2. Model
We consider a discrete-time neural network model composed
of the excitatory (E) and the inhibitory (I) subnetworks, which
consist of NE excitatory and NI inhibitory neurons, respectively.
The state of the ith neuron belonging to the network ξ (ξ∈{E, I})

at time t, denoted by s
ξ
i (t), indicates either a quiescent state

[s
ξ
i (t) = 0] or an active state [s

ξ
i (t) = 1]. The state of the

neuron is stochastically determined by total input for the neuron.
This stochasticity is reflecting the biologically observed noisy
neural activity. The evolution of the neuronal state is described
as follows:

Prob[s
ξ
i (t + 1) = 1] = gβξ [h

ξ
i (t)], (1)

gβξ [h
ξ
i (t)] =

1

2
{1+ tanh[βξh

ξ
i (t)]}, (2)

where h
ξ
i (t) =

∑Nξ

j 6= i[J
ξξ
ij a

ξ
j (t)] +

∑Nη

j= 1[J
ξη
ij a

η
j (t)] + Iξ with

η∈{E, I|η 6=ξ}. The variables h
ξ
i (t) and a

ξ
j (t) represent the total

input for the ith neuron on network ξ and the synaptic activity
with short-term plasticity, respectively; 1/βξ = Tξ denotes

the noise intensity; J
ξξ
ij , J

ξη
ij , and Iξ indicate the weight of the

recurrent coupling from the jth neuron to the ith neuron on
network ξ , the weight of the unidirectional coupling from the jth
neuron on network η to the ith neuron on network ξ , and the
external input, respectively.
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The signal transmission mechanism in synapses with the
short-term plasticity can be modeled by the synaptic activity

a
ξ
i (t), and two variables, x

ξ
i (t) and u

ξ
i (t), denoting the ratio

of releasable neurotransmitters and the calcium concentration,
respectively. The synaptic activity, a

ξ
i (t), increases with the

presynaptic neural activity. This increase is proportional to

the product of x
ξ
i (t) and u

ξ
i (t), which represents the synaptic

transmission efficacy (Markram et al., 1998; Mongillo et al., 2008;

Mejias and Torres, 2009). If there is no synaptic activation, a
ξ
i (t)

converges to its steady state a
ξ
i (t) = 0 with the time constant

τ
ξ
a . The ratio x

ξ
i (t) of releasable neurotransmitters decreases with

the presynaptic activation; this decrease is proportional to u
ξ
i (t).

Then, x
ξ
i (t) returns to its steady state x

ξ
i (t) = 1 with the time

constant τ
ξ
R . The variable u

ξ
i (t) increases when a presynaptic

neuron is activated, and returns to its steady state u
ξ
i (t) = U

ξ
se

with the time constant τ
ξ
F ; this increase is proportional to U

ξ
se.

The dynamics described above is summarized as follows:

a
ξ
i (t + 1) = a

ξ
i (t)−

a
ξ
i (t)

τ
ξ
a

+ s
ξ
i (t)x

ξ
i (t)u

ξ
i (t)/U

ξ
se, (3)

x
ξ
i (t + 1) = x

ξ
i (t)+

1− x
ξ
i (t)

τ
ξ
R

− s
ξ
i (t)x

ξ
i (t)u

ξ
i (t), (4)

u
ξ
i (t + 1) = u

ξ
i (t)+

U
ξ
se − u

ξ
i (t)

τ
ξ
F

+ Uξ
se(1− u

ξ
i (t))s

ξ
i (t), (5)

where the ratio τ
ξ
R/τ

ξ
F determines whether the plasticity is short-

term depression or facilitation (Wang et al., 2006).

2.3. Mean Field Theory
The dynamic mean field model was developed according to
the following two steps: In the first step, a microscopic mean
field model is derived from the stochastic model by taking the
expectation (noise average), with respect to each variable. This
expectation cannot be replaced with the population or time
average. In the second step, a macroscopic mean field model is
derived from the microscopic model by taking the average over
the population. By assuming that the recurrent network is fully
connected via synapses with the coupling strength of the order of
1/Nξ , we obtain an eight-dimensional discrete-time dynamical
system, not dependent on the number of neurons, Nξ .

First, Equations (1) and (2) are converted into the following
forms:

〈s
ξ
i (t + 1)〉 = gβξ [〈h

ξ
i (t)〉], (6)

〈h
ξ
i (t)〉 =

Nξ
∑

j 6= i

[

J
ξξ
ij 〈a

ξ
j (t)〉

]

+

Nη
∑

j= 1

[

J
ξη
ij 〈a

η
j (t)〉

]

+ Iξ , (7)

where the notation, 〈·〉, indicates the noise average. Similarly, the
following equations, corresponding to Equations (3) to (5), are
obtained:

〈a
ξ
i (t + 1)〉 = 〈a

ξ
i (t)〉 −

〈a
ξ
i (t)〉

τ
ξ
a

+ 〈s
ξ
i (t)x

ξ
i (t)u

ξ
i (t)〉/U

ξ
se, (8)

〈x
ξ
i (t + 1)〉 = 〈x

ξ
i (t)〉 +

1− 〈x
ξ
i (t)〉

τ
ξ
R

− 〈s
ξ
i (t)x

ξ
i (t)u

ξ
i (t)〉, (9)

〈u
ξ
i (t + 1)〉 = 〈u

ξ
i (t)〉 +

U
ξ
se − 〈u

ξ
i (t)〉

τ
ξ
F

+ Uξ
se〈(1− u

ξ
i (t))s

ξ
i (t)〉.

(10)

Here, we assume that J
ξξ
ij and J

ξη
ij are of the order of 1/Nξ

and 1/Nη , respectively; therefore, the correlation between s
ξ
i (t)

and x
ξ
i (t) is negligible when Nξ→∞ (Igarashi et al., 2010).

Likewise, the correlation between s
ξ
i (t) and u

ξ
i (t) approaches zero

as Nξ→∞. Furthermore, in a previous study, it has been found

that the correlation between x
ξ
i (t) and u

ξ
i (t) is negligible when the

number of neurons is sufficiently large (Katori et al., 2012), while

it has been reported that the independence of x
ξ
i (t) and u

ξ
i (t)

is maintained, if there is no facilitation (Tsodyks et al., 1998).
Consequently, we assume the following for simplicity:

〈s
ξ
i (t)x

ξ
i (t)u

ξ
i (t)〉 = 〈s

ξ
i (t)〉〈x

ξ
i (t)〉〈u

ξ
i (t)〉, (11)

〈s
ξ
i (t)u

ξ
i (t)〉 = 〈s

ξ
i (t)〉〈u

ξ
i (t)〉. (12)

By using these relations, we obtain the following microscopic
mean field model:

m
ξ
i (t + 1) = gβξ





Nξ
∑

j 6= i

(

J
ξξ
ij A

ξ
j (t)

)

+

Nη
∑

j= 1

(

J
ξη
ij A

η
j (t)

)

+ Iξ



 ,

(13)

A
ξ
i (t + 1) = A

ξ
i (t)−

A
ξ
i (t)

τ
ξ
a

+m
ξ
i (t)X

ξ
i (t)U

ξ
i (t)/U

ξ
se, (14)

X
ξ
i (t + 1) = X

ξ
i (t)+

1− X
ξ
i (t)

τ
ξ
R

−m
ξ
i (t)X

ξ
i (t)U

ξ
i (t), (15)

U
ξ
i (t + 1) = U

ξ
i (t)+

U
ξ
se − U

ξ
i (t)

τ
ξ
F

+ Uξ
se(1− U

ξ
i (t))m

ξ
i (t),

(16)

where we have set m
ξ
i (t)≡〈s

ξ
i (t)〉, A

ξ
i (t)≡〈a

ξ
i (t)〉, X

ξ
i (t)≡〈x

ξ
i (t)〉,

and U
ξ
i (t)≡〈u

ξ
i (t)〉, respectively.

We represent the fixed point of the microscopic mean field

model as m̄
ξ
i , Ā

ξ
i , X̄

ξ
i , and Ū

ξ
i . The fixed point for Equations (14)

to (16) is obtained as follows:

Ā
ξ
i =

τ
ξ
a Ū

ξ
i m̄

ξ
i X̄

ξ
i

U
ξ
se

, (17)

X̄
ξ
i =

1

1+ τ
ξ
R Ū

ξ
i m̄

ξ
i

, (18)

Ū
ξ
i =

U
ξ
se(1+ τ

ξ
F m̄

ξ
i )

1+ τ
ξ
FU

ξ
sem̄

ξ
i

. (19)
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Using these equations, we obtain the value m̄
ξ
i at the fixed point

as follows:

m̄
ξ
i = gβξ

[ Nξ
∑

j 6= i

J
ξξ
ij





τ
ξ
a m̄

ξ
j (1+ τ
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F m̄
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j )
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F τ

ξ
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j m̄
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j
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τ
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sem̄
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η
seτ
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F τ

η
Rm̄

η
j m̄

η
j

)

+ Iξ

]

.

(20)

We derive a macroscopic mean field model by considering a

network with all-to-all connections, where the weights J
ξξ
ij and

J
ξη
ij are given as follows:

J
ξξ
ij =

J
ξξ
0

Nξ

, (21)

J
ξη
ij =

J
ξη
0

Nη

. (22)

Here, J
ξξ
0 and J

ξη
0 are the parameters specifying the strength

of the uniform connections. Because of this synaptic

connection uniformity, the variables m
ξ
i , A

ξ
i , X

ξ
i , and

U
ξ
i can be substituted with their respective population

averages m
ξ
0 = (1/Nξ )

∑Nξ

i= 1 m
ξ
i , A

ξ
0 = (1/Nξ )

∑Nξ

i= 1 A
ξ
i ,

X
ξ
0 = (1/Nξ )

∑Nξ

i= 1 X
ξ
i , and U

ξ
0 = (1/Nξ )

∑Nξ

i= 1 U
ξ
i . The

macroscopic mean field model for a network with uniform
connections is given as follows:

m
ξ
0(t + 1) = Fξ

m(�(t)), (23)

A
ξ
0(t + 1) = F

ξ
A(�(t)), (24)

X
ξ
0 (t + 1) = F

ξ
X(�(t)), (25)

U
ξ
0 (t + 1) = F

ξ
U(�(t)), (26)

where

Fξ
m(�(t)) = gβξ

[
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ξξ
0 A

ξ
0 + J

ξη
0 A

η
0 + Iξ

]

, (27)

F
ξ
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ξ
0
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ξ
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+m
ξ
0X

ξ
0U

ξ
0 /Uξ

se, (28)

F
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1− X
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ξ
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F
ξ
U(�(t)) = U

ξ
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U
ξ
se − U

ξ
0

τ
ξ
F

+ Uξ
se(1− U

ξ
0 )m

ξ
0 , (30)

with the state vector �(t) defined as follows:

�(t) =
[

mE
0 (t),m

I
0(t),A

E
0 (t),A

I
0(t),X

E
0 (t),X

I
0(t),U

E
0 (t),U

I
0(t)

]T
.

(31)

As shown in the Results section, the dynamic mean field model is
consistent with the simulation on the stochastic model.

By modifying Equation (20), the fixed point for the
macroscopic mean field model can be calculated as follows:

m̄E = fE(m̄
E, m̄I), (32)

m̄I = fI(m̄
I, m̄E), (33)

where

fξ (m̄
ξ , m̄η)

= gβξ

[
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(34)

After solving the above equations simultaneously, we obtain the
values m̄E

0 and m̄I
0 at the fixed point. By substituting m̄E

0 and m̄I
0

into the following fixed point equations,

Ā
ξ
0 =

τ
ξ
a Ū

ξ
0 m̄

ξ
0X̄

ξ
0

U
ξ
se

, (35)

X̄
ξ
0 =

1

1+ τ
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R Ū

ξ
0 m̄

ξ
0

, (36)

Ū
ξ
0 =

U
ξ
se(1+ τ

ξ
F m̄

ξ
0)

1+ τ
ξ
FU

ξ
sem̄

ξ
0

, (37)

we obtain the values Ā
ξ
0 , X̄

ξ
0 , and Ū

ξ
0 at the fixed point. Because

nonlinear simultaneous equations cannot generally be solved
analytically due to the function gβξ [·], we use Newton’s method
to numerically obtain the fixed point in the Results section.

We analyze the stability of the fixed point with small

deviations, δm
ξ
0(t), δA

ξ
0(t), δX

ξ
0 (t), and δU

ξ
0 (t), around the fixed

point as follows:

m
ξ
0(t) = m̄

ξ
0 + δm

ξ
0(t), (38)

A
ξ
0(t) = Ā

ξ
0 + δA

ξ
0(t), (39)

X
ξ
0 (t) = X̄

ξ
0 + δX

ξ
0 (t), (40)

U
ξ
0 (t) = Ū

ξ
0 + δU

ξ
0 (t). (41)

By neglecting the higher order components, we obtain the
following locally linearized equation:
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where K denotes the following Jacobian matrix:

K =
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and each element of this matrix is given as follows:

K
ξξ
mA =

∂F
ξ
m

∂Aξ
= g′

βξ [h
ξ ]J

ξξ
0 , (44)

K
ξη
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0 , (45)

where
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βξ [h

ξ ] =
βξ

2
[1− tanh2(βξhξ )], (46)

hξ = J
ξξ
0 Aξ + J

ξη
0 Aη + Iξ . (47)

Furthermore, the remaining elements of matrix K are given as
follows:

K
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UξXξ
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, (48)
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Xm = −UξXξ , (52)
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−mξUξ , (53)

K
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Um = Uξ

se(1− Uξ ), (55)

K
ξξ
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(

1−
1

τ
ξ
F

)

− Uξ
sem

ξ , (56)

and other elements are zeroes. We numerically analyze the
stability of the fixed point by eigenvalue analysis with this
Jacobian matrix.

2.4. Slice Analysis
We use the slice analysis developed by Komuro et al. (2016), to
elucidate the bifurcations of quasi-periodic oscillations arising

from the proposed model. Mathematically, a slice with a width
of ǫ is defined here as

6ǫ = {�∈R
8|dist(�,6) < ǫ}, (57)

where dist(·, ·) denotes the Euclidean distance between a point
of the state vector �(t) (Equation 31) and a codimension-
one plane 6, called “section” (Komuro et al., 2016). Here, to
differentiate a trajectory in the state space from one in the section
qualitatively, we introduce the following two useful terms: a d-
dimensional torus in map (MTd) and a d-dimensional torus
in section (STd) (Kamiyama et al., 2014; Komuro et al., 2016).
Accordingly, for example, an MT1 (a closed curve) and an MT2
(a two-dimensional torus) are converted into an ST0 (an isolated
point) and an ST1 (a closed curve), respectively, via the slice
(Figure 2). Because the bifurcation of MTd can be interpreted as
that of ST(d − 1) almost equivalently, we apply the conventional
bifurcation theory to STd in order to consider its bifurcations as
well as those of MTd (Komuro et al., 2016).

3. RESULTS

In this section, we analyze a variety of bifurcation structures

arising from the proposed model by considering τ
ξ
a , J

ξξ
0 , J

ξη
0 , Iξ ,

and τ
ξ
R/τ

ξ
F to be bifurcation parameters and Tξ and U

ξ
se to be

constants; we set Tξ = 0.8 and U
ξ
se = 0.1, respectively, because

the activation function gβξ [·] used here is an idealized sigmoid
form different from the experimentally known frequency-current

FIGURE 2 | A schematic definition of the ST0 and ST1 converted from

the MT1 and MT2 via the slice (Komuro et al., 2016).
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relationship (Tateno et al., 2004) and U
ξ
se merely determines

the steady value of the calcium concentration. The bifurcation
analysis focuses on two types of dynamic synapses, namely

short-term depression (τ
ξ
R/τ

ξ
F ≫ 1) and facilitation (τ

ξ
R/τ

ξ
F ≪

1) synapses, where τ
ξ
R has been fixed at 70 and τ

ξ
F ranges

between 1 and 140 for the sake of simplicity. In this study,
first, we individually investigate an excitatory and an inhibitory
networks, by setting JEI0 = 0 and JEE0 ≥ 0 for the excitatory
network and JIE0 = 0 and JII0 < 0 for the inhibitory
network. Next, we analyze a network composed of both the
excitatory and the inhibitory subnetworks. Throughout the
study, when the stochastic model is simulated to be compared
with the corresponding macroscopic mean field model, we
use Nξ = 104. In the following, we omit the superscripts
attached to the variables and the parameters for the sake of

simplicity when examining the aforementioned two networks
independently.

To help the readers to understand the bifurcation analysis

results below, we summarize the Result section briefly here

referring to Figures 3–12. First, we analyze the excitatory and

inhibitory networks independently, so that a parameter space
generating the oscillatory state becomes clear (Figures 3, 5).

The oscillation on the inhibitory network is faster than that on

the excitatory network (Figure 6), and the frequency of both

oscillations changes depending on parameters I, τa, and τR/τF

(Figures 3, 5). Next, we analyze a network composed of the

above two subnetworks, so that a parameter space generating two
types of phase-amplitude CFCs becomes clear (Figure 7). The
two CFCmodes differ in the underlying attractors (Figures 8, 10,
11) and in the modulation properties (Figure 12), depending on

FIGURE 3 | A dynamical qualitative change between the excitatory and the inhibitory networks with dynamic synapses. (A) (J0, I) phase diagram. The

OSE and the OSI regions appear from the steady state region via the NS bifurcation set. The oscillation on the OSI region is faster than that on the OSE region. (B)

The bifurcation diagram and the corresponding oscillatory period, with respect to the non-negative coupling strength (J0 ≥ 0). A set of stable fixed points is indicated

by the solid curve, while a set of unstable fixed points is indicated by the dashed curve. The OSE state is indicated by the dotted orbits with open circles, which

represent their maximal and minimal values. (C) The bifurcation diagram and the corresponding oscillatory period, with respect to the negative coupling strength

(J0 < 0). In (B,C), the steady state, and the OSE or the OSI state, are exchanged via the NS bifurcation point, indicated by the filled circles. (D) (τa, I) phase diagram

for the OSE state. (E) (τa, I) phase diagram for the OSI state. The oscillatory period in both the OSE and the OSI regions changes depending on τa and I.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 March 2017 | Volume 11 | Article 18

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Sase et al. Neural Oscillations with Dynamic Synapses

FIGURE 4 | A comparison between typical bifurcation diagrams

generated from the stochastic (red) and the macroscopic (blue) mean

field models. (A) The bifurcation diagram and the corresponding oscillatory

period, with respect to the non-negative coupling strength (J0 ≥ 0). (B) The

bifurcation diagram and the corresponding oscillatory period, with respect to

the negative coupling strength (J0 < 0). The formats of (A,B) for the

macroscopic mean field model are the same as those in Figures 3B,C,

respectively. The red open circles indicate maximal and minimal values of the

OSE state for (A), those of the OSI state for (B), and the oscillatory period for

these states. A pair of red open circles, corresponding to maximal and minimal

values, were plotted when the absolute difference between these values

exceeded a certain threshold value. The red cross indicates the average value

of the stochastic variable s0(t) over realization. The macroscopic mean field

model shows good agreement with the stochastic model in terms of both the

distribution of trajectories and the oscillatory period.

parameters JEI0 and JIE0 (Figure 7), but this coupling phenomenon
disappears if inhibitory input is large enough (Figures 7, 9).
While these analyses are applied to the macroscopic mean field
model, the stochastic model also yields the consistent results
(Figure 4).

The excitatory and the inhibitory networks, each of which
reflects the property of depression synapses with τR/τF = 11.7,
exhibit distinctive oscillatory states, as shown in the (J0, I) phase
diagram (Figure 3A). The oscillatory state on the excitatory
network (OSE), which was already found in the previous model
of Katori et al. (2012), changes into the steady state (the fixed
point) via the Neimark-Sacker (NS) bifurcation (Kuznetsov,
2004), when J0 decreases/increases or I increases from the region
of the OSE state. On the other hand, when J0 decreases and
I increases from the region of the steady state, the oscillatory
state on the inhibitory network (OSI) is likewise generated by

the NS bifurcation; this OSI state has been newly observed here.
It is clear from the bifurcation diagrams that these oscillatory
states emerge via the NS bifurcation from the steady state (see
Figures 3B,C). The bifurcation diagram, with respect to J0 on
(I, τa) = (−1, 2.5) (Figure 3B), shows the OSE state emergent
from the steady state. The mean neural activity,m0, in the steady
state, increases with an increase in J0, whereas the steady state
destabilizes via the first NS bifurcation at J0 = 1.63 and then, the
OSE state appears. Because of the second NS bifurcation at J0 =

3.48, the OSE state disappears, and accordingly, the steady state
reappears. In contrast, the bifurcation diagram, with respect to J0
on (I, τa) = (1, 2.5) (Figure 3C), shows the OSI state emergent
from the steady state. The mean neural activity,m0, in the steady
state decreases with a decrease in J0, whereas the steady state
destabilizes via the NS bifurcation at J0 = −4.73 and accordingly,
the OSI state appears. The OSE and the OSI states, generated
from the steady state via the NS bifurcation, likewise appear on
the network with facilitation synapses. The aforementioned two
bifurcation diagrams, with respect to J0, show good agreement
with those generated from the stochastic model (Figures 4A,B).

The model has been proposed as a discrete-time system, such
that time is represented by an arbitrary unit to flexibly describe
real data. To characterize oscillatory time-scale from this kind
of time, first, we converted time courses generated from the
model into the power spectrum, where 4096 time steps were
used in calculation for a time course. Second, the frequency of
the first typical peak in the spectrum was translated into the
corresponding time steps; we call this time step value as “period”.
Based on the period, we can say that the oscillation on the
inhibitory network tends to be faster than that on the excitatory
network (Figure 3A). Specifically, the period of the OSI state
ranges from 4.99 to 6.00 time steps, whereas that of the OSE state
ranges from 33.9 to 78.8 time steps.

Figures 3D,E show the bifurcation structures of the excitatory
and the inhibitory networks, respectively, and represent the
quasi-periodic oscillations on the invariant closed curve for
both the OSE and the OSI states. The (τa, I) phase diagram in
Figure 3D shows the distribution of the OSE state, where the
period of the OSE state ranges from 44.0 to 75.9 time steps
and increases as τa and I decrease. In contrast, the (τa, I) phase
diagram in Figure 3E shows the distribution of the OSI state,
where the period of the OSI state ranges from 3.94 to 8.00 time
steps and tends to increase as τa and I increase.

The property of the dynamic synapses similarly affects the
period on both the excitatory and the inhibitory networks
(Figure 5). As the influence of short-term depression on the
excitatory network increases (as τR/τF increases), the period for
the OSE state increases, and the network can oscillate with less
inhibitory input (Figure 5A). In contrast, τR/τF does not have
much effect on the period for the OSI state (Figure 5B).

The typical OSE and OSI states represent the relatively
slow and the fast oscillations, respectively, and are observed
in both the stochastic and the macroscopic mean field models
(Figure 6). The population averages of stochastic variables,
s0(t)[= (1/N)

∑N
i si(t)], a0(t)[= (1/N)

∑N
i ai(t)], x0(t)[=

(1/N)
∑N

i xi(t)], and u0(t)[= (1/N)
∑N

i ui(t)], correspond
to macroscopic variables (Figures 6A,D). Most excitatory
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FIGURE 5 | Effect of dynamic synapse properties on oscillatory phenomena generated from the excitatory network for (A) and from the inhibitory network

for (B). The horizontal axes for both panels are displayed in the logarithmic scale. (A) (τR/τF, I) diagram for the OSE state. The OSE region is generated from the

steady state via the NS bifurcation set. (B) (τR/τF, I) diagram for the OSI state. The OSI region is generated from the steady state via the two NS bifurcation sets. For

both the OSE and the OSI regions, the oscillatory period changes depending on τR/τF and input I.

(inhibitory) neurons fire together at each time step at a low
(high) frequency, such that the macroscopic variables exhibit
oscillations with large amplitude. The attractor, composed of the
variables, is the closed curve for both the excitatory and the
inhibitory networks (Figures 6C,F), but fundamental frequency
components differ between these networks (Figures 6B,E). The
dynamics of such macroscopic variables shows good agreement
with that of the stochastic variables, in terms of: the time course
(Figures 6A,D); the power spectrum (Figures 6B,E); and the
trajectory in the state space (Figures 6C,F).

Figure 7 shows the dynamical structure of a network
composed of the abovementioned excitatory and the inhibitory
subnetworks, where the following parameter set, corresponding
to the typical OSE and OSI states described above, has been
used: (JEE0 , IE, τEa ) = (2,−1, 2.5) for the excitatory subnetwork,
(JII0 , I

I, τ Ia) = (−10, 1, 12.5) for the inhibitory subnetwork, and

τ
ξ
R/τ

ξ
F = 11.7 for the depression synapses. This network with

(JEI0 , JIE0 ) = (0, 0) is a direct product system, composed of
the excitatory and the inhibitory subnetworks, so that a part
of the system is equivalent to the previous model of Katori
et al. (2012). However, the network with (JEI0 , JIE0 ) 6= (0, 0) shows
the following four types of distinctive neural dynamics: the
steady state (SS); the oscillatory state with a single frequency
component on a closed curve (OS1C); that with two frequency
components on a two-dimensional torus (OS2T); and that with
two frequency components on a closed curve (OS2C), where
the OS2T and OS2C states did not appear in the previous
model. It is clear from the number of zero-Lyapunov exponents
whether the attractor underlying the network is a closed curve
or a two-dimensional torus (see the (JEI0 , JIE0 ) phase diagram
in Figure 7A). The network dynamics involves only one zero-
exponent for the emergence of the OS1C or the OS2C state,
whereas the dynamics involves two zero-exponents for the
emergence of the OS2T state. The dynamics is not affected by

the property of the dynamic synapses characterized by parameter

τ
ξ
R/τ

ξ
F , which merely changes the period of oscillations on

subnetwork ξ .
Here we use the term MTd to investigate the bifurcation

structure distinguishing the above four states clearly. Then,
the MT1 arising from the model corresponds to the OS1C or
the OS2C state, while the MT2 corresponds to the OS2T state.
While the OS1C and the OS2C states are generated from the SS
state via the NS bifurcation, these states change into the OS2T
state via the two types of bifurcation, namely, the NS bifurcation
of MT1 (MT1NS) and the saddle-node cycle bifurcation of
MT1 (MT1SNC) (Kamiyama et al., 2014; Komuro et al., 2016).
Because the MT1NS bifurcation here is subcritical, a saddle-node
bifurcation of MT2 (MT2SN) intermediates between the OS1C
and the OS2T states (Komuro et al., 2016), where there exists a
specific hysteresis region between these states. We show below
the qualitative difference between the states, before and after the
bifurcation of theMT1 and theMT2, by observing the bifurcation
diagrams generated from quasi-periodic points collected in the
slice.

First, we consider the bifurcations intermediating between

the OS1C and the OS2T states. The bifurcation diagram of

trajectories in the slice, with respect to JEI0 on JIE0 = 2, shows

a transition between the OS1C and the OS2T states, where

section AI
0(t) = 1.7 and width ǫ = 0.001 have been used

for the slice (Figure 7B). As JEI0 increases from JEI0 = −0.145,
the ST0, corresponding to the OS1C state, destabilizes and

immediately an oscillation starts along with a jump to the ST1,

corresponding to the OS2T state; this abrupt change is attributed

to the subcritical bifurcation. The bifurcation property becomes
clearer by a simultaneous observation of both trajectories in the
slice, applied to a state just before the bifurcation, and that just

after the bifurcation. This simultaneous analysis clarifies that the
ST1 appears sufficiently far from the ST0 when the bifurcation
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FIGURE 6 | Examples of dynamics emergent from the excitatory and the inhibitory networks reflecting properties of dynamic synapses. The following

parameter sets were used: (J0, I, τa) = (2,−1, 2.5) for the excitatory network, (J0, I, τa) = (−10, 1, 12.5) for the inhibitory network, and τR/τF = 11.7 for the dynamic

synapses. The dynamics generated from the stochastic and the macroscopic mean field models are indicated by the red and the blue colors, respectively. (A,D) The

raster plots and the time courses of variables included in the stochastic and the macroscopic mean field models. The dots indicate 50 of 104 excitatory or inhibitory

neurons where si (t) = 1. The stochastic variables, s0(t), a0(t), x0(t), and u0(t) and the mean field variables, m0(t), A0(t), X0(t), and U0(t) are displayed as time courses in

the thin solid, the thick solid, the thin dashed, and the thick dashed lines, respectively. The time courses of s0(t) and a0(t), and those of m0 (t) and A0(t) for (A) are

almost overlapping. (B,E) The power spectra of variables s0(t) and m0(t). The two arrows indicate the fundamental frequency components. (C,F) The closed curves in

the state space. The dynamics of the excitatory network exhibits relatively slow oscillations (the left side), while that of the inhibitory network shows fast oscillations

(the right side).

occurs, where JEI0 = −0.142 for the OS1C state, and JEI0 = −0.139
for the OS2T state (Figure 7F). In contrast, as JEI0 decreases
from JEI0 = −0.135, the stable ST1 and the saddle ST1 collide,
and the ST0 appears. By combining the aforementioned slice
analysis with the Lyapunov exponent analysis, we can identify
the bifurcation types more clearly (Figure 7D). The negative
exponents with multiplicity of two approach zero simultaneously
as JEI0 increases from JEI0 = −0.145; this is a property of the
NS bifurcation. However, only one exponent starts to decrease
as JEI0 decreases from JEI0 = −0.135; this is a property of the
saddle-node bifurcation. Taken together, the bifurcation from
the OS1C to OS2T states can be identified as the subcritical NS
bifurcation of ST0 (ST0NS), while that from the OS2T to OS1C

states as the saddle-node bifurcation of ST1 (ST1SN), within
the slice (Komuro et al., 2016). Thus, these two bifurcations
can be interpreted as the MT1NS and the MT2SN bifurcations,
respectively, outside the slice (Komuro et al., 2016).

Next, we consider the bifurcation intermediating between
the OS2C and the OS2T states. The bifurcation diagram of
trajectories in the slice, with respect to JIE0 on JEI0 = −0.05,
shows a transition between the OS2C and the OS2T states, where
section AE

0 (t) = 0.8 and width ǫ = 0.001 have been used
for the slice (Figure 7C). As JIE0 decreases from JIE0 = 9, the
ST0, corresponding to the OS2C state, changes into the ST1 at
a bifurcation point. It is clear that there does not exist a hysteresis
region between the OS2C and the OS2T states, because the ST1
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FIGURE 7 | The bifurcation structure, emergent from the network composed of the excitatory and the inhibitory subnetworks reflecting properties of

dynamic synapses. The parameters used for these subnetworks were the same as those for the individual excitatory network and the individual inhibitory one in

Figure 6, respectively. (A) (JEI0 , JIE0 ) phase diagram. The number of zero-Lyapunov exponents is displayed according to the following manner: 0, 1, and 2 correspond to

the white, red, and blue colors, respectively. Both the OS1C and the OS2C regions are generated from the SS region via the NS bifurcation set, while the OS2T region

is generated via the following two types of bifurcation: the MT1NS bifurcation from the OS1C region and the MT1SNC bifurcation from the OS2C region (Kamiyama

et al., 2014; Komuro et al., 2016). There exists a hysteresis area between the OS1C and the OS2T regions with a very narrow size such that the MT2SN bifurcation

intermediates between these regions (Komuro et al., 2016). (B) The bifurcation diagram of trajectories in the slice with respect to JEI0 , where section AI0 = 1.7 with

width ǫ = 0.001 was used. A set of the ST0 for the OS1C state is indicated by the solid curve, while the ST1 for the OS2T state is indicated by the dotted orbits with

open circles which represent their maximal and minimal values. The OS2T state is generated from the OS1C state via the MT1NS bifurcation, whereas the OS1C state

is generated from the OS2T state via the MT2SN bifurcation (Kamiyama et al., 2014; Komuro et al., 2016). (C) The bifurcation diagram of trajectories in the slice, with

respect to JIE0 , where section AE0 = 0.8 with width ǫ = 0.001 was used. The OS2T state is generated from the OS2C state via the MT1SNC bifurcation (Komuro et al.,

2016). (D) The bifurcation diagrams of the Lyapunov exponents, with respect to JEI0 . The exponents for the upper diagram were calculated with an increase in JEI0 ,

(Continued)
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FIGURE 7 | Continued

whereas, those for the lower diagram were calculated with a decrease in JEI0 . (E) The bifurcation diagram of the Lyapunov exponents, with respect to JIE0 . For (D,E),

the first, second, and third exponents are displayed in the blue, green, and red colors, respectively, and exponents with multiplicity of two are indicated by the notation

“M2.” (F) The slice, applied to both the MT1 and the MT2 near the MT1NS bifurcation point, where section AI0 = 1.7 with width ǫ = 0.001 was used. (G) The slice,

applied to both the MT1 and the MT2 near the MT1SNC bifurcation point, where section AE0 = 0.8 with width ǫ = 0.001 was used. For (F,G), the trajectories in the

slice applied to the MT1 and MT2 are displayed in the blue and cyan colors, respectively. Although the ST1 (MT2) appears separated from the ST0 (MT1) when the

ST0NS (MT1NS) bifurcation occurs, the ST1 (MT2) is formed on the ST0 (MT1) when the ST0SNC (MT1SNC) bifurcation occurs (Komuro et al., 2016).

FIGURE 8 | Illustrations of (A) the ST0SNC and (B) the MT1SNC bifurcations (Komuro et al., 2016). Before the bifurcation occurs, the unstable set of a saddle ST0

(a saddle MT1) generates a one-dimensional torus (a two-dimensional torus), indicated by the dotted curve for (A) (the gradation area for B). Via the ST0SNC

(MT1SNC) bifurcation, the unstable set is stabilized, and accordingly, an ST1 (an MT2) appears, indicated by the solid curve for (A) (the uniformly filled area for B).

changes into the ST0 at the same bifurcation point as JIE0 increases
from JIE0 = 0. By observing both a state just before the bifurcation
and that just after the bifurcation simultaneously, we can find
that the ST1 rightly covers the ST0, where JIE0 = 3.12 for the
OS2C state and JIE0 = 3 for the OS2T state (Figure 7G). The
bifurcation involving this feature has been recently identified
as the saddle-node cycle bifurcation of ST0 (ST0SNC), within
the slice (Figure 8A) (Komuro et al., 2016), or as the MT1SNC
bifurcation, outside the slice (Figure 8B) (Komuro et al., 2016).
Before the ST0SNC (MT1SNC) bifurcation occurs, there exists a
pair of a stable ST0 (MT1) and a saddle ST0 (MT1) and therefore,
an unstable set of the saddle ST0 (MT1) generates a one-
dimensional (two-dimensional) torus. The ST0SNC (MT1SNC)
bifurcation, where the stable ST0 (MT1) and the saddle ST0
(MT1) collide, stabilizes the unstable set and accordingly, an ST1
(MT2) appears. The mechanism of this MT1SNC bifurcation
can be likewise verified by the Lyapunov exponent analysis
(Figure 7E); only one negative exponent approaches zero as JIE0
decreases from JIE0 = 9.

Figures 9–11 show typical dynamics emergent from the
OS1C, the OS2T, and the OS2C states, respectively, where each
is observed in both the stochastic and the macroscopic mean
field models. The population averages of stochastic variables,

s
ξ
0(t)[= (1/Nξ )

∑Nξ

i s
ξ
i (t)], a

ξ
0(t)[= (1/Nξ )

∑Nξ

i a
ξ
i (t)], x

ξ
0 (t)[=

(1/Nξ )
∑Nξ

i x
ξ
i (t)], and u

ξ
0(t)[= (1/Nξ )

∑Nξ

i u
ξ
i (t)], correspond

to macroscopic variables. The dynamics of the macroscopic
variables shows good agreement with that of the stochastic
variables, in terms of: the time course (Figures 9A,B, 10A,B,
11A,B); the power spectrum (Figures 9C, 10C, 11C); the
trajectory in the state space (Figures 9D, 10D, 11D); and its
distribution in the slice (Figures 9E, 10E, 11E).

Figure 9 shows the appearance of the OS1C state in the
network dynamics. Excitatory neurons in this state fire less
coherently, such that the excitatory subnetwork does not show
slow oscillations, but exhibits fast fluctuations (Figure 9A). In
contrast, inhibitory neurons fire coherently at a high frequency,
such that the inhibitory subnetwork shows the fast oscillation
(Figure 9B). The fast fluctuation/oscillation can be generated
with external inhibitory input and with a connection from
the inhibitory to excitatory subnetworks. These two types of
inhibition are needed for the generation of the OS1C state. The
fast oscillation in this state exhibits a single representative peak
(Figure 9C), indicating that the amplitude of the oscillation is not

modulated by the phase of the excitatory oscillation (Figures 9B,
12A). The dynamics emergent from both the excitatory and
the inhibitory neurons exhibits a closed curve (Figure 9D).
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FIGURE 9 | The typical dynamics emergent from the OS1C state in the network with dynamic synapses. The following parameter sets were used:

(JEE0 , IE, τEa ) = (2,−1, 2.5) for the excitatory subnetwork, (JII0, I
I, τ Ia) = (−10, 16, 12.5) for the inhibitory subnetwork, (JEI0 , JIE0 ) = (−0.15, 2) for the bidirectional coupling

between these subnetworks, and τ
ξ
R/τ

ξ
F = 11.7 for the dynamic synapses. (A,B) The raster plots and the time courses of variables included in the stochastic and the

macroscopic mean field models. The dots indicate 50 of 104 excitatory or inhibitory neurons where sE
i
(t) = 1 and sI

i
(t) = 1. The stochastic variables sE0 (t), a

E
0 (t), x

E
0 (t),

and uE0 (t) for the excitatory subnetwork and sI0(t), a
I
0(t), x

I
0(t), and u

I
0(t) for the inhibitory subnetwork, and the macroscopic variables, mE

0 (t), A
E
0 (t), X

E
0 (t), and U

E
0 (t) for the

excitatory subnetwork and mI
0(t), A

I
0(t), X

I
0(t), and UI

0(t) for the inhibitory subnetwork are displayed as time courses in the thin solid, the thick solid, the thin dashed,

and the thick dashed lines, respectively. (C) The power spectra of variables sI0(t) and mI
0(t). The arrow indicates the representative frequency component with a high

frequency. (D) The closed curves in the state space. (E) The slice, where section aI0 = 1.7 or AI0 = 1.7 with width ǫ = 0.001 was used. The ST0 appears in the slice

because the emergent attractor is the MT1 (Komuro et al., 2016). Both the excitatory and the inhibitory subnetworks exhibit fast oscillations on the closed curve,

whereas the amplitude of the oscillations on the excitatory subnetwork is small.

Accordingly, its slice includes less points, forming an ST0
(Figure 9E).

Figure 10 shows the appearance of the OS2T state in the
network dynamics. Both excitatory and inhibitory neurons in this
state fire coherently, such that all variables can show oscillations,
whereas, the frequency differs between the excitatory and the
inhibitory subnetworks. Excitatory oscillations are relatively
slower than inhibitory ones (Figures 10A,B). The inhibitory
fast oscillation exhibits two representative peaks (Figure 10C),
indicating that the oscillation amplitude is slightly modulated by
the phase of the excitatory slow oscillation (Figures 10B, 12B).
This modulated oscillation is a phenomenon of phase-amplitude

CFC and appears continuously (Figure 10B). Therefore, we call
this as continuous CFC following Hyafil et al. (2015). The
dynamics composed of both the slow and the fast oscillations
exhibits a two-dimensional torus (Figure 10D). Accordingly, its
slice includes a closed curve, forming an ST1 (Figure 10E).

Figure 11 shows the appearance of the OS2C state in the
network dynamics. The firing properties of excitatory and
inhibitory neurons and their macroscopic oscillations in this state
are similar to those in the OS2T state (Figures 11A–C), where
the slow and the fast oscillations appear in the excitatory and the
inhibitory subnetworks, respectively. However, the amplitude of
the fast oscillation is more evidently modulated by the phase of
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FIGURE 10 | The typical dynamics emergent from the OS2T state in the network with dynamic synapses. The parameter set, (JEI0 , JIE0 ) = (−0.05, 2) for the

bidirectional coupling between the excitatory and the inhibitory subnetworks, was used; other parameter sets are the same as those in Figure 9. The format of each

panel is likewise the same as that in Figure 9. (A,B) The raster plots and the time courses of variables included in the stochastic and the macroscopic mean field

models. (C) The power spectra of variables sI0(t) and mI
0(t). The two arrows indicate the representative low and high frequency components. (D) The two-dimensional

torus in the state space. (E) The slice, where section aI0 = 1.7 or AI0 = 1.7 with width ǫ = 0.001 was used. The ST1 appears in the slice because the emergent

attractor is the MT2 (Komuro et al., 2016). The excitatory and the inhibitory subnetworks exhibit slow and fast oscillations on the torus, respectively, whereas, the

amplitude of the fast oscillations, sI0(t) and mI
0 (t) on the inhibitory subnetwork is less modulated by the phase of the slow oscillations on the excitatory subnetwork.

the slow oscillation, compared to the OS2T state (Figures 11B,
12C). This modulated oscillation is likewise a phenomenon of
phase-amplitude CFC but appears intermittently (Figure 11B).
Therefore, we call this as intermittent CFC following Hyafil et al.
(2015). The dynamics composed of both the slow and the fast
oscillations exhibits a complicated closed curve (Figure 11D),
whereas, its slice includes a few points, forming an ST0
(Figure 11E).

4. DISCUSSION

In this study, we analyzed a stochastic network model
composed of excitatory and inhibitory neurons with dynamic

synapses, and converted the model into the corresponding
macroscopic mean field model. The bifurcation analysis of the
mean field model revealed the overall dynamical properties of
the network. The excitatory and the inhibitory subnetworks
represent slow and fast oscillations, respectively. The interaction
between these two subnetworks generates diverse oscillatory
states with two major frequency components. This oscillatory
phenomenon corresponds to phase-amplitude cross-frequency
coupling (CFC). The dependence of the oscillatory states
on coupling strengths, mediating between the subnetworks,
has been clarified by the bifurcation analysis. Furthermore,
it has been found that the oscillatory states of the CFC
can be classified into two subtypes, namely, an oscillatory
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FIGURE 11 | The typical dynamics emergent from the OS2C state in the network with dynamic synapses. The parameter set, (JEI0 , JIE0 ) = (−0.05, 5) for the

bidirectional coupling between the excitatory and the inhibitory subnetworks, was used; other parameter sets are the same as those in Figure 9. The format of each

panel is likewise the same as that in Figure 9. (A,B) The raster plots and the time courses of variables included in the stochastic and the macroscopic mean field

models. (C) The power spectra of variables sI0(t) and mI
0(t). The two arrows indicate the representative low and high frequency components. (D) The closed curve in

the state space. (E) The slice, where section aE0 = 0.8 or AE0 = 0.8 with width ǫ = 0.001 was used. The ST0 appears in the slice because the emergent attractor is the

MT1 (Komuro et al., 2016). The excitatory and the inhibitory subnetworks exhibit slow and fast oscillations on the closed curve, respectively, while, the amplitude of

the fast oscillations, sI0(t) and mI
0(t) on the inhibitory subnetwork is evidently modulated by the phase of the slow oscillations on the excitatory subnetwork.

state with two frequency components on a two-dimensional

torus (OS2T), which can generate the continuous CFC, and

an oscillatory state with two frequency components on a
closed curve (OS2C), which can generate the intermittent

CFC.
The present model is an extension of an excitatory neural

network model with dynamic synapses (Katori et al., 2012). The
previous model, which corresponds to the excitatory subnetwork

in this study, wasmodified in terms of the following three aspects:

First, we analyzed the dependence of the network dynamics on

the coupling strength, J
ξξ
0 , and on the external input Iξ ; these

parameters were fixed in the previous study (Katori et al., 2012).

The analysis revealed that these two parameters can be crucial for

the generation of a variety of oscillatory states. The second point

is the introduction of an additional variable, a
ξ
i (t), corresponding

to the synaptic activity, and a parameter τ
ξ
a , corresponding to the

time constant of the decay process for a
ξ
i (t). The third point is

a combination of the excitatory network with the inhibitory one,
where parameters JEI0 and JIE0 were introduced.

Depending on the synaptic properties, the network dynamics
changes. Decay time constants, τEa and τ Ia of the synaptic
activity, may determine the frequency of slow oscillations in
the excitatory network and that of fast oscillations in the
inhibitory network, respectively (Figures 3D,E). The frequency
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FIGURE 12 | Effect of the slow oscillation phase on the amplitude and on the period of fast oscillations, for the typical (A) OS1C, (B) OS2T, and (C) OS2C

states. The parameter sets for these states are the same as those in Figures 8–10, respectively. The amplitude of the fast oscillation in the OS1C state does not

depend on the phase of the slow oscillation for any period, but this dependence appears in both the OS2T and the OS2C states around period 5.7. In particular,

amplitude modulation arising from the OS2C state occurs more evidently compared to that in the OS2T state.

can be likewise changed by τ
ξ
R/τ

ξ
F , the property of short-

term plasticity (Figures 5A,B). A variation of frequency bands
in neural activity, such as the delta, theta, alpha, beta, and
gamma bands, is often observed in the brain, and it has
been suggested that this variation correlates with the brain
functions (Buzsáki and Draguhn, 2004). The brain functions
may be attributed to the above synaptic parameters. Indeed,
aminomethylphosphonic acid (AMPA) synapses have a relatively
short time constant, whereas, N-methyl-D-aspartate (NMDA)
synapses have a longer time constant. This synaptic difference
should affect the generation of neural oscillations and brain
functions.

We have found that the generationmechanism of the OSI state
on the inhibitory subnetwork is qualitatively consistent with the
physiological experiments (Fisahn et al., 1998; Mann et al., 2005).
Inhibitory interneurons in the rat hippocampal CA3 region show
a fast oscillation, which is referred to as the gamma oscillation.
This oscillation is blocked by the AMPA or the gamma-
aminobutyric acid (GABA) type-A receptor antagonist. AMPA-
type synapses send excitatory input to the interneurons, while
GABA type-A synapses send recurrent inhibitory connections.
These antagonists can be considered as the realization of input
II and the absolute value of coupling strength JII0 , respectively
(Figure 3A). Taken together, the OSI state generated from the
present model can be related to the gamma oscillation in
inhibitory interneuron networks.

The network composed of both excitatory and inhibitory
neurons shows phase-amplitude CFC, in which the amplitude
of the fast oscillation is modulated by the phase of the
slow oscillation (Figures 10B, 11B, 12B,C). The property of this
oscillatory phenomenon is similar to that of the experimentally
known CFC between the theta and the gamma oscillations
observed in the entorhinal cortex of the hippocampus (Chrobak
and Buzsáki, 1998).

Various oscillatory phenomena, including CFC arising from
our model, may contribute to information coding in the brain.
The presence of distinctive oscillatory states in the model implies
that a variety of information coding schemes can exist in brain

networks. It has been shown that the oscillatory states with two
major frequency components can be classified into two subtypes,
OS2T and OS2C states (Figures 10, 11). In the OS2T state, peaks
of the fast oscillation are broadly distributed in the phase of the
slow oscillation (Figure 10B). In contrast, in the OS2C state,
the phase of the fast oscillation is partially locked by the slow
oscillation; that is, peaks of the fast oscillation appear in specific
phases of the slow oscillation (Figure 11B). The neural activity
phase can be utilized to encode certain information. Indeed, it has
been suggested that the physiologically observed CFC provides a
basis for effective communications among neurons (Chrobak and
Buzsáki, 1998).

The OS2C state may contribute to multi-item representation
(Hyafil et al., 2015), because this state can generate the
intermittent CFC in the inhibitory subnetwork. One cycle of
the fast oscillation of the CFC would correspond to one item,
associated with the working memory, the spatial memory, or
the visual attention. Owing to intermittency of this oscillation,
externalmulti-items could be effectively encoded in the brain; i.e.,
the slow oscillation, generated from the excitatory subnetwork,
would play a role in optimizing storage capacity for the items.
The typical fast oscillation, mI

0(t), generating the CFC in the
OS2C state depicted in Figure 11B, shows that approximately 11
items are possibly encoded. The number of items to be stored
may increase or decrease depending on parameters, IE and II,
related to, e.g., visual input, because these parameters affect
the frequency of the slow and the fast oscillations, respectively
(Figures 3D,E). In contrast, the OS2T state would not be
suitable formulti-item representation because this state generates
continuous CFC. Moreover, the encoding scheme for the multi-
items can be likewise observed on the closed curve underlying
the fast oscillation mI

0(t) in the OS2C state (Figure 11D); that is,
the number of items to be stored would be limited in order for
the brain to avoid producing wasted storage capacity. In contrast,
the attractor underlying the OS2T state is a two-dimensional
torus (Figure 10D); that is, more items would be encoded in
the torus than the closed curve. However, the torus may not
be efficient where only a few items are stored, because the
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torus consists of a dense orbit and may produce wasted storage
capacity.

Our main finding is that the MT1SNC bifurcation may
underlie a switching phenomenon between the continuous and
the intermittent CFCs; this result supports the study of Fontolan
et al. (2013). Fontolan et al. have reported that these two
CFCs are switched via the saddle-node on invariant circle
(SNIC) bifurcation, on a simplified Pyramidal Interneuron
Network Gamma (PING) model (Fontolan et al., 2013). The
SNIC bifurcation mediates between a limit cycle and a two-
dimensional torus in flow, whereas the MT1SNC bifurcation
mediates between a closed curve and a two-dimensional torus
in map; here both bifurcations occur via a saddle-node cycle. If
we assume that the MT1 arising from the proposed discrete-time
model is the limit cycle in the corresponding continuous-time
model, these two bifurcations will become consistent. Thus, the
present study implies that phase-amplitude CFC in the brain can
be interpreted in a discrete-time model.

Overall, the bifurcation analysis revealed that oscillatory
dynamics, arising from the proposedmodel, qualitatively changes
depending on parameters, which would be one origin of
characterizing cell assemblies. Although the present study
focused only on one cell assembly receiving inhibitory and
external input, in fact, there exist many assemblies (Yoshimura
et al., 2005), which could differ in their roles for neural

information processing. Each of assemblies, in layer 2/3 of
the cortex, selectively receives its recurrent connections and
excitatory input from layer 4, possibly based on environmental
change, while input from layer 5 might modulate activity
between assemblies (Yoshimura et al., 2005). Such selectively
interconnected neurons would play a crucial role for utilizing
phase-amplitude CFC in the brain.

The mechanisms and functions of oscillatory phenomena
must be further explored in the future. The oscillatory
phenomena observed in the proposed model, a binary-state
discrete-time neuron model, should be evaluated with a more
realistic network model that reflects the detailed properties of the
cerebral cortex.
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