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Over 30% epileptic patients are refractory to medication, who are amenable

to neurosurgical treatment. Non-invasive brain imaging technologies including

video-electroencephalogram (EEG), magnetic resonance imaging (MRI), and

magnetoencephalography (MEG) are widely used in presurgical assessment of

epileptic patients. This review mainly discussed the current development of clinical

MEG imaging as a diagnose approach, and its correlations with the golden standard

intracranial electroencephalogram (iEEG). More importantly, this review discussed the

possible applications of functional networks in preoperative epileptic foci localization in

future studies.

Keywords: magnetoencephalographic (MEG), intracranial electroencephalogram (iEEG), distributed source
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INTRODUCTION

Epilepsy is defined as a brain disorder characterized predominantly by recurrent and unpredictable
interruptions of normal brain function resulting from abnormal and excessive neuronal discharges
(Fisher et al., 2005). Approximately a third of epileptic patients are refractory to medication, who
are amenable to neurosurgical treatment if evidences clarify focal network underlying the epilepsy
(Jobst and Cascino, 2015). The main purpose of presurgery evaluation is to localize the epileptic
foci in order to direct a precise surgery plan for an individual patient. Various of non-invasive brain
imaging technologies including video-electroencephalogram (EEG), magnetic resonance imaging
(MRI), positron emission tomography (PET), single photon emission computerized tomography
(SPECT), and magnetoencephalography (MEG) play crucial roles in presurgical assessments of
epileptic patients (Duncan et al., 2016). However, when the non-invasive outcomes are inconsistent,
intracranial-electroencephalogram (iEEG), which is the current “golden standard” for localization
of seizures, is needed to be conducted to confirm the involvement of suspected brain regions.

Among those non-invasive technologies, MEG has held the promise for localizing epileptic
zones for its predictions of favorable post-surgical outcomes (Zhang et al., 2011; Englot et al., 2015b)
and concordance with iEEG results (Almubarak et al., 2014; Grova et al., 2016; Murakami et al.,
2016). One of the main advantages of MEG is its high spatial and temporal accuracy. By detecting
the changes of magnetic fields produced by the electrical activities of neurons, epileptic spikes could
be observed in MEG within only 4 cm2 cortical generators (Mikuni et al., 1997; Oishi et al., 2002;
Shigeto et al., 2002). While a minimum area of 10 cm2 was required to detect spikes in scalp EEG
(Tao et al., 2007).
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Although MEG has numerous advantages in epileptic foci
detection, it still can’t replace the iEEG as an independent
modality in presurgical assessment (Duncan et al., 2016). The
most common MEG application now is to guide implantation
sites for intracranial recordings (Knowlton et al., 2009;
Agirre-Arrizubieta et al., 2014). One of the most important
limitations exist in clinical MEG studies is the immature source
reconstructing algorithm which is still developing. In the past
decade, both the quantity and quality of MEG studies have
remarkable increased, this state of the art technique seems
promising to reveal brain mechanism of cognitive processing
(Baillet, 2017). Going deep into understanding of human’s brain,
a large number of new concepts and perspectives are emerging.
How could we take advantage of the exciting progresses made
in cognitive MEG studies? This review attempted to discuss the
recent development of clinical MEG studies and its application in
preoperative epileptic foci localization.

SOURCE RECONSTRUCTION OF MEG

DATA

Interictal epileptic discharge (IED), which represents the field
summation of potentials from a population of pathologically
synchronized bursting neurons, is generally considered as a
robust biomarker that identifies the epileptic foci (Oishi et al.,
2002, 2006). However, the raw MEG signals are magnetic fields
outside the human scalp (Cohen, 1968). A combination of
MEG signals and structural MRI scans is needed to estimate
the location and intensity of IEDs sources inside the brain
which is called source localization. After artifact rejection and
noise definition, source localization processing could be generally
divided into two steps: (1) head modeling which establishes the
electromagnetic properties of the sensor array and estimations of
the brain sources; (2) source modeling imaging which solves an
inverse problem (Tadel et al., 2011; Baillet, 2017).

Reconstructing of current dipoles, which are convenient
model equivalents to the post-synaptic electrophysiological
activity of local neuronal assemblies, is the basic concept in
MEG source estimation process (Mosher et al., 1992). Among the
current studies, two main approaches have been well adopted:
single equivalent current dipoles (sECD), where the position
and amplitude of one sECD is estimated over relatively short
time windows, and distributed source modeling (DSM), which
attempts to explain a given observed magnetic field by the
distribution of source intensities in the brain instead of a single
source (Tadel et al., 2011; Baillet, 2017).

The most common algorithm of the epileptic foci localization
from clinical MEG recordings is sECD (Bagic et al., 2011).
A well trained magnetoencephalographer is needed to extracts
tightness and orientation of the dipole clusters visually (Salayev
et al., 2006). Ideally, sECD can localize at best the center of the
spatially extended generators as a point source (Ebersole, 1997).
A retrospective study used sECD method revealed that patients
with tight cluster and stable orientation dipole could significantly
predict a better outcomes after surgery (Murakami et al., 2016).

However, the practicability of sECD method is debated not
only for the subjective selection of IED period, but also for the

possibility to mislead the presence of large spatially extended
generators (Kobayashi et al., 2005). The latter is sophisticated
because the IEDs were sometimes not confined to only one area
(Agirre-Arrizubieta et al., 2009).

In the past decade, DSM has been largely promoted in
cognitive MEG studies based on the fact that multiple brain areas
would activate simulatonesly when a participant is performing
a certain task (Tadel et al., 2011). DSM has also been applied
in presurgical MEG evaluation using the nonlinear Maximum
Entropy on theMean (MEM) algorithm (Chowdhury et al., 2013;
Grova et al., 2016; Heers et al., 2016; Zerouali et al., 2016), which
could better predict the cortical regions with IEDs compared with
other distributed models (Heers et al., 2016).

CORRELATION WITH INTRACRANIAL

DATA

To evaluate the effectiveness of epileptic foci localization inMEG,
the agreement between the MEG and “gold standard” invasive
EEG approaches, which mainly include electrocorticography
(ECoG) and stereo-electroencephalogram (sEEG) should be
considered. Although most studies focus on the evaluation
consistency between MEG and ECoG (Oishi et al., 2002, 2006;
Knowlton et al., 2009; Almubarak et al., 2014), more and more
studies has paid attention to the correlations between MEG and
sEEG (Bouet et al., 2012; Grova et al., 2016; Murakami et al.,
2016), which is considered to be minimal invasive and more
suitable for preoperative evaluation (Gonzalez-Martinez et al.,
2013; Zhou et al., 2017).

The effectiveness of MEG is depends on the depths of IED
sources. Previous studies showed that MEG could detect 50–90%
of spikes detected on iEEG superficial cortex including the lateral
temporal cortex (Shigeto et al., 2002; Oishi et al., 2006; Agirre-
Arrizubieta et al., 2009), while it could detect about 50–63% iEEG
spikes in mesial temporal structures (Santiuste et al., 2008). These
results are in general acceptable for presurgical assessments.
Recent studies have revealed that epileptic activity from the
insula, which is far away from scalp, can also be detected byMEG
(Heers et al., 2012; Mohamed et al., 2013).

The limitation of iEEG approaches is it can only monitor a
portion of brain areas, while MEG can provide a broad view of
whole head activities and therefore may aid the interpretation
of iEEG data. Murakami et al. (2016) systematically examined
the consistency between the interictal discharges in MEG with
interictal and ictal discharges in sEEG in 50 retrospective cases.
The results showed that the proportion of seizure-free after
epileptic foci resection was significantly higher when sEEG
completely sampled the area identified by MEG. This finding
suggests that although the MEG is still unable to take the place
of iEEG as the standard, more weight should be assigned to MEG
outcomes in combination of multiple modalities in preoperative
evaluation.

EPILEPSY AS A NETWORK DISEASES

One of the core questions in cognitive neuroscience is how
different brain areas cooperate during perceptual/cognitive
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processing (Bressler and Menon, 2010). This hypothesis could
also applied when epilepsy is considered as a network
diseases (Laufs, 2012). Recent studies suggested that the brain
connectivity differences among individuals could effectively
interpret the patients with differing surgical outcomes (Englot
et al., 2015a; Munsell et al., 2015).

Traditional epileptic network is defined as discharge
propagation network (Malinowska et al., 2014), which is
correlated with patient surgical outcome (Tanaka et al., 2014).
However, a portion of patients could not be captured epileptic
discharges during MEG recording. Functional connectivity
studies have been recently applied in epileptic patients based
on the assumption that the normal functions of local networks
are impaired in the foci areas. Evidence for altered focal
functional connectivity in patients with temporal lobe epilepsy
has been reported using resting-state functional MRI method
(Haneef et al., 2012; Cataldi et al., 2013; Maccotta et al.,
2013).

Unlike the extensive studies using function MRI modality,
the resting-state MEG studies are rare. Krishnan et al. (2015)
conducted a preliminary MEG study and suggested that accurate
localization of the epileptogenic foci may be accomplished using
non-invasive spontaneous resting-state signals without the need
to capture IEDs. Zerouali et al. (2016) used resting-state MEG
analysis to recognize insular epileptic foci and revealed that
anterior and posterior sub-regions of the insula have distinct
patterns of functional connectivity, which could further guide
different surgery plans.

A combination of resting-state fMRI and MEG studies of
functional connectivity could be adopted to investigate the
pathophysiology of epileptic networks. However, whether there
is potential benefit in prediction of epilepsy surgery outcome
in individual level is not established yet. To achieve this goal,

a large database of normal resting-state mapping should be
established. With a temporally rich source of information on
brain network dynamics, MEG was called upon to join in the
Human Connectome Project (Larson-Prior et al., 2013). Three
years later, Niso et al. (2015) published an open archive resting-
state MEG data of 97 health participants, which mainly focus
on the distributions of typical oscillation frequency bands (delta,
theta, alpha, beta, and gamma). Interestingly, a previous study
shown that coherent neural activity change in the beta band
might be causally involved in epilepsy (Heers et al., 2014),
suggesting an exciting practicability of this MEG normative
repository in preoperative evaluation for individual epilepsy
patient.

To sum up, with the development of cognitive neuroscience,
our understanding of normal and abnormal functional
mechanism of the brain will get better and better. Using
advanced MEG analysis technology, objective biomarks to
locate epileptic foci is likely to replace the traditional subjective
judgments in the upcoming future.
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