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Lehky et al. (2011) provided a statistical analysis on the responses of the recorded 674

neurons to 806 image stimuli in anterior inferotemporalm (AIT) cortex of two monkeys. In

terms of kurtosis and Pareto tail index, they observed that the population sparseness of

both unnormalized and normalized responses is always larger than their single-neuron

selectivity, hence concluded that the critical features for individual neurons in primate AIT

cortex are not very complex, but there is an indefinitely large number of them. In this

work, we explore an “inverse problem” by simulation, that is, by simulating each neuron

indeed only responds to a very limited number of stimuli among a very large number of

neurons and stimuli, to assess whether the population sparseness is always larger than

the single-neuron selectivity. Our simulation results show that the population sparseness

exceeds the single-neuron selectivity in most cases even if the number of neurons and

stimuli are much larger than several hundreds, which confirms the observations in Lehky

et al. (2011). In addition, we found that the variances of the computed kurtosis and

Pareto tail index are quite large in some cases, which reveals some limitations of these

two criteria when used for neuron response evaluation.

Keywords: synthetic neuron response, single-neuron selectivity, population sparseness, response statistics

1. INTRODUCTION

In recent years, many researchers have investigated statistics of neuron responses in different
visual cortical areas, since statistical characteristics of neurons are important to theories of object
representation and population decoding (Riesenhuber and Poggio, 1999; Hinton et al., 2006; Lehky
et al., 2007; Baldassi et al., 2013; Cadieu et al., 2014; Yamins et al., 2014; Dong et al., 2016; Chang
and Tsao , 2017).

Single-neuron selectivity and population sparseness are two important characteristics of neuron
responses, which have been extensively investigated in literatures (Lehky et al., 2005, 2011; Franco
et al., 2007). Single-neuron selectivity is determined from single-neuron responses to all the stimuli,
while population sparseness is determined from population responses to individual stimulus. In
Lehky et al. (2005) and Tolhurst et al. (2009), single-neuron selectivity and population sparseness
of neurons in the V1 area were investigated. Compared with low-level visual cortical areas,
inferotemporal (IT) cortex, where complex stimulus features are required for the activation of
IT neurons (Kobatake and Tanaka, 1994), is generally believed to be the final stage in object
recognition (Gross, 2008). Franco et al. (2007) investigated the single-neuron selectivity and
population sparseness of neurons in monkey IT cortex, and concluded that they were identical.
In contrast to the results in Franco et al. (2007), Lehky et al. (2011) provided a statistical analysis
on the responses of 674 monkey IT neurons to 806 stimulus images. They additionally performed
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simulation experiments on a synthetic set of responses generated
by gamma distributions. And their results showed that single-
neuron selectivity and population sparseness in monkey IT
cortex were quite different. In their work, single-neuron
selectivity and population sparseness were measured by kurtosis
and Pareto tail index. They observed that the population
sparseness is always larger than the single-neuron selectivity
for both unnormalized and normalized responses, which is
interpreted as that the critical features for individual neurons
in primate anterior inferotemporalm (AIT) cortex are not very
complex, but there are an indefinitely large number of such
critical features. This is largely different from the traditional
structural models of object recognition, where a small number
of standard features are employed.

In this work, our goal is not to build quantitative predictive
models of neuron responses, unlike Yamins et al. (2014) where a
four-layered regression model is introduced to accurately predict
monkey IT neuron responses, and Chang and Tsao (2017) where
an axis model is proposed to decode face representation. Rather,
our goal is to investigate the following “inverse problem” on
the conclusions in Lehky et al. (2011) by simulation: Assuming
each neuron only responds to a very limited number of stimuli
among a large number of neurons and stimuli, whether the
population sparseness is always larger than the single-neuron
selectivity, especially when the number of neurons and stimuli
increases. To our knowledge, there is no investigations on
such an issue in the literature up to now. Considering it
is impractical, even impossible, to record too many neuron
responses, the above issues are addressed in this work with the
synthetic neuron responses generated by two models separately,
under varying neuron numbers, stimulus numbers, and noise
levels.

With such synthetic neuron responses, our results support
the interpretations in Lehky et al. (2011). In other words, if
each neuron only selects a limited number of features and there
are many different features, by both kurtosis and Pareto tail
index, the population sparseness is larger than the single-neuron
selectivity in most cases for both the two response generating
models. Besides, we also observed that the variances of the
computed kurtosis and Pareto tail index in some cases are quite
large, which reveals some limitations of these two criteria when
used for neuron response evaluation.

2. METHODS

2.1. Overview
In this work, assuming the conclusions in Lehky et al. (2011)
always hold true regardless of the number of neurons and
stimuli, that is, the critical features for individual neurons in
primate AIT cortex are not very complex, but there are an
indefinitely large number of such features, we simulate a large
number of neuron responses subject to this assumption under
various conditions by varying the neuron number, the stimulus
number, the noise level, and then use the same criteria, as did in
Lehky et al. (2011) for monkey AIT neurons, to assess whether
the population sparseness for the synthetic responses is always
larger than the single-neuron selectivity by both the kurtosis

criterion and the Pareto tail index criterion. Here, we only focus
on the preservation of the relative magnitude order, not the
computed absolute values, between the population sparseness
and the single-neuron selectivity.

To make the simulation meaningful, the first crucial issue
is how to simulate the neuron responses. Here, we adopt the
following two neuron response generating models:

(1) Assuming there are N stimuli and an upper-limit number
of neuron responses Nmax per neuron (Nmax ≪ N), the
exact response number for each neuron is generated at
random from the set {1, 2, 3, ...,Nmax} (explicitly controlling
the small number of the critical features for each neuron),
and the corresponding indices of the stimuli which activate a
neuron, are determined at random from the set {1, 2, 3, ...,N}
(reflecting the fact that there are a large number of different
critical features to which different neurons are tuned). Then,
the response magnitude is generated at random under a
predefined distribution, as described in Section 2.2.1. In
addition, synthetic responses with neural correlation are
generated by the Copula method (Hu et al., 2007).

(2) As shown in Lehky et al. (2011), the IT single-neuron
responses can be modeled by gamma distributions where
large-magnitude responses have a high probability of
occurring within a limited stimulus set, and noise can be
modeled by Poisson noise. Hence, we also used the same
model in Lehky et al. (2011) to generate synthetic responses
with/without noise and neural correlation, as described in
Section 2.2.2.

The advantage of the first model is that we can strictly control
the maximum response number of individual neurons, which
is set by the parameter Nmax. Its disadvantage is that the
generated responses lack of any biological basis. As our problem
is to investigate the “inverse problem,” we thought this lack of
biological basis does not severely affect the validity of our work.

The advantage of the second model is that each neuron
response does approximately satisfy the IT neuron responses
in Lehky et al. (2011), but the maximum response number of
individual neurons cannot be explicitly controlled. In the second
model, another problem is that although single-neuron responses
can be modeled by a gamma distribution, how to generate the
two parameters (the shape and scale) of the gamma distribution
for population neurons, is a difficult, even an open issue. In
Lehky et al. (2011), these two parameters are separately generated
also by two gamma distributions under fixed parameter settings.
We found how to generate the two parameters of the gamma
distribution of individual neurons could significantly affect the
estimated kurtosis and Pareto tail index, which will be discussed
in detail in Section 4.

Taking into account of the above points, we investigate both
the two models in this work, and the final results by the two
models are indeed similar in most cases, which further confirm
the appropriateness of the interpretations in Lehky et al. (2011).

In the following subsections, we firstly describe the response
generating methods derived from the two models in detail, and
then introduce the related concepts, criteria, and the statistics of
IT neuron responses in Lehky et al. (2011).
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2.2. Methods for Synthesizing Neuron
Responses
At first, we give some notations to facilitate the subsequent
descriptions:
Notations: Let R ∈ RN×M represent a synthetic neuron response
matrix without noise, where N is the number of the stimuli and
M the number of the neurons. The i-th(i = 1, 2, ...,N) row
represents the responses of all theM neurons to the i-th stimulus,
while the j-th(j = 1, 2, ...,M) column represents the responses of
the j-th neuron to all the N stimuli. Let R̃ ∈ RN×M represent
the synthetic noisy response matrix of the noiseless response
matrix R.

2.2.1. Method-I for Synthesizing Neuron Responses
Following the above mentioned first model, we assume that for
each neuron, the number of the stimuli which can activate this
neuron is no more than a preset positive integer Nmax, which
is much smaller than the total number N of stimuli. That is to
say, each neuron responds to no more than Nmax stimuli with
0 < Nmax ≪N. And we assume that the numberM of neurons is
quite large. Then, the noiseless response matrix R is generated as
follows:

S1 For the j-th(j = 1, 2, ...,M) neuron, the number Nj of
its selective stimuli is drawn from the discrete uniform
distribution ϒNmax within the set {1, 2, 3, ...,Nmax}.

S2 For the j-th(j = 1, 2, ...,M) neuron, the indices
Pkj (k = 1, 2, ...,Nj) of the above mentioned Nj stimuli are

selected randomly from the set {1, 2, 3, ...,N}.
S3 For the j-th(j = 1, 2, ...,M) neuron, its response RPkj ,j

(k = 1, 2, ...,Nj) to the Pkj -th stimulus is defined as

RPkj ,j
= λjexp(−τPkj ,j

), where the scalar λj is drawn from the

continuous uniform distribution �λ on the closed interval
[1, λmax], λmax is a preset threshold, and τPkj ,j

is drawn from

the continuous uniform distribution �τ on the closed interval
[0, 1].

S4 Constructing a noiseless response matrix R: Each of the
synthetic responses RPkj ,j

at Step S3 is assigned to the element at

the Pkj -th row and the j-th column of R, and the rest elements

of R are set to 0.

Considering that noise is generally involved in the recorded
neuron responses, we synthesize a noisy response matrix R̃ from
the above noiseless matrix R via the following approach:

S1 Synthesizing a noise matrix δ: Its element
δi,j(i = 1, 2, ...,N, j = 1, 2, ...,M) is set as δi,j = max(0,φi,j),
where φi,j is drawn from the Gaussian distribution with mean
µ and standard deviation σ . In the following parts, δ is called
noise level.

S2 Constructing R̃: R̃ = R+ δ.

2.2.2. Method-II for Synthesizing Neuron Responses
Here, we used the above mentioned second model (i.e., the
simulation model in Lehky et al., 2011) to generate synthetic
neuron responses with/without noise and neural correlation.

The original synthetic response matrix is constructed as:
The synthetic responses of each neuron are generated by a
gamma probability distribution. And for different neurons, their
gamma distributions are different, whose parameters {a, b} are
separately generated by two gamma distributions with fixed
parameter settings [a = gamrnd(4.0,0.5) and b =
gamrnd(2.0,0.5), where “gamrnd” is the Matlab gamma
random number generator].

The synthetic noisy response matrix is constructed as: Each
noisy response is generated by replacing its corresponding
response in the above original response matrix by a Poisson-
distributed random number whose mean value is the same to the
original response.

The synthetic response matrix with neural correlation is
constructed as: The correlation values between neurons are set
to a constant, and then such synthetic response matrices are
generated by the Copula method (Hu et al., 2007).

2.3. Concepts, Criteria, and Statistics of IT
Neuron Responses
2.3.1. Dataset in Lehky et al. (2011)
In Lehky et al. (2011), a 806 × 674 neuron response matrix is
constructed, consisting of the recorded responses of 674 AIT
neurons to 806 stimulus images of size 125×125. Each column of
this response matrix is the responses of a single neuron to all the
806 images, and each row of this response matrix is the responses
of all the 674 neurons to a single image. Some stimulus images
are shown in Figure 1.

As introduced in Section 1, single-neuron selectivity and
population sparseness are two related concepts of neuron
responses. The single-neuron selectivity characterizes the
distributions of single-neuron responses to all the stimuli,
while the population sparseness characterizes the distributions
of population responses to a single stimulus. For the above
mentioned response matrix, each neuron has a fitted selectivity
response probability density function, and each stimulus image
has a population response probability density function. Figure 2

FIGURE 1 | Example stimulus images from Lehky et al. (2011).
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FIGURE 2 | Probability density functions for high-selectivity and low-selectivity

neuron responses (Lehky et al., 2011).

(from Lehky et al., 2011) shows an example of selectivity
probability density functions, where the high-selectivity
probability density function (dashed line) has a heavier upper
tail than the low-selectivity probability density function (solid
line). Given a probability density function for single-neuron
responses (or population responses) as shown in Figure 2, if it
has a substantial upper tail, it means high-selectivity responses
have a larger probability of occurrence, in other words, the
neuron is more selective (or the population response is more
sparse).

In Lehky et al. (2011), the kurtosis and the Pareto tail index
are used to measure the single-neuron selectivity and population
sparseness of neurons, which are introduced, respectively, in the
following subsections.

2.3.2. Calculating Single-Neuron Selectivity and

Population Sparseness

2.3.2.1. Kurtosis

Kurtosis (strictly speaking, excess kurtosis) is a measure of the
“peakedness” of a probability distribution for both single-neuron
selectivity and population sparseness in many existing works
(Lehky et al., 2005, 2007, 2011; Tolhurst et al., 2009). It only
depends on the shape of the distribution, and is independent of
the mean or variance.

Kurtosis is defined as:

Kurt =
1
N

∑N
i= 1 (ri − r̄)4

[ 1N
∑N

i= 1 (ri − r̄)2]2
− 3 (1)

where for single-neuron responses, ri is the response of a neuron
to the i-th image, N is the number of images; for population
responses, ri is the response of the i-th neuron to an image, N
is the number of neurons. r̄ = 1

N

∑N
i=1 ri is the mean response.

Normalization: Neurons in a population may have different
activation levels in some cases, then high population sparseness
could arise as an artifact. To alleviate this problem, the

normalized data rni , which is obtained by dividing the response
of each neuron by its mean response across all the stimulus
images, is also used for calculating kurtosis on both single-neuron
selectivity and population sparseness:

rni =
ri

r̄
(2)

where ri is the response of a neuron to the i-th image,
r̄ = 1

N

∑N
i= 1 ri is the mean response across all N images.

According to Equations (1) and (2), the normalization has no
effect on single-neuron selectivity in principle, but does have an
effect on population sparseness.

2.3.2.2. Pareto tail index

The Pareto tail index (Pickands, 1975) is utilized to analyse large
responses occurring on the upper tails of the probability density
functions (PDFs). In Lehky et al. (2011), tail data were fitted with
a generalized Pareto distribution by maximum likelihood.

The PDF for the generalized Pareto distribution is defined as:

p = f (r|k, η, θ) =
1

θ
(1+ k

r − θ

η
)−1− 1

k (3)

where η is the scale, θ is the threshold where the upper tail
of the probability density function starts, and k is a shape
parameter quantifying heaviness of the tail, called the tail
parameter.

Generally speaking, if the kurtosis is large, it means the density
function most probably has a heavy tail. Similarly, if the Pareto
tail index is large, the density function also has a heavy tail. Note
that since kurtosis is a global measure of the shape of the entire
probability distribution but not just the tail, measures of kurtosis
and measures of Pareto tail index may be different in some cases.
Note also that since population sparseness and single-neuron
selectivity are evaluated by the same criteria and computed by the
same formula, they are of no difference from the computational
point of view.
Remark: Here, we would point out that for Method-II, since
neuron responses are sampled from gamma distributions, whose
shape and scale parameters are also sampled from two specific
gamma distributions with the shape and scale parameters as
described above, a large portion of such synthetic noiseless
neuron responses are of a lowmagnitude, and accordingly, a large
portion of the synthetic Poisson-noise responses by Method-
II are zeros. Since for each neuron, the Pareto tail index is
computed by the largest 10% of its responses as did in Lehky et al.
(2011), we found the Pareto tail index is too sensitive to Poisson-
noise responses, and the corresponding mean and median values
cannot adequately describe the synthetic responses (these results
are reported in Figure S4 of the Supplementary Materials). To
remedy this problem caused by sampling at integer values in the
Poisson distribution with parameter λ > 0, we used a truncated
Gaussian distribution in place of the Poisson distribution to
generate a noisy response r̃ in our experiments on Pareto tail
index, i.e.,

r̃ = max(0,normrnd(λ,
√

λ)) (4)
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where “normrnd” is the Matlab Gaussian-distribution random
number generator, and “normrnd(λ,

√
λ)” generates random

numbers subject to the Gaussian distribution with mean λ

and standard deviation
√

λ. Here, the truncated Gaussian
distribution is employed following the facts: (i) The mean and
variance of r̃ generated from the normal distribution in Equation
(4) are both equal to λ, same as those generated from the
Poisson distribution with parameter λ; (ii) For sufficiently large
values of λ, the normal distribution with mean λ and variance
λ is an excellent approximation to the Poisson distribution
with parameter λ (SOCR, 2017); (iii) The truncated Gaussian
distribution r̃ = max(0,normrnd(λ,

√
λ)) characterizes a

continuous variable, and it avoids possible “negative response”
that could never occur in real neuron recordings. Note that
although the probability of generating a positive sample using
Equation (4) depends on λ, when λ ≥ 3, the probability of
generating a “0” sample is lower than 4.2%. Since for the Pareto
tail index estimation, we only compute the 10% of the largest
responses, this truncated Gaussian will affect less on the Pareto
tail index computation.

2.3.3. General Results in Lehky et al. (2011)
Lehky et al. (2011) showed that:

• For both the unnormalized and normalized neuron responses,
the population sparseness is always greater than the single-
neuron selectivity in terms of the mean kurtosis, median
kurtosis, and mean Pareto tail index, as listed in Table 1 (these
results are reported in Lehky et al., 2011).

• The above results are interpreted as that the critical features
for individual neurons in primate AIT cortex are not quite
complex, and there are an indefinitely large number of
different critical features.

3. RESULTS

3.1. Parameter Setting and Data Synthesis
In our experiments, all the codes are implemented in
Matlab. We use the Matlab discrete uniform random number
generator unidrnd, the Matlab random permutation function
randperm, the Matlab continuous uniform random number
generator unifrnd, the Matlab Gaussian random number
generator normrnd, to generate synthetic responses in Method-
I. And in Method-II, the Matlab gamma random number
generator gamrnd is used both to generate synthetic responses

and the two gamma-distribution parameters, and the Matlab
Poisson random number generator poissrnd is used to
generate noisy responses.

We synthesize the response matrices by Method-I and

Method-II separately. For Method-I, in order to ensure that the

number of neurons(or M) is sufficiently large as discussed in

Section 2.2,M is set to 10,000, much larger than 674—the number

of the recorded neurons in Lehky et al. (2011). And the number of
the stimulus images (orN) is set to 2,000, much larger than 806—
the number of the used stimuli in Lehky et al. (2011). In addition,
in order to ensure that the critical features for individual neurons
in primate AIT cortex are not very complex, the parameter
Nmax (the upper bound number of the stimuli activating a
neuron) is set to {100, 200}, respectively, much smaller than the
number N = 2,000 of the stimuli. Under the above parameter
settings, the following response matrices are synthesized by
Method-I:

• R1: a synthetic noiseless response matrix withNmax = 100 and
λmax = 50;

• R2: a synthetic noiseless response matrix withNmax = 200 and
λmax = 30;

• R3: a synthetic noiseless response matrix withNmax = 200 and
λmax = 50;

• R̃13: a synthetic response matrix of low noise with mean µ = 0
and standard deviation σ = 1 from R3;

• R̃23: a synthetic response matrix of medium noise with µ = 0
and σ = 3 from R3;

• R̃33: a synthetic response matrix of high noise with µ = 15 and
σ = 3 from R3.

And the following response matrices are synthesized by
Method-II:

• R4: a 806 × 674 synthetic noiseless response matrix, which
is of the same size as the response matrix used in Lehky
et al. (2011). In this response matrix, the responses of each
neuron are generated by a gamma distribution with its
shape parameter a = gamrnd(4.0, 0.5) and scale parameter
b = gamrnd(2.0, 0.5) as did in Lehky et al. (2011);

• R̃14: a synthetic Poisson-noise response matrix from R4 as did
in Lehky et al. (2011);

• R̃24: a synthetic truncated-Gaussian-noise response matrix via
Equation (4), where the mean and variance of the used
Gaussian distribution are equal to the Poisson-distribution
parameter used for generating R̃14;

TABLE 1 | Relative magnitude order of kurtosis and Pareto tail index between the single-neuron selectivity and the population sparseness on the recorded neuron

responses in Lehky et al. (2011).

Datasets Kurtosis Pareto tail index

Unnormalized data Normalized data Unnormalized data Normalized data

Mean Median Mean Median Mean Median Mean Median

Single-neuron selectivity 3.50 1.88 3.50 1.88 −0.43 – −0.43 –

Relative magnitude order ∧ ∧ ∧ ∧ ∧ – ∧ –

Population sparseness 12.51 9.61 17.35 7.98 −0.05 – 0.19 –

∧ Indicates the selectivity is lower than the corresponding sparseness.
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FIGURE 3 | Single-neuron selectivity and population sparseness on the noiseless response matrices {R1,R2,R3} under Method-I: (A) Results on R1; (B) Results on

R2; (C) Results on R3.

TABLE 2 | Relative magnitude order of kurtosis between the single-neuron selectivity and the population sparseness on the unnormalized/normalized synthetic responses

generated by Method-I.

R1 R2 R3 R̃1
3

R̃2
3

R̃3
3

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

UNNORMALIZED DATA

Single-neuron selectivity 124.40 50.48 68.97 24.53 70.44 24.42 37.91 19.76 18.19 13.23 10.40 9.03

Relative magnitude order ∨ ∧ ∨ ∧ ∨ ∧ ∧ ∧ ∧ ∧ ∧ ∧
Population sparseness 91.18 90.59 43.62 43.46 44.56 44.45 43.01 42.92 33.25 33.20 21.27 21.26

NORMALIZED DATA

Single-neuron selectivity 124.40 50.48 68.97 24.53 70.44 24.42 37.91 19.76 18.19 13.23 10.40 9.03

Relative magnitude order ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
Population sparseness 1,352.78 681.58 1,222.83 561.80 1,251.33 597.75 65.02 60.30 26.78 26.27 18.17 18.18

∨ Indicates the single-neuron selectivity is larger than the corresponding population sparseness, while ∧ Indicates the single-neuron selectivity is smaller than the corresponding population

sparseness.
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FIGURE 4 | Single-neuron selectivity and population sparseness on the noiseless response matrices R4 and R5 under Method-II: (A) Results on R4; (B) Results on R5.

TABLE 3 | Relative magnitude order of kurtosis between the single-neuron selectivity and the population sparseness on the unnormalized/normalized synthetic responses

generated by Method-II.

R4 R5 R̃1
4

R̃1
5

R̃2
4

R̃2
5

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

UNNORMALIZED DATA

Single-neuron selectivity 3.70 2.90 3.95 3.13 4.67 3.30 4.90 3.73 4.34 3.29 4.28 3.39

Relative magnitude order ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
Population sparseness 11.06 9.76 20.13 18.60 13.43 11.08 15.63 14.74 16.24 12.90 15.38 14.57

NORMALIZED DATA

Single-neuron selectivity 3.70 2.90 3.95 3.13 4.67 3.30 4.90 3.73 4.34 3.29 4.28 3.39

Relative magnitude order ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
Population sparseness 10.50 6.65 16.36 11.66 28.04 12.01 69.81 37.05 9.91 6.80 12.24 9.20

∧ Indicates the selectivity is lower than the corresponding sparseness.

• R5: a 2,000× 10,000 synthetic noiseless response matrix,
where the responses of each neuron are generated by a
gamma distribution with a = gamrnd(4.0, 0.5) and b =
gamrnd(2.0, 0.5) as did in Lehky et al. (2011);

• R̃15: a synthetic Poisson-noise response matrix from R5;

• R̃25: a synthetic truncated-Gaussian-noise response matrix via
Equation (4), where the mean and variance of the used
Gaussian distribution are equal to the Poisson-distribution
parameter used for generating R̃15;

In addition, in order to evaluate the effect of neural correlation
on the response statistics, we also generate the response matrices
with correlation r by the Copula method (Hu et al., 2007).
Considering that r = 0.2 could be the worst case of possible
correlation of IT neuron responses as stated in Lehky et al. (2011),
the following response matrices are generated with r = {0.1, 0.2},
respectively, as:

• R5r1: a 2,000× 10,000 noiseless response matrix with r = 0.1
by Method-II;

• R5r2: a 2,000 × 10,000 noiseless response matrix with r = 0.2
by Method-II;

• R̃15r1: a 2,000 × 10,000 Poisson-noise response matrix with
r = 0.1 by Method-II;

• R̃15r2: a 2,000 × 10,000 Poisson-noise response matrix with
r = 0.2 by Method-II;

• R̃25r1: a 2,000 × 10,000 truncated-Gaussian-noise response
matrix with r = 0.1 by Method-II;

• R̃25r2: 2,000 × 10,000 truncated-Gaussian-noise response
matrix with r = 0.2 by Method-II;

3.2. Selectivity and Sparseness by Kurtosis
3.2.1. Results on Noiseless Responses
The kurtosis values of the single-neuron responses in the
synthetic noiseless response matrices R1, R2, R3, R4, and R5
(i.e., their column vectors) are computed for measuring the
single-neuron selectivity. The kurtosis values of the synthetic
population responses in R1, R2, R3, R4, and R5 (i.e., their row
vectors) are computed for measuring the population sparseness.
We also compute the selectivity and sparseness calculation on the
normalized data via Equation (2).
Method-I: The results on {R1,R2,R3} generated by Method-
I are shown in Figure 3. Columns 2–7 of Table 2 list the
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FIGURE 5 | Single-neuron selectivity and population sparseness on the noisy response matrices {R̃13, R̃
2
3, R̃

3
3} under Method-I: (A) Results on R̃13; (B) Results on R̃23;

(C) Results on R̃33.

relative magnitude order of kurtosis between the single-neuron
selectivity and the population sparseness on the unnormalized
and normalized synthetic responses from {R1,R2,R3}.

As seen from Figure 3, the computed mean and median
kurtosis values of the unnormalized single-neuron responses
are the same as those of the normalized single-neuron
responses, because normalization does not affect the single-
neuron selectivity as discussed in Section 2.3. Due to the
computational nature of kurtosis, neurons responding to a
smaller number of stimuli (much smaller than Nmax) would
usually have a bigger kurtosis. And among the 10,000 single-
neuron response vectors generated by Method-I, we observed
that there usually exist a few neurons which only respond to
a very small number of stimuli (much smaller than Nmax) and
whose kurtosis values for single-neuron selectivity are dozens
of times larger than the mean and median kurtosis values,

hence resulting in a large standard deviation (denoted as “std”
in Figure 3) of kurtosis of the single-neuron responses. In
addition, the computed mean and median kurtosis values of
the unnormalized population responses are much smaller than
those of the normalized population responses, mainly because
a few synthetic neurons in {R1,R2,R3} are activated by quite
a small number of the stimuli, i.e., their responses to most
of the stimuli are 0. This means that the mean response for
each of these neurons is very small, and a few responses of
these neurons are unusually amplified after normalization as
discussed in Section 2.3, resulting in a large kurtosis of population
sparseness as well as a large standard deviation of kurtosis of the
normalized population responses.

In addition, on the three noiseless response matrices, the
mean kurtosis of the population sparseness is smaller than that
of the single-neuron selectivity for the unnormalized data, but
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FIGURE 6 | Mean and median kurtosis for unnormalized/normalized single-neuron responses and population responses with different levels of noise (µ = 0 and

σ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50}) under Method-I: (A) Results by corrupting R1; (B) Results by corrupting R3.

the median kurtosis of the population sparseness is larger than
that of the single-neuron selectivity for the unnormalized data.
However, both the mean and median kurtosis values of the
population sparseness are larger than those of the single-neuron
selectivity for the normalized data.
Method-II: The results on {R4,R5} generated by Method-II
(the response generating model used in Lehky et al., 2011) are
shown in Figure 4. As is seen, the computed standard deviations
of kurtosis for both single-neuron selectivity and population
sparseness are relatively large. In addition, Columns 2–5 of
Table 3 list the relative magnitude order of kurtosis between the
single-neuron selectivity and the population sparseness on the
unnormalized and normalized synthetic responses from {R4,R5}.
As is seen, both the mean and median kurtosis values of the
population sparseness are larger than those of the single-neuron
selectivity for the unnormalized and normalized data. That is
to say, although the the absolute magnitudes of the computed
mean and median kurtosis for the single-neuron selectivity and
the population sparseness on {R4,R5} are different from those on
{R1,R2,R3} generated by Method-I, the relative magnitude order
of kurtosis on {R4,R5} is consistent with that on {R1,R2,R3} in
most cases.

3.2.2. Results on Responses with Noise
The kurtosis values of the unnormalized and normalized data in
the synthetic noisy response matrices {R̃13, R̃23, R̃33, R̃14, R̃24, R̃15, R̃25}
are computed for measuring the population sparseness and the
single-neuron selectivity.
Method-I: The results on {R̃13, R̃23, R̃33} generated by Method-I are
shown in Figure 5 and Columns 8–13 of Table 2. As seen from
Figure 5A, the computed mean and median kurtosis values for
the unnormalized population responses are smaller than those
for the normalized population responses in R̃13 with low noise.
However, as seen from Figures 5B,C, with the increase of noise
level, the kurtosis of the unnormalized population responses

becomes larger than that of the normalized population responses
in both R̃23 with medium noise and R̃33 with high noise. This is
mainly because the mean value of each synthetic single-neuron
response becomes relatively large with the increase of noise, and
the normalization with a larger mean value could transform
the original neuron responses with different levels of activation
into the responses under an approximately single level of
activation.

As seen from Table 2, for both the unnormalized and
normalized data from the three noisy response matrices, the
mean and median kurtosis values of the population responses are
both larger than those of the single-neuron responses.

In addition, we also test the synthetic responses by separately
corrupting R1(Nmax = 100) and R3(Nmax = 200) with different
levels of noise (µ = 0 and σ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50}),
and the corresponding results are shown in Figure 6 with its
x-axis plotted on a logarithmic scale. As seen from Figure 6,
under different levels of noise and different upper-limit numbers
(Nmax) of neuron responses, the calculated population sparseness
is always larger than the single-neuron selectivity for both
the unnormalized and normalized data. In addition, with the
increase of the noise level, the calculated mean and median
kurtosis decreases accordingly. When the noise level is too
high, both the mean and median kurtosis values become
saturated, because more and more real responses in R1 and
R3 are close to or even lower than the noise under such
conditions.
Method-II: The results on {R̃14, R̃24, R̃15, R̃25} generated by
Method-II are shown in Figure 7, and the corresponding relative
magnitudes orders of kurtosis are reported in Columns 8–13 of
Table 3. As is seen, for both the unnormalized and normalized
data, the computed mean and median kurtosis values for the
population sparseness are always larger than those for the single-
neuron selectivity. These results are consistent with the above
results on the responses generated by Method-I.
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FIGURE 7 | Single-neuron selectivity and population sparseness on the noisy matrices {R̃14, R̃
1
5, R̃

2
4, R̃

2
5} under Method-II: (A) Results on R̃14; (B) Results on R̃15;

(C) Results on R̃24; (D) Results on R̃25.

TABLE 4 | Relative magnitude order of kurtosis between the single-neuron selectivity and the population sparseness on the unnormalized/normalized synthetic responses

with neural correlation.

R5r1 R5r2 R̃1
5r1 R̃1

5r2 R̃2
5r1 R̃2

5r2

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

UNNORMALIZED DATA

Single-neuron selectivity 3.91 3.16 3.93 3.13 4.86 3.65 4.90 3.65 4.32 3.40 4.38 3.43

Relative magnitude order ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
Population sparseness 19.02 17.92 16.34 15.32 18.81 16.75 14.42 13.44 14.20 13.46 14.11 13.36

NORMALIZED DATA

Single-neuron selectivity 3.91 3.16 3.93 3.13 4.86 3.65 4.90 3.65 4.32 3.40 4.38 3.43

Relative magnitude order ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
Population sparseness 12.00 9.41 11.96 8.55 102.15 44.07 108.55 39.78 13.02 8.81 10.46 7.92

∧ Indicates the selectivity is lower than the corresponding sparseness.
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FIGURE 8 | Mean and median kurtosis for single-neuron responses and population responses with different numbers of stimuli and neurons on R3 under Method-I.

3.2.3. Results on Responses with Neural Correlation
The kurtosis values of the unnormalized and normalized
responses from {R5r1, R5r2, R̃15r1, R̃15r2, R̃25r1, R̃25r2} are computed
for measuring the population sparseness and the single-
neuron selectivity under neural correlation. The corresponding
results are reported in Table 4 (also in Figure S1 of the
Supplementary Materials). As is seen, for both the unnormalized
and normalized data, the computed mean and median kurtosis
values for the population sparseness are larger than those
for the single-neuron selectivity. These results are consistent
with the reported results on the responses without neural
correlation in Table 3. In sum, under the correlation r = 0.2,
the correlation does not change the relative magnitude order of
kurtosis.

3.2.4. Results under Different Neuron Numbers and

Stimulus Numbers
Since the relative magnitude order of kurtosis of the population
sparseness with respect to the single-neuron selectivity on the
synthetic responses generated by Method-I is in agreement
with that by Method-II in most cases as demonstrated by the
above results, in this subsection, we only calculate the single-
neuron selectivity and the population sparseness under varying
dataset sizes resampled from the synthetic response matrices
{R3, R̃13, R̃23, R̃33} generated by Method-I (some results on the
synthetic response matrices by Method-II are reported in Figures
S2, S3 of the Supplementary Materials). Note that as done
in Lehky et al. (2011), when dealing with the single-neuron

responses, dataset size refers to the number of the stimulus
images tested on each neuron, and when dealing with the
population responses, dataset size refers to the number of the
neurons in the population.

The image subset sizes of [400, 800, 1, 200, 1, 600, 2, 000] are
tested for single-neuron responses, and the neuron subset sizes
of [1, 000, 3, 000, 5, 000, 7, 000, 10, 000] are tested for population
responses. Under each image-size and neuron-size combination,
the sampling is independently done 10 times, and the mean
value of the 10 estimated kurtosis values is used as the final
kurtosis. Figures 8, 9 show the mean and median kurtosis values
of the unnormalized and normalized responses under different
numbers of stimuli and neurons on the noiseless response matrix
R3 and the noisy matrices {R̃13, R̃23, R̃33}, respectively.

From Figure 8, for the noiseless response matrix R3 under
different neuron-stimulus combinations, themean kurtosis of the
unnormalized population responses is smaller than that of the
unnormalized single-neuron responses, but the median kurtosis
of the unnormalized population responses is larger than that of
the unnormalized single-neuron responses. Both the mean and
median kurtosis values of the normalized population responses in
R3 are always larger than those of the normalized single-neuron
responses. These results are consistent with the corresponding
kurtosis results in Section 3.2.1.

For both the normalized and unnormalized data from the
noisy response matrices {R̃13, R̃23, R̃33} under different neuron-
stimulus combinations, the mean and median kurtosis values
of the population responses are always larger than those of
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FIGURE 9 | Mean and median kurtosis for single-neuron responses and population responses with different numbers of stimuli and neurons on {R̃13, R̃
2
3, R̃

3
3} under

Method-I: (A) Results on R̃13; (B) Results on R̃23; (C) Results on R̃33.

the single-neuron responses, which are consistent with the
corresponding kurtosis results in Section 3.2.2.

It is noted that the mean and median kurtosis values of the
normalized population responses from the noiseless response
matrix R3 are much larger than those from the noisy matrices
{R̃13, R̃23, R̃33}. This is mainly because: (i) According to the
approach for generating R3 in Section 2.2.1, a few of the synthetic
neurons are activated by quite a small number of stimuli, i.e.,
their responses to most of the stimuli are 0. This means that
the mean responses of these neurons across all the stimuli are
tiny so that a few responses of these neurons to the stimuli
are unusually amplified after normalization, resulting in large
kurtosis values of population sparseness; (ii) The mean value of
each synthetic single-neuron response in {R̃13, R̃23, R̃33} becomes
relatively large due to the added noise, and normalization with
such a larger mean value could transform the original neuron
responses with different levels of activation into responses under

an approximately single level of activation, resulting in moderate
kurtosis values of population sparseness.

The above computed mean kurtosis (median kurtosis) also
indicates that the relative magnitude order of kurtosis of
the population sparseness with respect to the single-neuron
selectivity does not change under different numbers of stimuli
and neurons. In addition, except for the noiseless case, the
estimated absolute values only change mildly under different
numbers of stimuli and neurons and under a given noise
level, although the estimated values under different noise levels
do change significantly. These results imply that the reported
results under 804 stimuli and 674 neurons in Lehky et al.
(2011) have revealed the essential features of larger AIT neuron
populations to some extent. In other words, if more AIT neurons
were recorded, the computed relative magnitude order of
kurtosis between the single-neuron selectivity and the population
sparseness in Lehky et al. (2011) could not change much.
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FIGURE 10 | Histograms of the computed PTI-values of single-neuron responses and population responses in {R1,R2,R3} under Method-I: (A) Results on R1;

(B) Results on R2; (C) Results on R3.

TABLE 5 | Relative magnitude order of PTI between the single-neuron selectivity and the population sparseness on the unnormalized/normalized synthetic responses by

Method-I.

R1 R2 R3 R̃1
2

R̃2
2

R̃3
2

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

UNNORMALIZED DATA

Single-neuron selectivity 11.70 11.89 6.32 3.06 6.35 2.87 0.26 −0.09 −0.02 −0.13 0.01 −0.09

Relative magnitude order ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
Population sparseness 11.88 11.90 21.48 21.48 21.69 21.69 1.76 1.76 0.75 0.75 0.76 0.76

NORMALIZED DATA

Single-neuron selectivity 11.96 12.18 6.55 3.25 6.49 2.99 0.26 −0.09 −0.02 −0.13 0.01 −0.09

Relative magnitude order ∧ ∨ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
Population sparseness 12.14 12.16 21.88 21.87 21.82 21.82 0.38 0.37 0.18 0.18 0.63 0.63

∧ Indicates the selectivity is lower than the corresponding sparseness.
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FIGURE 11 | Histograms of the computed PTI-values of single-neuron responses and population responses in {R4,R5} under Method-II: (A) Results on R4; (B)

Results on R5.

TABLE 6 | Relative magnitude order of PTI between the single-neuron selectivity and the population sparseness on the unnormalized/normalized synthetic responses

generated by Method-II.

R4 R5 R̃2
4 R̃2

5

Mean Median Mean Median Mean Median Mean Median

UNNORMALIZED DATA

Single-neuron selectivity −0.06 −0.05 −0.04 −0.04 −0.05 −0.04 −0.04 −0.04

Relative magnitude order ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
Population sparseness 0.03 0.04 0.13 0.13 0.10 0.10 0.10 0.10

NORMALIZED DATA

Single-neuron selectivity −0.06 −0.05 −0.04 −0.04 −0.05 −0.04 −0.04 −0.04

Relative magnitude order ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
Population sparseness 0.09 0.10 0.14 0.14 0.07 0.08 0.10 0.10

∧ Indicates the selectivity is lower than the corresponding sparseness.

3.3. Pareto Tail Index
Pareto tail index (PTI) is another measure of single-neuron
selectivity and population sparseness. In this subsection,
Generalized Pareto distributions (GPDs) are fitted for both the
probability distribution function of single-neuron responses and
the probability distribution function of the population responses.
The PTI-values of the single-neuron responses and population
responses are computed, respectively.

3.3.1. Pareto Tail Index for Noiseless Responses
Method-I: Figure 10 shows the histograms of the computed
PTI [i.e., k in Equation (3)] for the single-neuron responses
and the population responses in the noiseless response
matrices {R1, R2, R3}, and Columns 2–7 of Table 5 list the
corresponding mean and median PTI on these responses. As
is seen, the computed mean and median values of k for the
normalized single-neuron responses is quite close to those
for the unnormalized single-neuron responses. The standard
deviations of k for the single-neuron responses are quite large,

which are consistent with the corresponding kurtosis results
in Section 3.2.1. The computed mean value of k for the
unnormalized population responses is larger than that for the
unnormalized single-neuron responses, which is inconsistent
with the corresponding kurtosis results in Section 3.2.1. The
computed median values of k for the unnormalized population
responses is larger than that for the unnormalized single-
neuron responses, and the computed mean and median values
of k for the normalized population responses are also larger
than those for the normalized single-neuron responses. These
results are consistent with the corresponding kurtosis results in
Section 3.2.1.
Method-II: Figure 11 shows the histograms of k for the single-
neuron responses and the population responses in {R4, R5}, and
Columns 2–5 of Table 6 list the corresponding mean and median
PTI on these responses. As is seen, for both the unnormalized
and normalized data, the computed mean and median values
of k for the population sparseness are larger than those for
the single-neuron selectivity. These results are consistent with
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FIGURE 12 | Histograms of the computed PTI-values of single-neuron responses and population responses in {R̃12, R̃
2
2, R̃

3
2} under Method-I: (A) Results on R̃12;

(B) Results on R̃22; (C) Results on R̃32.

the corresponding PTI results on {R1, R2, R3} reported in
Table 5.

3.3.2. Pareo Tail Index for Responses with Noise
Method-I: Figure 12 shows the histograms of the computed PTI
for the single-neuron responses and the population responses
in the noisy response matrices {R̃13, R̃23, R̃33}, and Columns 8–13
of Table 5 list the corresponding mean and median PTI on
these responses. As is seen, the computed mean and median
values of k for the normalized single-neuron responses is close
to those for the unnormalized single-neuron responses. And
for both the unnormalized and normalized data, the computed
mean and median values of k for the population sparseness
are larger than those for the single-neuron selectivity. These
results are all consistent with the corresponding kurtosis results
in Section 3.2.2.

Method-II: As indicated in Section 2.3.2.2, the PTI is too
sensitive to the Poisson-noise responses generated by Method-
II, hence, we only report the results on the truncated-Gaussian-
noise responses in {R̃24, R̃25} here (the results on the Poisson-noise

responses in {R̃15, R̃15r1, R̃15r2} are reported in Figure S4 of the
Supplementary Materials). Figure 13 shows the histograms of k
for the single-neuron responses and the population responses
in {R̃24, R̃25}, and Columns 6–9 of Table 6 list the corresponding
mean and median PTI on these responses. As is seen, once again,
for both unnormalized and normalized responses, the computed
mean and median values of k for the population sparseness are
larger than those for the single-neuron selectivity. These results
are all consistent with the results on {R̃13, R̃23, R̃33} reported in
Table 5.

In sum, similar to the results with the kurtosis measure (except
for the unnormalized noiseless data), the estimated mean and
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FIGURE 13 | Histograms of the computed PTI-values of single-neuron responses and population responses in {R̃24, R̃
2
5} under Method-II: (A) Results on R̃24;

(B) Results on R̃25.

median PTI for the population sparseness is larger than that
for the single-neuron selectivity, which is consistent with the
statistics for AIT neurons in Lehky et al. (2011). Since noise is
inevitable in real neuron recording, we thought our results on
noisy data would be more informative.

3.3.3. Pareto Tail Index for Responses with Neural

Correlation
The PTI-values of the unnormalized and normalized responses
with neural correlations in {R5r1, R5r2, R̃25r1, R̃25r2} are computed
here. The corresponding results are reported in Table 7 (also
in Figure S5 of the Supplementary Materials). As is seen, for
both unnormalized and normalized data, the computed mean
and median values of k for the population sparseness are larger
than those for the single-neuron selectivity. These results are
consistent with the results on the responses without neural
correlations reported in Table 6.

4. DISCUSSION

The main objective of this work is to assess whether the
population sparseness is always larger than the single-neuron
selectivity by simulation under the condition that each neuron
indeed only responds to a very limited number of stimuli
among a very large number of stimuli. More specially, we would
investigate:

(1) Whether the mean (median) kurtosis for single-neuron
selectivity is always smaller than the mean (median) kurtosis
for population sparseness for both the normalized data and
unnormalized data as did the AIT neuron responses in
monkey in Lehky et al. (2011);

(2) Whether the mean (median) PTI for single-neuron
selectivity is always smaller than the mean (median) PTI

for population sparseness for both the normalized data
and unnormalized data as did the AIT neuron responses in
monkey in Lehky et al. (2011).

To address the above two issues, two different neuron response
generatingmethods are explored. Method-I can explicitly control
the small number of selective stimuli of individual neurons,
but lacks any biological basis. Method-II is an approximation
of monkey IT neuron response (Lehky et al., 2011), but can
only constrain implicitly the sparseness of selective stimuli
of individual neurons by the gamma distribution. Arguably
different generating approaches could affect final statistics,
however, the obtained results under both Method-I and Method-
II are largely consistent in most cases. Our results show that:
even with the stimulus number and neuron number in the
order of several thousands rather than several hundreds as
reported in Lehky et al. (2011), the relative magnitude order
of mean kurtosis (median kurtosis, mean PTI, and median
PTI) for the single-neuron selectivity with respect to the mean
kurtosis (median kurtosis, mean PTI, and median PTI) for
the population sparseness is largely preserved for both the
normalized and unnormalized data in most cases. This supports
the interpretation of the AIT neuron response statistics in Lehky
et al. (2011), and also implies that the results on 674 AIT neurons
under 806 image stimuli in Lehky et al. (2011) capture the
essential features of more AIT neurons in monkey for image
object representation. In other words, if more AIT neurons were
recorded, the above relative magnitude order would expect to
keep unchanged.

Here, we would point out that by “consistency” or
“agreement” in this text, we only mean the relative magnitude
order of the four entities (mean kurtosis, median kurtosis,
mean PTI, media PTI) for the single-neuron selectivity to
the corresponding ones for the population sparseness keeps
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TABLE 7 | Relative magnitude order of PTI between the single-neuron selectivity and the population sparseness on the unnormalized/normalized synthetic responses

with neural correlation.

R5r1 R5r2 R̃2
5r1

R̃2
5r2

Mean Median Mean Median Mean Median Mean Median

UNNORMALIZED DATA

Single-neuron selectivity −0.04 −0.03 −0.04 −0.03 −0.04 −0.04 −0.03 −0.03

Relative magnitude order ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
Population sparseness 0.13 0.13 0.10 0.10 0.08 0.08 0.09 0.08

NORMALIZED DATA

Single-neuron selectivity −0.04 −0.03 −0.04 −0.03 −0.04 −0.04 −0.03 −0.03

Relative magnitude order ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧
Population sparseness 0.12 0.12 0.12 0.12 0.10 0.10 0.09 0.09

∧ Indicates the selectivity is lower than the corresponding sparseness.

FIGURE 14 | Kurtosis and PTI of responses generated by gamma distributions different from that used in Lehky et al. (2011). (A,B) Kurtosis and PTI by a gamma

distribution with a = gamrnd(8.0,1.0) and b = gamrnd(2.0,0.5), respectively. (C,D) Kurtosis and PTI by a gamma distribution with a = gamrnd(8.0,1.0) and

b = gamrnd(3.0,1.0), respectively.
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unchanged, we do not mean their absolute values of these entities
are similar between the synthetic data and the AIT neuron
data.

We also found that how to generate a gamma-distribution
parameter pair (a, b), in particular, the shape parameter
a, is a crucial issue for Method-II. For this aspect, we
computed the kurtosis and PTI on two extra 806 × 674
response matrices generated by a gamma distribution with
{a = gamrnd(8.0, 1.0), b = gamrnd(2.0, 0.5)} and a
gamma distribution with {a = gamrnd(8.0, 1.0), b =
gamrnd(3.0, 1.0)}. The corresponding results are shown in
Figure 14. Comparing Figures 4A, 11A (showing the kurtosis
and PTI on R4 generated by a gamma distribution with {a =
gamrnd(4.0, 0.5), b = gamrnd(2.0, 0.5)} as specified in Lehky
et al. (2011)) with Figures 14A,B, we can see that for different
choices of the shape parameter a, the obtained kurtosis and PTI
are quite different. This means that merely knowing the gamma
distribution of individual neuron response is not sufficient to
evaluate the statistics of neuron population responses, currently it
seems we still lack the theoretical basis of generating the suitable
shape and scale parameter pairs of population neurons.

It is also found that for either kurtosis or PTI, the associated
standard deviation for the single-neuron selectivity is quite large
in some cases. This reveals some limitations of using them as
neuron selectivity measures. From the mathematical point view,
if the associated standard deviation is large, the mean, or median
becomes less informative.

Clearly, noise also plays a role on the final estimations.
In this work, different kinds of noise and different levels
of noise are investigated, the results are rather consistent.
Evidently, if the noise level is further increased, it will
certainly and more severely affect the response statistics. As
shown in Figure 6, by increasing the noise level, the kurtosis
statistics decrease accordingly. This suggests that for AIT
neuron response statistics, how to appropriately estimate the
noise level should be carefully considered taking into the
account of different recorded neuron sites, recording timing and
subjects.

Neuron response correlation is another important issue of
affecting the absolute value of kurtosis and PTI. However, our
results show that neuron response correlation does not affect the
relative magnitude order between the population sparseness and
the single-neuron selectivity under the kurtosis and Pareto tail
index criteria. Note also that, only linear correlation is simulated
here, however, nonlinear high-order correlation surely must also
affect the response statistics, which will be a more difficult issue,
and is beyond our current work.

Finally, considering all the above listed factors as well as
other possible factors, our current simulation work is merely
a qualitative comparison of those reported neuron response
statistics in Lehky et al. (2011). It cannot be excluded that our
work is another story of “A blind man conceptualizing elephant
by only touching and feeling the trunk.”With the advance of new
neuron recording technology, more neurons could be recorded,
and the mystery of neuron object representations will be further
clarified in the future.
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