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Many hippocampal cell types are characterized by a progressive increase in scale along

the dorsal-to-ventral axis, such as in the cases of head-direction, grid and place cells.

Also located in the medial entorhinal cortex (MEC), border cells would be expected

to benefit from such scale modulations. However, this phenomenon has not been

experimentally observed. Grid cells in the MEC of mammals integrate velocity related

signals to map the environment with characteristic hexagonal tessellation patterns. Due

to the noisy nature of these input signals, path integration processes tend to accumulate

errors as animals explore the environment, leading to a loss of grid-like activity. It has

been suggested that border-to-grid cells’ associations minimize the accumulated grid

cells’ error when rodents explore enclosures. Thus, the border-grid interaction for error

minimization is a suitable scenario to study the effects of border cell scaling within the

context of spatial representation. In this study, we computationally address the question

of (i) border cells’ scale from the perspective of their role in maintaining the regularity of

grid cells’ firing fields, as well as (ii) what are the underlying mechanisms of grid-border

associations relative to the scales of both grid and border cells. Our results suggest

that for optimal contribution to grid cells’ error minimization, border cells should express

smaller firing fields relative to those of the associated grid cells, which is consistent with

the hypothesis of border cells functioning as spatial anchoring signals.

Keywords: grid cells, border cells, error minimization, path integration, navigation

1. INTRODUCTION

Having optimal navigational strategies is key for survival in complex and ever-changing
environments. For an animal to do so, it requires the encoding of its surroundings into reliable
internal representations and the ability to recall spatial memories. The rodent hippocampus has
been a popular subject of investigations aimed at revealing the neural circuitry engaged in such
mnemonic and navigational processes, especially as it serves as a reasonable and economical
comparison to the functions of the hippocampus in humans and other primates (see Squire,
1992; Burgess et al., 2002; Brown et al., 2016 for a review on the human hippocampus and the
generalizability of rat hippocampal studies to primates and humans).

It is now well-established that rodent hippocampal place cells have their receptive fields tuned
to specific spatial locations, allowing them to situate themselves in space (O’keefe and Nadel, 1978).
This internal representation receives contributions from grid cells located in the late layers of the
medial entorhinal cortex (MEC) that tile the explored environment with characteristic hexagonal
firing fields and provides a sensory-independent spatial metric system (Hafting et al., 2005).
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The input-output transformation from grid to place cells
has been addressed by different computational models. One
such example is de Almeida et al. (2009), where the authors
proposed that place cell-like activity emerges when the activity
of grid cells in an environment, with overlapping, distinct
scales and orientations, is summed and combined with network
competition mechanisms. The resultant metric mechanism is
sufficient to encode the animal’s current position in space.

The underlying mechanism for grid cell formation has been
commonly suggested to be continuous attractor networks (CAN),
which are based on recurrent connectivity among cells within
a neural sheet creating clustered bumps of high activity in
proximal cells (Guanella et al., 2007). CAN models are sensitive
to synaptic modifications, which shift attractor points within
the network, effectively making bumps of high activity move
along the neural sheet. To generate an internal spatial metric
system representing the agent’s location, CAN models of grid
cells integrate the current velocity of the agent with the lateral
synaptic connectivity. Indeed, velocity-related components have
been experimentally recorded in the rodent MEC (see Giocomo
et al., 2014; Kropff et al., 2015). In this way, movements of
the neural activity bump in the CAN will resemble those of
the agent in the world. Given that grid cells cover the entire
environment with repeated firing fields, configuring the topology
of the network into a toroidal architecture allows for periodic
firing at multiple spatial locations and, thus, the generation of
the characteristic hexagonal tessellation pattern (Guanella et al.,
2007).

Evidence of low-dimensional continuous attractor dynamics
underlying grid cells’ formation has been observed during
extracellular recordings from grid cells in rodents performing a
navigational task (Yoon et al., 2013). As spike activity between
pairs of cells tends to maintain a constant spatial relationship,
from stronger synaptic weights between closer cells to weaker
weights between distant cells independently of the animal’s
experience in a given environment, attractor models seem to
be a plausible approximation of grid cells’ activity. Further
supporting evidence comes from the in-vitro observation of slow
ramps, a typical signature of attractor dynamics, conducting both
cellular and network behavior of grid cells in the rodent MEC
(Domnisoru et al., 2013).

1.1. Error Accumulation and Alleviation
A key aspect of the attractor-based models of grid cells is
their dependency on velocity signals as the main drivers of
the activity bumps. However, the physical properties of sensory
acquisition processes and neural instability inevitably lead to
an accumulation of errors over time (Burak and Fiete, 2009).
Error accumulation has been of particular interest in the field
of robotics, and the common solutions proposed to minimize
it are generally sensor fusion (Julier and Uhlmann, 1997; Kam
et al., 1997; Lynen et al., 2013). In rodents’ grid cells, such
accumulation of errors has also been reported (Hardcastle et al.,
2015). When traversing an environment, grid cells accumulate
a drift in their firing fields. When the animal approaches the
boundaries of the environment, this drift is reset, suggesting that
border cells may play a role in grid cells’ error minimization.

In the same study, a computational mechanism was proposed
in which border cells’ Hebbian activity, paired with grid cells’
activity, minimizes errors based on path integration when the
agent is closer to the environmental boundaries. In other words,
environmental boundaries provide spatial references to offset
errors accumulated during spatial exploration.

The idea that spatially-tuned hippocampal cells enable a reset
of accumulated errors in grid cells was first addressed by Guanella
et al. (2007). It was predicted that feedback projections from the
hippocampus proper to grid cells would anchor grid cells’ activity
to specific spatial locations, thereby resetting the accumulated
error to the ground truth. Subsequently, experimental evidence
for this was found in-vivo, with disrupted hippocampal-MEC
projections resulting in a loss of the stereotypical hexagonal
pattern of grid cells (Bonnevie et al., 2013). Hippocampal-MEC
projections do not directly target grid cells (Naber et al., 2001).
This thus raises the possibility that such a disruption indirectly
affects border cells’ stability, which, in turn, does not properly
contribute to grid cells’ error minimization leading to grid cells
losing their characteristic hexagonal pattern.

1.2. Scaling in Spatially Tuned Cells
Grid cells show a progressive increase in scale along the MEC’s
dorsal-to-ventral axis (Brun et al., 2008; Kjelstrup et al., 2008).
Neurons found in the dorsalmost regions exhibit small-scale
tessellation, with receptive fields spanning ∼0.3 m. Grid cells
located more ventrally tile the environment at a larger scale,
and therefore at a lower resolution, with distances between
firing fields spreading up to 3 m (Brun et al., 2008). From a
computational perspective, multiple scales allow input-output
transformations to tune place cells to specific locations in the
environment (de Almeida et al., 2009); in other words, such
a scaling property allows rodents to build their own internal
representation of space in non-sensory environments (Markus
et al., 1994; Moser et al., 2008). From a representational
perspective, small-scale grid cells would encode the environment
at a higher resolution, allowing for precise decoding of nearby
spatial locations. On the other hand, large-scale grid cells would
permit the linking of distant locations with less computational
effort.

The progressive scaling property is not unique to grid cells;
it has also been observed in other cells in the hippocampal
formation. For example, head direction cells found in dorsalmost
regions of the MEC are tuned to specific head orientations,
while those located ventrally are most responsive to broader, but
fixed, global orientations (Giocomo et al., 2014). In addition,
place cells found in the hippocampus proper distribute their
activity specificity along the hippocampal dorsal-to-ventral axis
(Giocomo et al., 2007). Again, firing fields of neurons located at
dorsalmost regions represent small and highly tuned locations,
while ventralmost cells display broader and less location-specific
firing activity. Hence, the progressive scaling phenomenon
seems to be a general property of the rodent hippocampal
representational system.

Earlier implicated in the reduction or elimination of error
accumulation in grid cells during active exploration of enclosures
(Hardcastle et al., 2015), border cells found across MEC layers
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likely interact with grid cells (Solstad et al., 2008). Considering
how they are functionally related to neurons which display
the aforementioned scaling property, border cells could be
similarly scaled across the dorsal-to-ventral axis. As border cells
encode environment boundaries, and environment boundaries
contribute to grid cells’ error minimization, a pertinent question
would be: would the grid cells’ error minimization mechanism
benefit from scale-modulated border cells?

The more the interaction between grid and border cells
enables grid cells to maintain accurate firing fields over time,
the more beneficial it is in the context of error minimization.
If we consider the firing field of a border cell as an anchoring
signal to specific locations in space, border cells with small
firing fields would precisely encode specific locations. On the
contrary, border cells with large firing fields would be less
accurate in signaling a given environmental position. Thus,
we should expect that grid cells would benefit more from
border cells expressing smaller scales, with large-scale border
cells being detrimental to small-scale grid cells as the border
signals would cover larger areas than the grid fields themselves.
To wit, it is expected that the scale of grid cells should be
comparable with that of the border cells which they interact
directly with.

To examine how a progressive increase in border cells’ scale
along the dorsal-to-ventral axis of the MEC would affect grid
cells’ error minimization, we built on a previously presented
computational model of grid cells accounting for this scaling
property combined with an activity signal mechanismmimicking
the role of border cells involved in error minimization of path-
integrating grid cells (see Guanella et al., 2007; Pata et al.,
2014; Maffei et al., 2015). By observing the effects of multiple
border cells’ scaling factors, we could test whether border cells
with distinct scales would optimize error minimization of grid
cells.

2. MATERIALS AND METHODS

2.1. Computational Models
2.1.1. Grid Cell Model
Low-dimensional continuous attractor dynamics approximate
the underlying organization of grid cell networks in the
mammalian brain (Yoon et al., 2013). In this study, we use
a previously described model of grid cells formation based
on attractor dynamics with synaptic connectivity following a
toroidal topology (Guanella et al., 2007; Pata et al., 2014; Maffei
et al., 2015). The model comprises five subpopulations of grid
cells, each with a specific grid scale, mimicking the physiological
properties of progressive scale increases along the dorsal-to-
ventral axis (Kjelstrup et al., 2008).

Each population is made of 400 rate-based cells recurrently
connected, and at every simulation time step (dt = 1 ms)
the velocity vector of a simulated agent is integrated onto the
network’s dynamics through the modification of grid to grid
synaptic weights. The network is initialized with uniformly
random activity between 0 and 1/N (where N is equal to the
number of cells in each subpopulation). The activity of cell i at
time t + 1, i.e., A′

i(t + 1), before the integration of border cells’

activity, is updated at every simulation cycle t through a linear
transformation function Bi(t + 1) of the form:

Bi(t + 1) = A′
i(t)+

N
∑

j=1

A′
j(t)wij (1)

where, wij denotes the synaptic weight between cells i and j,
with i, j ∈ {1, 2, ...,N}. N is the number of neurons in the
network, A′

i(t) is the activity of a given cell i,
∑

(A′
j(t)) is the

activity of cells connected to cell i. To guarantee the stability of
the network activity and prevent it to grow exponentially, an
average normalization mechanism is applied. Finally, A′

i(t + 1)
is defined by:

A′
i(t + 1) = Bi(t + 1)+ τ

(

Bi(t + 1)

< Bj(t) >N
j=1

− Bi(t + 1)

)

(2)

where < Bj(t) >N
j=1 is the network’s mean activity. To avoid

negative activity values, the activity A′
i(t + 1) is set to zero when

A′
i(t + 1) < 0. The parameter τ determines the stabilization

strength of the network. The parameters of the model are
summarized in Table 1.

The input of the network relies on the speed vector, v : =

(vx, vy), of the simulated agent during virtual exploration. Thus,
when the agent moves, the network’s activity bump shifts along
the neural sheet accordingly with the agent’s speed vector.
Moreover, the size and the spacing of the cell’s subfields are
susceptible to modulation via the gain parameter g ∈ ℜ+. The
network’s input is thus modulated by:

v → gv+ ζ (3)

In our simulations, the gain parameter g, defining the dorsal-to-
ventral scale of each module, progressively increases the size and
distance of the subfields as is found in the rodent’s MEC layer
II (Brun et al., 2008). The parameter ζ represents a uniformly
distributed error perturbation on the spatial representation
system.

The attractor mechanism stems from the distribution of
synaptic weights of the cells organized into a 2-dimensional
planar sheet. To effectively generate attractor points, the synaptic

TABLE 1 | Parameters used in model.

Parameter Value Units

N (per module) 20 × 20 Cells

M 5 Modules

Total (M × N) 2,000 Cells

g [0.04,0.035,0.03,0.025,0.02 ] Unitless

τ 0.9 Unitless

I 0.3 Unitless

σ 0.24 Unitless

T 0.05 Unitless

ζ Mean: 0.0, std: 0.5 Unitless
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weights of a single cell with all the other cells in the network are
defined by a Gaussian distribution, such that neighboring cells
are connected through highly excitatory projections while distant
cells connect through inhibitory projections. Thus, the synaptic
weight for a given cell pairwij as a function of time is expressed as:

wij(t) = Iexp

(

−
‖ci − cj + v(t)‖2tri

σ 2

)

− T (4)

where ci and cj express the Cartesian location of cell i and
cell j, respectively in the neural sheet, and ‖ci − cj‖ represents
the Euclidean norm, or the distance between these two cells.
Following Guanella et al. (2007), the intensity factor I defines
the overall strength of the synapses, the size σ of the Gaussian
modulates the synaptic distribution and the parameter T
represents the maximum inhibitory projections of the most distal
cells (see Guanella et al., 2007 for a complete description of
the model and of the twisted toroidal architecture in function
of ‖tri‖).

2.1.2. Border Cell Model
Border cells’ activity is algorithmically defined by a monitoring
rule setting the cells as active when the agent is near their
preferred environmental boundary—defined as a factor of
border field amplitude. Four border cells are implemented as
binary neurons and their receptive fields are tuned to specific
boundaries following the cardinal directions (North, South, East
and West) of the square arena. To test the effect of border
fields’ size on grid cells’ error minimization, five simulation
conditions for border cells’ activity are set according to the
agent’s maximum distance to a wall for excitation of the border

cell (5, 10, 15, 20, or 25% of the length of the arena)—see
Figures 1B,C.

Ab =

{

1, if agent position in preferred boundary

0, otherwise.
(5)

2.1.3. Hebbian Learning
To test the effects of border cells’ activity on grid cells’
error minimization, and isolate it from the learning process,
the border-to-grid synaptic weights are computed before each
condition and remain fixed throughout each experimental
condition. These simulations are prone to noise induced velocity
signals whenever error signals are present, irrespective of the
learning stage.

During the learning phase, grid-to-border synaptic weights
are updated accordingly by:

zij(t + 1) = zij(t)+ ηxi(t)xj(t) (6)

where zij is the synaptic weight between cells i and j at time t, η
is the learning rate, xi is the presynaptic activation from border
cells’ activity and xj is the postsynaptic grid cells’ response.

2.2. Border to Grid Ratio: The Alpha Value
Because grid cells’ populations are based on low continuous
attractor dynamics in a fully connected network, implying that
extensive lateral connectivity drives bumps of activity in the
network, grid cells in our model receive three types of input
signals: velocity-related, boundary-related from border cells, and
location-related from neighboring grid cells of the same network.
Given that our simulations imply multiple grid and border scale
conditions, we are able to explore the effects of changing the input

FIGURE 1 | Simulation methods. (A) Model architecture: a population of grid cells receives noisy velocity signals disrupting their characteristic grid pattern.

Simultaneously, they receive inputs from both neighbor grid cells and border cells. Gains modulating the strength of grid and border cells coupling is defined by the

parameter α. (B) Five-by-five experimental design: grid cells and border cells express different scaling along the dorsal-to-ventral axis. (C) Activity of border cells in

each dorsal-to-ventral scale condition. Each cell has its preferred environmental boundary (North, South, East or West). (D) Virtual agent’s trajectories during a

simulation run. (E) Orientation’s distribution from performed trajectories of (D). (F) Autocorrelograms of two representative grid cells’ spatial activity (left) and their

respective rotational correlation scores (right). Rate maps are zoomed to the central peak of the autocorrelograms denoting higher active bumps. Both cells are from

the same dorsal-to-ventral scale level (fourth) and alpha condition (0.8), but different border scales (0.25 and 0.05, respectively). Oscillatory correlation from rotational

measure is observed in cells with positive gridness scores (upper-right), but not in cells with negative scores (bottom-right).
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gains from border and grid cells on the maintenance of grid cells’
hexagonal tessellation pattern.

In our simulations, each grid/border scale condition contains
eleven gain modulation conditions affecting howmuch grid cells’
activity and howmuch border cells’ activity contribute to the final
output of the grid cells.

The inherent dynamics of the model implies that adjunctive
projections from neighboring grid cells at any given time step
will affect a grid cell in the following time step (Equations 1–4).
However, because in our model grid cells also have strengthened
synapses with border cells, the effect of grid-to-grid and border-
to-grid projections in modulating grid cells’ activity can be
manipulated through the parameter α. When integrated with the
border cells’ activity, Ab, and the α parameter, the final grid cells’
activity, Ai, is given by:

Ai(t + 1) = αA′
i(t + 1)+ (1− α)zij · Ab(t + 1) (7)

where α reflects the strength of grid cells (α) and border cells
(1 − α) in the grid cells’ output signals, in the range of 0–1
with steps of 0.1. When α = 0, the output signal is modulated
solely by the border cells’ activity, whereas when α = 1 it would
reflect pure grid-like signals. Intuitively, one could expect that a
plausible α value in the rodent hippocampus would have to favor
grid cells’ signals but still permit sufficiently strong border cells’
signals for the minimization of accumulated error. However,
both the optimal grid/border ratio for error minimization and its
effects for the different dorsal-to-ventral scale combinations are
unknown.

2.2.1. Experimental Conditions
With this model, we aim to answer two questions. Firstly, would
grid cells benefit from a dorsal-to-ventral scaling of border cells
for minimization of path integration related error accumulation?
Secondly, what are the optimal gains of inputs to grid cells for the
maintenance of a positive grid score for the grid cells?

To this end, we simulate the relationship between three
model parameters for a total of 275 sessions: (1) the grid scale
(Figure 1B, top row); (2) the border scale (Figure 1B, bottom
row) and; (3) the α value (ranging from 0.0 to 1.0) modulating
the ratio of the gains of grid and border inputs (Figures 1A–C).

Across the experimental conditions defined in this study, there
is a strong emphasis on the effects of border signals to maintain
spatial stability in the firing activity of grid cells. Because the
synaptic projections of border cells to grid cells have to be
learned, one decision that needs to be made is whether the input
velocity signal should contain a level of noise or not during such
an associative learning process. In natural conditions, an animal
is subject to noisy input both during phases of learning as well
as during later phases of exploration. As we aim to quantify the
impact of velocity related noise signals in the learning process, we
thus added noise to the input in both conditions.

Because the grid-to-grid synaptic weights are constantly
modulated by the velocity signal, allowing for the integration of
the agent’s navigational path to its internal representation,
adding the noise signal (mean = 0.0, SD = 1) would
simulate an accumulation of the velocity signals and

consequently disrupt the grid pattern of grid cells. Thus,
at every simulation step, the instantaneous directional
vector, obtained from the agent’s change in position
from the previous step, was modulated by applying
random values ranging ±0.5 virtual units in both x and y
directions.

Every experimental session consists of a simulated
agent randomly navigating within a square virtual arena
(Figure 1D). When the agent approaches a wall, a collision
avoidance mechanism is set to maintain exploration within the
environmental boundaries. Thus, simulated trajectories were
distributed along the global polar coordinates (Figure 1E).

For each simulation, we randomly choose 10% of the overall
grid cells for the analysis. Keeping within the scope of this
study, we focus only on grid cells’ spatial activity. Specifically,
for each cell’s rate map, we calculated the gridness score,
which is a measure of minimization of path integration error
accumulation (Sargolini et al., 2006). Because grid cells lose their
grid pattern after accumulating errors, the gridness score is a
plausible measure to assess the influence of the border cells’
Hebbian mechanism in resetting grid signals to their actual
locations.

We first computed the cell’s rate map by summing its activity
within the binned (size = 10) 2-dimensional representation of
the explored path and normalized it by the occupancy of each
spatial bin. Next, we generated the autocorrelogram of each
cell by auto-correlating its 2- dimensional rate map (Figure 1F,
left column). We then applied a progressive rotation of 3◦ to
the cell’s autocorrelogram and correlated it with the original
zero-rotation autocorrelogram. In the case of truly symmetrical
grid cells, an oscillatory correlation signal would be generated
with peaks at 60◦ and 120◦ and troughs at 30◦, 90◦, and 150◦

(Figure 1F, right column). The gridness score is then obtained
by subtracting the correlation at the expected peaks and the
expected troughs of the rotational correlation (Sargolini et al.,
2006).

3. RESULTS

Gridness scores allow to identify whether border-to-gridHebbian
learning is effective in maintaining the hexagonal tessellation of
grid cells. We first visually inspected the gridness distribution in
a 2-dimensional parametric space: grid and border scale being
modulated independent of the gain conditions Figure 2.

A positive gridness score implies that grid cells maintain their
stereotypical pattern and, thus, that border cells help reducing
the accumulated error from grid cells’ path integration processes.
Noise-free and noise-induced velocity signals during learning
simulations revealed similar trends with respect to the border
and grid scale levels, i.e., small border scales (5% and 10% of
the environment width) were more effective in maintaining the
typical grid cells’ hexagonal pattern (Figures 2, 4).

As stated above, given the nature of our simulations and the
challenge of quantification in this study, we focus our analyses
on simulations of noise-induced velocity signals during learning.
Small-scale grid cells (Figure 2A, left-most column) are unable
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FIGURE 2 | Gridness scores quantification. (A) Distribution of gridness scores per dorsal-to-ventral condition, independently of the α gains. Bars at the right of vertical

red lines showed positive gridness and were considered grid cells. (B) Comparison of grid scores for conditions with- and without-border influence. With-border

conditions were extracted for α values reflecting the higher grid score mean value (mean/std, *where t-test pairwise test < 0.05), revealing that the border cell

mechanism was capable of minimizing grid-cells error accumulation.

FIGURE 3 | Border scale, grid scale and α modulation interactions. (A) Effects of the α parameter in gridness scores per dorsal-to-ventral condition with

noise-induced velocity signal during the learning and testing phases. (B) Examples of grid cells rate maps per each scale condition. Cells were chosen based on their

gridness score, so that cells with higher scores are shown. (C) Relationship between border and grid cells and α modulation. Modulation of border cells (alpha) as well

as its effectiveness were dependent on the scale level of both border and grid cells.

to maintain their grid pattern when larger scaled border cells
signal boundary proximities. On the other hand, as grid scale
increased, the ability to maintain grid patterns progressively

increased regardless of the border scale (Figure 3A), suggesting
that a finer grid scale is more sensitive to border scaling for
successful minimization of errors.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 July 2017 | Volume 11 | Article 65

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Santos-Pata et al. Border Scale on Grid-Cell Correction

FIGURE 4 | Gridness scores for noise-free velocity signal during the learning phase. Results are shown for simulations where the velocity signal during learning was

noise-free, but noise-induced during the testing phase. Note that gridness scores are affected for conditions of smaller (dorsal) but not for larger (ventral) border cell

scales.

Another question that is addressed is whether grid cells
would better benefit from across-the-board small and precise
border scales or border scales that mirror the typical dorsal-
to-ventral progressive increase in scale found in hippocampal
head-direction, grid and place cells. Interestingly, we observe
that both hypotheses could coexist within the 2-dimensional
parametric space, given that the distribution of positive grid
scores are higher in the upper diagonal compared to its lower
band (Figures 2A, 3B,C).

We then analyzed how different values of the α gain affect
cells’ gridness score along the dorsal-to-ventral axis Figure 3.
For low α values (range 0.0–0.4), grid cells are not able to
regain positive gridness scores as border cells’ activity was the
predominant driver of grid cells’ activity (Figure 3A).

However, at higher α values, when grid and border influences
are balanced or when neighboring grid cells’ activity is the
predominant driver of grid cells’ activity, grid cells are able
to minimize path integration related errors and maintain their
stereotypical hexagonal pattern (Figure 3B).

As suggested from the grid scores’ distribution, at multiple
grid/border scale conditions grid scores are not larger than zero,
independently of the α gain values. Specifically, when the border
scale is smaller than or equal to the grid scale, positive gridness
scores are observed (see conditions highlighted with red frames
in Figures 3A,B).

As border scale increase, cells with smaller grid scale tend
to lose their tessellation, such that larger-scaled grid cells more
robustly maintain their gridness when receiving input from a
wider range of border scale conditions than smaller scaled grid
cells.

Also, as observed earlier, large-scale border cells (covering
25% of the environmental width) are not able to contribute
to a positive grid score, suggesting that border cells with
low information specificity might not be useful within the
hippocampal spatial representational system.

With respect to the effects of the α parameter, in our
simulations it would be expected that when border cells do not
contribute to the final activity of grid cells (α = 1) gridness scores
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would match independently of the border scale level. However,
that is not found in the present results (Figure 3A). Given the
parameters of our simulations, such perturbations could be due
to the fact that for each border scale and α value condition,
the learning between border and grid cells is modulated by the
noise-induced signal during virtual navigation.

To measure these effects, we run a second set of simulations
where, during the learning phase, the velocity signal was error-
free (Figure 4). Indeed, we verified that gridness scores at each
grid cell scale level match independently of the border cells’ scale
when α = 1.

To quantify how much border cells contributed to grid
cells’ error minimization within the border/grid scale parametric
space, we extracted grid scores in conditions of zero-effect from
border cells and compared it with gains displaying maximal
gridness score means for each border/grid scale condition
(Figure 2B). Irrespective of the scaling, at every condition in
which gridness was not close to zero, significant differences
between with/without borders were observed (p < 0.01,
Wilcoxon Signed-Rank test). Thus, it supports the proposed
mechanism that border cells successfully contribute to the
maintenance of grid patterns under noisy velocity signals
input.

Again, small-scale grid cells did not produce positive gridness
scores when border scales were larger. As shown before, large
scale border cells disrupt the hexagonal pattern at every grid scale
condition.

We next analyzed the effects of α gains modulating the
strength of border and grid signal inputs in the grid cells’ activity
update in terms of gridness score optimality. We first extracted
the gains’ values in the 2-dimensional scale condition space in
which at least one gain condition displayed a positive average
score on the grid cells’ population. As previously described,
positive gridness scores were mostly obtained in the upper
right quadrant of the 2-dimensional scale condition space i.e.,
whenever grid cells’ scale is equal or higher than border cells’
scale.

For the smallest boundary signals (α = [0.5:0.6]), the best
gridness score was obtained at a balance between grid and border
cells’ input. In contrast, larger border scales led to better scores in
higher α levels ([0.7:0.9]), revealing that a larger grid cell input
is necessary to maintain the grid cells’ hexagonal tessellation
patterns (Figures 3A,C).

A dual effect was found for gridness scores in the same
parametric space (Figure 3C). On the one hand, grid cells with
matching border scales obtained positive scores, reflecting an
optimal scale-pairing between both cell types. On the other
hand, larger scaled grid cells maintained positive gridness scores
independent of the border scale condition.

4. CONCLUSIONS AND DISCUSSION

Grid cells have been extensively studied in rodent navigation. At
the theoretical level, it has been argued that grid cells form a
sensory-independent spatial representation and, when combined
with lateral enthorinal cortex (LEC) inputs, they would allow the

hippocampus proper to encode for an animal’s specific location
within the environment. However, recent experimental insights
have shown that grid cells are modulated by environmental
changes, suggesting a more interconnected representational
mechanism between internally generated path integration signals
and sensory processing (Krupic et al., 2015; Savelli et al., 2017).

An effective representational system needs to be stable over
time and traveled distance. However, analog signals (either
internally or externally generated) result in error accumulation
over time that is passed to the systems they feed into. Such
accumulation has been observed in rodent grid cells during
navigation in enclosed environments, which leads to the question
of how this accumulated error is minimized for optimal
performance.

This has been addressed through the recording of spatial
error accumulation in grid cells during open field navigation
(Hardcastle et al., 2015), where it was observed that field
traversals increase error accumulation while environmental
boundaries minimize it. Thus, it raised the possibility that the
representation of boundaries serves as an anchoring signal for
grid cells’ stabilization. A computational model allowing for the
error minimization in grid cells through border cells’ signals
using Hebbian learning was thus proposed by the authors.

That grid cells’ spatial representations exist on a range of
scales along the dorsal-to-ventral axis in the MEC could affect
how signals from border cells contribute to error minimization.
Specifically, the ratio of the scale of the projecting border cell to
that of the receptive grid cell is likely to be a factor in how well the
grid cell’s errors are minimized. At the physiological level, this
effect remains unclear. Moreover, it also brings up the question
of whether border cells exhibiting such scaling properties, may
be more optimal in minimizing the accumulation of errors.

In this study, we addressed these questions by modeling the
interaction between border and grid cells using low-continuous
attractor dynamics. By integrating the noisy velocity signal of
a simulated agent and border signals of different scales to a
modeled population of grid cells, we were able to control the
proportion of input into grid cells which come from border cells,
velocity signals and grid cells. In our model, a single parameter
α determined the contribution of border cells’ activity on grid
cells’ response. In simulations where α = 1—that is, border cells
did not contribute to the grid cells’ response—positive gridness
scores were still observed for the ventral (large-scale) grid
cells.

Thus, we were able to quantify the effects of scaling properties
(in both grid and border cells) on grid cells’ error minimization.
Our results suggest that equally scaled receptive fields of both
grid and border cells would best minimize accumulated error
when compared with larger border fields and smaller grid scale.
Simply put, projections from border to grid cells at the same
dorsal-to-ventral axis level would satisfy the mechanism for error
minimization. Interestingly, we also observed that smaller scale
border cells would just as adequately help in the maintenance of
the gridness of grid cells regardless of the grid cells’ scale. This
suggests that border cell scaling along the dorsal-to-ventral axis
is not strictly necessary for optimal error minimization, assuming
that border scale is sufficiently small.
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As mentioned before, Bonnevie et al. (2013) has shown that
excitatory projections from the hippocampus to the MEC are
required for maintaining grid cells’ gridness. Those projections
do not directly target grid cells populations in layers II
and III but rather reach them through earlier layers of the
MEC where border cells are found. In the context of error
minimization, this phenomenon could therefore potentially
be due to the loss of border cells’ spatial tuning leading to
a disruption in their role of maintaining grid cells’ spatial
accuracy.

An alternative solution to error minimization was proposed
by Mulas et al. (2016), in which a Hebbian mechanism between
grid cells and sensory cues for grid realignment resets grid cells’
activity to the agent’s correct location. Despite the computational
benefits of such an approach, there is no physiological evidence
for direct projections from the LEC sensory hub to the MEC
spatial encoder. Thus, such sensory to spatial influences are likely
to be filtered through hippocampal place cells before reaching
grid cells and is unlikely to be the solution found in the rat
hippocampus.

In conclusion, we examined how scaling could be useful
to border cells in the context of error minimization in grid
cells. As grid cells benefit from boundaries to minimize errors

and border cells can be found one synaptic stream adjacent to
grid cells, the effects of changing border scales could reveal a
function of a scaling property. Our computational work suggests
that both small-scale and comparable-to-grid-scaled border cells
are effective in minimizing grid cells’ error accumulation. High
resolution, small, border cells’ firing fields along the MEC
dorsal-to-ventral axis might thus represent a parsimonious
solution equally contributing to grid cells of multiple scales along
the same axis.
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