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The classical model of basal ganglia has been refined in recent years with discoveries

of subpopulations within a nucleus and previously unknown projections. One such

discovery is the presence of subpopulations of arkypallidal and prototypical neurons in

external globus pallidus, which was previously considered to be a primarily homogeneous

nucleus. Developing a computational model of these multiple interconnected nuclei is

challenging, because the strengths of the connections are largely unknown. We therefore

use a genetic algorithm to search for the unknown connectivity parameters in a firing

rate model. We apply a binary cost function derived from empirical firing rate and

phase relationship data for the physiological and Parkinsonian conditions. Our approach

generates ensembles of over 1,000 configurations, or homologies, for each condition,

with broad distributions for many of the parameter values and overlap between the two

conditions. However, the resulting effective weights of connections from or to prototypical

and arkypallidal neurons are consistent with the experimental data. We investigate the

significance of the weight variability by manipulating the parameters individually and

cumulatively, and conclude that the correlation observed between the parameters is

necessary for generating the dynamics of the two conditions. We then investigate the

response of the networks to a transient cortical stimulus, and demonstrate that networks

classified as physiological effectively suppress activity in the internal globus pallidus, and

are not susceptible to oscillations, whereas parkinsonian networks show the opposite

tendency. Thus, we conclude that the rates and phase relationships observed in the

globus pallidus are predictive of experimentally observed higher level dynamical features

of the physiological and parkinsonian basal ganglia, and that the multiplicity of solutions

generated by our method may well be indicative of a natural diversity in basal ganglia

networks. We propose that our approach of generating and analyzing an ensemble of

multiple solutions to an underdetermined network model provides greater confidence

in its predictions than those derived from a unique solution, and that projecting such

homologous networks on a lower dimensional space of sensibly chosen dynamical

features gives a better chance than a purely structural analysis at understanding complex

pathologies such as Parkinson’s disease.
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1. INTRODUCTION

Our understanding of the circuitry of the basal ganglia has been
much refined in recent years due to the discovery of distinct
sub-populations of neurons within nuclei previously assumed
to be homogeneous (Gertler et al., 2008; Taverna et al., 2008;
Planert et al., 2010; Mallet et al., 2012; Mastro et al., 2014) and
additional projections between nuclei previously thought to be
unconnected (Nadjar et al., 2006; Calabresi et al., 2014; Saunders
et al., 2015). Whereas ideally we would instantly be able to
incorporate these new findings into well validated computational
models of the basal ganglia and determine the dynamical role
of these sub-populations and projections, in practice this is not
at all simple. Any attempt to model the basal ganglia rapidly
runs into difficulties due to lack of knowledge, particularly with
respect to the strengths of connections between nuclei. Although
empirical data has been gathered on the strengths of many of the
connections in the basal ganglia circuit, such as lateral inhibition
in striatum (Taverna et al., 2008; Planert et al., 2010), many others
remain uncertain (e.g., afferent and efferent projections of the
GPe-arkypallidal neurons).

Faced with this high degree of under-specification, modelers
typically choose one of two alternatives: make simplifying
assumptions on the unknown parameters, or strive for a unique
or locally optimal solution by performing an extensive and
computationally demanding parameter fit with respect to a cost
function based on desiredmodel dynamics. The former approach
has the disadvantage that there will always be a question mark
remaining over whether the simplifying assumptions underlying
the specific choice of model parameters were valid. While the
robustness of obtained results with respect to the parameter
choice has been extensively studied in the context of single-cell
(e.g., Achard and De Schutter, 2006) and small network models
(e.g., Prinz et al., 2004), this has hardly been done for large-scale
networks, specifically basal ganglia.

The latter approach has the disadvantages that defining
criteria tightly enough to allow a unique solution to be
located does not take variability of biology into account; for
example a measurement of spiking activity in a given area
can vary substantially between animals and labs. Further, one
can generally assume that an alternative solution would have
been found, if the cost function had been defined slightly
differently, with no assurances that the solutions would have
been close in parameter space. Therefore even when a solution
has been generated by this method, it is still unclear what
other points in parameter space might have been selected by
equally well motivated cost functions, or whether they might
even be more representative of the system to be modeled. The
existence of alternative solutions may reflect either the lack of
constraints from experimental observations or the variability that
is prevalent in biological systems (Gutenkunst et al., 2007), and
clearly demonstrates the problems of trying to converge on a
single “best” solution for a high-dimensional and substantially
under-specified system.

In this study, we propose an alternative approach for dealing
with the multiple uncertainties in the basal ganglia circuit. We
perform an extensive parameter search, but instead of striving for

a unique solution, we embrace the uncertainty and use a genetic
algorithm to generate a large ensemble of network configurations
for both physiological and parkinsonian conditions. This allows
us to investigate the common dynamics of the whole ensemble
of configurations, thus permitting a higher degree of confidence
in the results than the standard approach of generating and
examining only one configuration for each condition.

Specifically, we develop a mean field model (Section 3.1) with
a structure that incorporates the recent findings on the Globus
pallidus externus (GPe), indicating that it is organized into two
distinct subpopulations (Mallet et al., 2008, 2012; Abdi et al.,
2015). One of the subpopulations projects upstream to striatum,
expresses preproenkephalin and fires in phase with cortical
slow wave and beta activity in parkinsonian conditions. These
neurons are termed as arkypallidal neurons or GPe tonically
active (TA) neurons. The other subpopulation of neurons mostly
projects downstream in basal ganglia, expresses parvalbumin
and fires anti-phase with cortical slow wave and beta activity
in parkinsonian conditions. These neurons are termed as
prototypical or GPe tonically inactive (TI) neurons. The existence
of two types of GPe neurons with distinct projection patterns and
dynamics suggests that they might be parts of different functional
pathways.

As indicated above, not much is known about the effective
connectivities within these subpopulations as well as between
these subpopulations and rest of the basal ganglia. Whereas a
search for connectivity strengths of these newly discovered GPe
subpopulations that produce consistent activity has been carried
out in the recent and thorough modeling study by Nevado-
Holgado et al. (2014), this analysis was restricted to the GPe-
STN subcircuit and considered striatal input as feedforward
inhibition. Since at least one of the GPe subpopulation is known
to project massively upstream to striatum, the striatum forms a
rather strong recurrent loop with GPe. This recurrency is bound
to affect the parameter search and hence is integral to understand
the role of these sub-populations. We therefore model a larger set
of the basal ganglia nuclei and include the reciprocal connections.

Our genetic algorithm (Section 3.2) is configured to accept all
network configurations that reproduce the experimentally
observed network activity for either a physiological or
parkinsonian condition (Mallet et al., 2008; Abdi et al., 2015).
This process reveals a large number of valid configurations
for both conditions, with substantial variation in the values
found for the free connectivity parameters (Section 3.3).
We call these valid configurations homologies or homologous
networks, since for different values of effective connectivities,
they result in similar dynamics. We further investigate the
significance of the homologies by replacing the individual
parameter values by the mean of the corresponding distribution,
or alternatively shuffling parameter values between the members
of an ensemble, and determining how many networks retain
their original physiological or parkinsonian classification. We
find that the classification of the networks is more sensitive to
some parameters than others, and that shuffling values within
a distribution causes more networks to become invalid, i.e.,
no longer fulfill the dynamic criteria for a physiological or
parkinsonian network, than replacing the distribution by its
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mean. Moreover, if the parameters are shuffled cumulatively,
the proportion of networks retaining their original classification
monotonically decreases for both physiological and parkinsonian
networks. We also observe that the sensitivity of parkinsonian
network dynamics to manipulations of a given parameter
strongly depend on how correlated that parameter is with other
free parameters.

The generation of ensembles of network configurations
also enables some predictions to be made about effective
connectivities within the basal ganglia. Some of them are
consistent with the known data [e.g., strengthened (weakened)
cortical connections to D2-MSNs (D1-MSNs) in Parkinson’s
disease] and some of them are novel and require experimental
validation (e.g., reduced self inhibition of GPe-TI in Parkinson’s
disease). These predictions are discussed in more detail in the
Section 4.2.

To gain insight into the essential properties of the network
configurations classified as physiological and parkinsonan, we
project them onto a 2-dimensional space defined by dynamical
properties of the network, namely its ability to suppress activity in
the globus pallidus internus (GPi) and the network’s susceptibility
to oscillations in response to a square wave stimulus (Section 3.4).
Although each parameter exhibits overlap in the distributions
generated for the physiological and parkinsonian ensembles, this
functional classification reveals distinct separation between the
two ensembles.

Our results show that these dynamical features serve as good
predictors of the network classification, and indicate that the
discovered homologies do not come about merely as a result
of lack of constraints used for the parameter search, but reflect
common non-trivial dynamic properties. We conclude that the
generation of large ensembles of valid network configurations
based on simple dynamical features (such as rate and phase) and
investigating their collective behavior with respect to higher level
features (such as oscillation) is a fruitful method for acquiring
insight into under-specified neural circuits, and gives a better
chance at understanding complex pathologies like Parkinson’s
disease, which involves alterations to multiple pathways in the
basal ganglia.

2. MATERIALS AND METHODS

2.1. Mean field model of the basal ganglia
We used a Wilson-Cowan model of the mean activity of
seven basal ganglia nuclei, namely, D1-MSN (D1-medium
spiny neuron), D2-MSN, FSI (fast spiking interneuron), GPe-
TA (globus pallidus externus—tonically active), GPe-TI (GPe-
tonically inactive), STN (subthalamic nucleus) and GPi (globus
pallidus internus). The dynamics of the system is given by

τ Ẏ =

leak
︷︸︸︷

−Y + S (

recurrent + ext. input
︷ ︸︸ ︷

A · Y + B · λCTX) (1)

with the population-firing-rate vector

Y(t) =
[

λD1(t), λD2(t), λFSI(t), λTA(t), λTI(t), λSTN(t), λGPi(t)
]T

and the sigmoidal activation function

S(x, θ , λmax) =
λmax

1+ e−a(x−θ)
. (2)

Here, λCTX denotes the firing rate of cortical inputs, Ẏ =

dY
dt

=

[
dλD1
dt

, dλD2
dt

, dλFSI
dt

, dλTA
dt

, dλTI
dt

, dλSTN
dt

, dλGPi
dt

]T
the temporal

derivative of the rate vector Y(t), and T the matrix transpose.
For the sake of simplicity, the time constant τ = 15ms is kept
constant for all nuclei. To test the sensitivity of the results to this
choice, parameter search and simulations are also performed for
τ = 1ms. This produces qualitatively similar results, but shifts
the frequency of beta oscillations (peaks in spectra in Figure 6D)
out of the experimentally observed range (data not shown) .

The values of θ and λmax (Table 1) were chosen in order to get
realistic distributions of instantaneous firing rates under different
input conditions (Supplementary Figure 2). For a specific
nucleus, λmax and θ are fixed across all network configurations
and for both physiological and pathological conditions. Activity
is modeled assuming zero delays (i.e., instantaneous update), as
this is convenient for the overall ease of analysis of the system.
Moreover, oscillations in a circuit can be purely delay driven.
As we are interested in the role of effective connectivities on
oscillations, a choice of zero delay removes the confounding
factor.

The coupling matrices

A =













JD1,D1 JD1,D2 JD1,FSI JD1,TA JD1,TI 0 0
JD2,D1 JD2,D2 JD2,FSI JD2,TA JD2,TI 0 0
0 0 0 JFSI,TA JFSI,TI 0 0
0 JTA,D2 0 JTA,TA JTA,TI JTA,STN 0
0 JTI,D2 0 JTI,TA JTI,TI JTI,STN 0
0 0 0 JSTN,TA JSTN,TI 0 0

JGPi,D1 0 0 0 JGPi,TI JGPi,STN 0













(3)

and

B =
[

JD1,CTX, JD2,CTX, JFSI,CTX, 0, 0, JSTN,CTX, 0
]T

(4)

denote the recurrent and input connectionmatrices, respectively.
An element Ji,j of A or B represents the effective strength of
the connection from population j to population i. The colors
of the parameters in Equations (3) and (4) indicate whether
a particular projection is considered as a free (red) or fixed
(blue) parameter. The calculation of the fixed parameters is
described in detail in Section 2.1.1. The code for this model and
analysis scripts are shared in the git repository https://github.
com/jyotikab/Homology_BG.git.

2.1.1. Fixed Parameters
The effective connectivity parameters considered fixed in
coupling matrix A (Ji,j in blue) are calculated from the
experimental data used to tune the spiking network model
presented in Lindahl et al. (2013). We did not perform a direct
conversion from the parameters of the spiking model, since it
is non-trivial to calculate the effective connectivities analytically
from the adaptive exponential integrate and fire model used
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TABLE 1 | Nucleus specific parameters for the sigmoidal activation function.

Nucleus name θ λmax

D1-MSN 0.1 65 (Kiyatkin and Rebec, 1999)

D2-MSN 0.1 65 (Kiyatkin and Rebec, 1999)

FSI 0.1 80

GPe-TA 0.4 75

GPe-TI 0.4 125

STN 0.4 500 (Kita et al., 1983; Nakanishi et al., 1987)

GPi 0.1 250 (Nakanishi et al., 1987; Hashimoto et al., 2003)

in the paper. The analytical method to calculate the effective
connectivity assumes a LIF neuron, with membrane potential
dynamics given by

τmv̇ = −v+ Ri(t) (5)

where τm is the membrane time constant and R = τm
C is the

membrane resistance. The impulse response for a delta input
(

Ri(t) = δ(t)
)

can be calculated as :

h(t) =
1

τm
e
−t
τm 2(t) (6)

with 2(t) = 1 for t ≥ 0 and 0 otherwise. A post synaptic
current (PSC) depends on the synaptic conductanceG(t), reversal
potential of the synaptic connection (Erev) and potential at which
the membrane is clamped, also known as the holding potential
(Vhold).

I = G(t) (Erev − Vhold) (7)

Assuming exponential currents with a decay constant τs

i(t) = Ie
−t
τs 2(t) (8)

then the postsynaptic potential can then be calculated as the
convolution of neuron’s impulse response and the incoming PSC

v(t) =
(

i ∗ h
)

(t) = RI
τs

τs − τm

(

e
−t
τs − e

−t
τm

)

2(t) (9)

The effective connectivity per synapse is the total area of the PSP,
which can be calculated by integrating

v̄ =

∫ ∞

0
dtv(t) (10)

In order to calculate the total effective connectivity, the integrated
PSP needs to be multiplied by the number of synapses or in-
degree (K) of the circuit.

J = Kv̄ (11)

Some experimental studies report the average integrated PSPs of
a synapse, in which case the effective connectivity is calculated by
simply scaling it with the in-degree as above.

However, often connectivity strengths are reported in other
units. Some studies report just the average amplitude of the PSP
(Vpsp), so an integrated PSP is calculated by multiplying the PSP
with synaptic time constant (assuming an exponential shape PSP)
i.e.,

J = KVpspτs (12)

Other studies measure post synaptic currents (Ipsc) or integrated
PSCs, i.e., the total charge (Q = Ipscτs) in which case, we calculate
the effective connectivity bymultiplying the integrated PSCs with
the input resistance R and in-degree, i.e.,

J = KRIpscτs (13)

= KRQ (14)

Finally, if the experiment measures conductance instead of PSCs,
the effective connectivity can be estimated by calculating the PSC
for a given holding potential (Vhold) and reversal potential of
the synaptic connection (Erev) as Ipsc = G(t) (Erev − Vhold) τs,
leading to

J = KRG(t) (Erev − Vhold) τs (15)

Estimation of JGPi,D1
The data for D1-MSNs connections to GPi were estimated

from Chuhma et al. (2011). This study measures the functional

connectivity between MSNs and their afferent and efferent nuclei

in brain slices of bidirectional tetO-rhodopsin (BTR) mice. This
is done by optogenetically stimulating either the afferent nuclei
or incoming fibers from the afferent nuclei while recording
IPSCs from the target nucleus. The effective connectivity is hence
calculated from Equation (13) (row 1 in Table 2). This value
does not need to be scaled by an in-degree since the method
aimed to stimulate all incoming projections to a target cell;
hence the recorded post-synaptic current is indeed the effective
connectivity as perceived by the cell of the target nucleus. The
value however, had to be scaled up by ten, as suggested by
Chuhma et al. (2011) since only 10% of MSNs expressed ChR2
in BTR mice. This is indicated by a multiplier of “×10” for the
IPSCs value in row 1 in Table 2.

The value of synaptic time constant τGPi,D1 was obtained from
Borgkvist et al. (2015). Connelly et al. (2010) also measured
the strength of striatonigral projection, but in paired recordings
and in form of synaptic conductance. Since the striatonigral
connections undergo short term facilitation, the conductance is
scaled by a factor of two, as indicated by a “×2” in row 1a. If we
assume an in-degree of 500 as estimated by Lindahl et al. (2013),
the effective connectivity calculated using the data from Connelly
et al. (2010) gives much higher values. Since Connelly et al.
(2010) specifically mentioned that they were unable to measure
clear unitary striatonigral connections during minimal striatal
stimulation, the measured synaptic response might represent a
combined effect of multiple incoming projections. With an in-
degree of 25, the effective connectivity calculated is in the same
range as the value from Chuhma et al. (2011) (grayed row 1a in
Table 2).
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TABLE 2 | Calculation of the fixed parameters.

No. Conn. Qij (pA.ms) Kij Ipsc (pA) Ri (M�) G (nS) Vhold (mV) Erev Vpsp (mV) τij (ms) v̄ (mVs) Jij (mVs)

1 JGPi,D1 − − 276.3×10 [1] 141.7 [1] − − − − 7.1 [2] − −2.8

1a JGPi,D1 − 25* − 144 [6] 3 ×2 [6] -60 [6] -80 [6] − 5.2[6] − −2.2

2 JGPi,STN − 106[9] − 97.3[5] − − − 1.4 [5] 1.6 [5] − 0.24

2a JGPi,STN 900[4] 3* − 97.3[5] − − − − 4.2 [4] − 0.26

3 JGPi,GPe − 32 [3] − 144 [6] 20×0.2 -60 [6] -72 [6] − 2.1[6] − −0.78

4 JD1,D1 − 208.25*[9] − − − − − 0.24 [7] 14 [8] − −0.69

4a JD1,D1 − 291.8*[9] − − − − − − − 0.055 [8] −16.

4b JD1,D1 − 7.3*[12] − − − − − − − 0.055 [8] −0.4

5 JD1,D2 − 386.75*[9] − − − − − 0.27 [7] 11 [8] − −1.15

5a JD1,D2 − 303.1*[9] − − − − − − − 0.223 [8] −67.6

5b JD1,D2 − 7.6*[12] − − − − − − − 0.223 [8] −1.7

6 JD2,D2 − 497.6*[9] − − − − − 0.45 [7] 13 [8] − −2.9

6a JD2,D2 − 510*[9] − − − − − − − 0.117 [8] −59.67

6b JD2,D2 − 12.8*[12] − − − − − − − 0.117 [8] −1.5

7 JD2,D1 − 97.3*[9] − − − − − 0.33 [7] 10 [8] − −0.32

7a JD2,D1 − 85*[9] − − − − − − − 0.078 [8] −6.63

7b JD2,D1 − 2.14*[12] − − − − − − − 0.078 [8] −0.16

8a JMSN-MSN − − 103.8×10 [1] 231 [1] − − − − 13 [8] − −3.35

8b JMSN-MSN − 595[9] − − − − − 0.45 [7] 13 [8] − −3.48

9 JD1,FSI − 27 [10] − − − − − 4.5×0.6 [7] 8.1 [11] − −0.65

9a JD1,FSI − 27 [10] 501×0.6 [11] 142 [11] − − − − 8.1 [11] − −0.06

10 JD2,FSI − 20.3*[10] − − − − − 3.1×0.6 [7] 7.6 [11] − −0.3

10a JD2,FSI − 18.3*[10] 578×0.6 [11] 142 [11] − − − − 7.6 [11] − −0.04

The non-grayed rows are the values used in the model. The grayed rows are alternative methods for estimating the connection strengths using the parameters from other studies.

Numbers marked with an asterisk had to be calculated, see main text for details. Data sources: [1], Chuhma et al. (2011); [2], Borgkvist et al. (2015); [3], Lindahl et al. (2013); [4], Ammari

et al. (2010) ; [5], Nakanishi et al. (1997); [6], Connelly et al. (2010); [7], Planert et al. (2010); [8], Taverna et al. (2008); [9], Steiner and Tseng (2017); [10], Koós and Tepper (1999) ; [11],

Gittis et al. (2010); [12], López-Huerta et al. (2013).

Estimation of JGPi,STN
The effective connectivity for STN projections to GPi were
estimated from Nakanishi et al. (1997), who measured EPSCs
in SNr during STN stimulation. An in-degree of 106 synapses
was used as estimated in Steiner and Tseng (2017) and effective
connectivity is calculated using Equation (12) (row 2 in Table 2).
In order to further verify this value, the effective connectivity was
calculated from Ammari et al. (2010), who measured synaptic
strength in terms of total charge (QGPi,STN) in a completely
preserved basal ganglia slice (BGS). Since this study did not
measure the input resistance of GPi, the value from Nakanishi
et al. (1997) was used. The effective connectivity is calculated
using Equation (14) (row 2 in Table 2). However, with an in-
degree of 106, the values are around 50 times larger than values
calculated from Nakanishi et al. (1997). However, since Ammari
et al. (2010) used a basal ganglia slice and STN was stimulated
using bipolar electrodes, the synaptic strength calculated cannot
be interpreted as if measured in a paired recording. If the in-
degree is rescaled to 3, a value is obtained in the range of
Nakanishi et al. (1997) (row 2a in Table 2).

Estimation of JGPi,GPe
The aforementioned study by Connelly et al. (2010) also
measures pallidonigral connections (JGPi,GPe) in paired
recordings in terms of synaptic conductance. We used this

data to calculate the effective connectivity of pallidonigral
connections in a similar method to striatonigral effective
connectivity (Equation 15 and row 3 in Table 2). Since this
connection undergoes short term depression, it is rescaled by 0.2,
where the PSP reaches a steady state after the initial short term
plasticity. This is indicated as “× 0.2” in the conductance.

Estimation of lateral inhibition in striatum

(JD1,D1, JD1,D2, JD2,D2, JD2,D1)
The striatalMSNs are classified into two groups depending on the
dopamine receptor they express, i.e., D1-MSNs and D2-MSNs.
Data on the synaptic strengths and connectivity is available
separately for these category pairs as well as unseparated MSN
pairs. The effective connectivity between D1 and D2-MSNs was
calculated using data from Planert et al. (2010). The in-degree
was calculated by rescaling the in-degree for unclassified MSN
(KMSN = 595 synapses per MSN cell—Steiner and Tseng, 2017)
by the connectvity of classified MSN pairs, e.g.,

KD1,D1 =
ρD1,D1

ρD1,D1 + ρD1,D2
KMSN (16)

For values of ρD1,D1 and ρD1,D2 of 0.07 and 0.13 resp. (from
Planert et al., 2010), the scaled indegree (KD1,D1) for D1-
D1-MSNs is 208.25. The effective connectivity of all the four
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connections was calculated using Equation (12) (rows 4–7 in
Table 2).

We also estimated effective connectivity for an average MSN-
MSN connection from data supplied by Chuhma et al. (2011),
which after scaling up by ten, gives a value of approximately
−3.4 (row 8a). This value is strongly supported by effective
connectivity calculated for MSN-MSN PSPs from Planert et al.
(2010), resulting in approximately −3.5 (row 8b). Due to the
paucity of projections from D1-MSNs and their weak synaptic
strengths, it is likely that on an average a measured MSN-MSN
connection is a projection from D2-MSN (either to D2-MSN or
D1-MSN). This corresponds to a mean effective connectivity of
−2.0 ( refer to JD2,D2, JD1,D2, withmeans of−2.9 and−1.15). This
fits well with the value estimated from Chuhma et al. (2011) and
Planert et al. (2010).

The work by Taverna et al. (2008) measures the integrated
PSPs (v̄) between D1-D2MSNs, but when these values are
multiplied by the in-degree,the values obtained are ten times
larger than the values calculated above (row 4a, 5a, 6a, 7a). A
possible explanation for this is that the analysis in Taverna et al.
(2008) is limited to IPSCs with a short rise time (<1ms) that likely
arise from proximal synapses. The distal synapses, as suggested
by Taverna et al. (2008), might show different properties. If
they were weaker, they would reduce the average measured
integrated PSP for the neuron pairs, thereby yielding an effective
connectivity in the correct range. Alternatively, we used the
distance dependent connectivity data measured by López-Huerta
et al. (2013), that suggests that in a slice of around 100µm from
surface, as also used by Taverna et al. (2008), the in-degree drops
to around 5–15 per MSNs. Using KMSN = 15 in Equation (16),
the in-degree for D1-D1MSNs (KD1,D1) is 7.3. Recalculating the
effective strengths with this in-degree, we get a good match to the
values obtained by Planert et al. (2010) (rows 4b, 5b, 6b, 7b).

Estimation of interneuronal inhibition to striatum

(JD1,FSI, JD2,FSI)
The fast spiking interneurons (FSIs), in spite of being only 2%
in number, provide strong feedforward inhibition to the striatal
MSNs. We estimated their effective inhibition to D1 and D2-
MSNs using the data provided by Planert et al. (2010). The
in-degree was calculated by scaling the average in-degree of
unclassified MSNs, which is 4-27 FSI neurons per MSN (Koós
and Tepper, 1999). Since Planert et al. (2010) report that FSIs
preferentially inhibit D1-MSNs, we assume that the in-degree to
D1-MSNs (KD1,FSI) is 27, with the in-degree to D2-MSNs being
scaled accordingly

KD2,FSI =
ρD2,FSI

ρD1,FSI
KMSN-FSI (17)

With the values of ρD2,FSI = 0.89, ρD1,FSI = 0.67 and
KMSN-FSI = 27, the rescaled of KD2,FSI is estimated as 20.3.

The short term depression in FSI synapses toMSN is indicated
by a factor of “×0.6” in the Vpsp column. The calculated effective
connectivities are listed in rows 9 and 10 of Table 2. The synaptic
time constants were taken from an another study (Gittis et al.,
2010), that concurs with the finding of Planert et al. (2010) that
FSIs inhibit D1-MSNs more than D2-MSNs. They measure the
synaptic strengths in terms of post-synaptic currents, which are

used to calculate the effective connectivities as shown in the table
(rows 9a and 10a). Although these values preserve the qualitative
relationship of effective inhibition to D1 and D2-MSNs (i.e.,
JD1,FSI > JD2,FSI), they are ten times smaller than those estimated
from the data of Planert et al. (2010) (rows 9a and 10a). This
maybe because of large variance in inhibition from FSIs to MSNs
as observed by both studies [Planert et al. (2010): 4.8mV ± 4.9,
3.1mV ± 4.1 ; Gittis et al. (2010): 501 pA ± 760, 578 pA ± 834].
We chose to use the values from Planert et al. (2010), because we
use the values from this study to estimate the other four striatal
corrections (see Section 2.1.1).

2.2. Effective Connectivity Parameter
Search
We used a genetic algorithm to find valid network configurations
that reproduce experimental observed phase and activity
relationships in physiological and Parkinsonian conditions. The
pseudocode is given in Algorithm 1.

Define a population of 300 candidates, each a 20-D vector
with values sampled from uniform distributions
for each iteration do

for each candidate do
Calculate the firing rate and phase relationship for the
candidate
if the firing rates and phase relationships criteria are
met then

Save candidate to file and keep candidate for the
next iteration

else
Discard candidate

end

end

if there is at least 1 surviving candidate then
Perform crossover of X (out of 20) randomly selected
elements among all surviving candidates (N) to
generate 2×N candidates

else
Sample a new population of 300 candidates

end

With a probability Y:
for each candidate do

perform a random mutation in one randomly
selected element

end

end

Algorithm 1: Pseudocode of the genetic algorithm generating
network configurations

The crossover number X (number of elements among the 20 free
parameters to be swapped) and the randommutation probability
Y (probability of a random mutation) were tuned in order to
cover a reasonable amount of parameter space in a time span of
3 days (≈3,000 iterations). A value of X = 2 and Y = 0.1 gave
the best results (data not shown). The range for all the negative
parameters was (0,−6.) and positive parameters was (0, 13). In
the case of a random mutation, the new value was drawn from
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the corresponding positive or negative uniform distribution. The
parameter search was run for three different seeds to ensure
that the results didn’t depend on the initial conditions. The
distributions are shown in Supplementary Figure 1.

The cost function used in the parameter search is binary
rather than real-valued. We derive a series of phase and activity
relationships based on experimental findings on the response of
the GPe-nuclei (arkypallidal and prototypical) to cortical slow
wave activity (SWA) and beta activation (Beta) (Mallet et al.,
2008; Abdi et al., 2015). The SWA was recorded under the
influence of anesthesia, whereas the cortical activity showed beta
activation during hindpaw stimulation of the animal. For each
candidate network configuration, we set λCTX in Equation (1)
to provide SWA and beta stimulus as defined in Table 3. We
then test whether the network’s activity fulfills the relationships
set out in Table 4. If it fulfills all the criteria in the left column,
the network configuration is considered a valid example of a
physiological network. If it fulfills all the criteria in the right
column, it is considered a valid example of a parkinsonian
network. If neither, than the configuration is discarded (see
Algorithm 1).

The (Pearson’s) cross-correlation coefficients Corr(λx,λy) in
Table 4 are used to test phase relationships between the activities
of the nuclei x and y. A positive cross-correlation between the
activities of STN (λSTN) and GPe-TA (λTA), for example, imply
an in-phase relationship. Although cross-correlation is not a
direct test for phase relationship, it is sufficient in this case
since the input is sinusoidal. The phase differences between

TABLE 3 | Cortical input parameters.

Input type Frequency (Hz) Amplitude

SWA (Slow wave activity) 2 2.0 (Ballion et al., 2008;

Nevado-Holgado et al., 2014)

Beta (Beta Activation) 20 2.5 (Mallet et al., 2005;

Nevado-Holgado et al., 2014)

TABLE 4 | Criteria for classifying physiological and parkinsonian activities as

shown in Mallet et al. (2008) and Abdi et al. (2015).

No. Property Physiological Parkinsonian

(1) λTI(SWA) [9.5, 45] spikes/s [19, 35] spikes/s

(2) λTI(Beta) [12 ,50] spikes/s [7,19] spikes/s

(3) λTA(Beta) [5,25] spikes/s [7,15] spikes/s

(4) λTA(SWA) [0,5] spikes/s [1,6] spikes/s

(5) λGPe=λTA+λTI λGPe(SWA) < λGPe(Beta) λGPe(SWA) > λGPe(Beta)

(6) Corr(λSTN(SWA),

λCTX(SWA) )

>0 >0

(7) FF(λTA(SWA) ) <1 >1

(8) Corr(λTA(SWA),

λSTN(SWA) )

− >0

(9) FF(λTI(SWA) ) <1 >1

(10) Corr(λTI(SWA),

λSTN(SWA) )

− <0

Square brackets represent ranges of firing rates.

λTA/TI and λSTN in Figures 2C,D are calculated from the Fourier
transformed signals (using Fast Fourier Transform of the NumPy
library) at stimulus frequency. For physiological networks, the
experimental data suggests that GPe-TA and GPe-TI are largely
non-modulated by the cortical activity (Mallet et al., 2008). This
was imposed by selecting the networks with low Fano factor

FF =
Var(λTA/TI)

Mean(λTA/TI)
(18)

for the GPe-TA and GPe-TI activity. Here, Var(·) and Mean(·)
correspond to the variance across time and the time average,
respectively. For parkinsonian conditions, the experimental data
shows that λTA and λTI are strongly modulated by cortical
activity which is reflected in a significant (positive/negative)
cross-correlation and large Fano factors.

2.3. GPi Suppression and Susceptibility To
Oscillations
GPi suppression (GS) measures the ability of the network
dynamics to effectively suppress the GPi activity and is defined as
the ratio of the change in average GPi activity after the stimulus
onset t∗ to the activity before stimulus onset, i.e.,

GS =
〈λGPi(t)〉[t∗−11 ,t∗] − 〈λGPi(t)〉[t∗,t∗+12]

〈λGPi(t)〉[t∗−11 ,t∗]
(19)

where 11 = 12 = 500ms.
Susceptibility to oscillations (SO) denotes the tendency of the

system to oscillate under a transient stimulus (here a square
wave). It is calculated as one minus the mean spectral energy, i.e.,

SO = 1− SE (20)

SE = 〈SEi〉i (21)

SEi =
−

∑

ω |3i(ω)| · loge |3i(ω)|

loge N(ω)
(22)

3i(ω) = F(λi(t))(ω) (23)

where i ∈ {GPi, GPe-TA, STN, GPe-TI} and SEi denotes the
spectral entropy for the amplitude spectrum 3i(ω) of nucleus i,
calculated as the Fourier transform of the activity, λi.

We measure these dynamical properties of the system
following a perturbation with a single square pulse of amplitude
4 spikes/s. Analogous results were obtained for amplitudes in
the range 1–8 spikes/s (data not shown). Note that the square
pulse input contains components in all frequency bands and
is therefore an appropriate test stimulus for susceptibility to
oscillations.

2.4. Manipulations of Parameter
Distributions
The distributions of values generated for the free effective
connectivity parameters are manipulated in two ways, “replace
by mean” and “shuffle.” The manipulations are carried out either
individually (one parameter at a time, restoring the original
values of a parameter after each manipulation) or cumulatively
(manipulating each parameter in succession, without restoring
the original values of previously considered parameters).
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2.4.1. Replace by Mean
For a given connection Jxy, the specific value of that connection
in all network configurations is replaced by the mean of that
connection taken across all network configurations in that
ensemble, i.e.,

Jxy =
1

M

M
∑

i= 1

Jixy

where M = 1, 214 for the physiological ensemble and 1, 265 for
the parkinsonian ensemble.

2.4.2. Shuffle
For a given connection Jxy, the specific values of that
connection are randomly permutated between all members of
the corresponding ensemble. This procedure was repeated for ten
independent permutations.

2.5. Simulation and Data Analysis Tools
All network simulations and the genetic algorithm are
implemented in Python (http://www.python.org). Results were
analyzed using SciPy and NumPy libraries and visualizations
were carried out using Matplotlib (Hunter, 2007).

3. RESULTS

3.1. Firing Rate Model of the Basal Ganglia
We developed a firing rate model of the basal ganglia consisting
of seven neuronal populations, namely, D1-MSN(D1-medium
spiny neuron), D2-MSN, FSI (fast spiking interneuron), GPe-TA
(globus pallidus externus - tonically active, or arkypallidal), GPe-
TI (GPe-tonically inactive, or prototypical), STN (subthalamic
nucleus) and GPi (globus pallidus internus) as shown in Figure 1.
These nuclei were chosen with the purpose of modeling a
minimal basal ganglia circuit implementing the three main
functional pathways, i.e., the direct pathway (D1→ GPi), the
indirect pathway (D2→GPe→GPi) and the hyperdirect pathway
(STN→GPi). For the sake of simplicity, we limit our analysis to
the basal ganglia dynamics and its output. Consequently, other
connected nuclei such as thalamus are not represented, and
cortex is modeled as a feedforward excitatory input. Consistent
with the recent experimental findings (Mallet et al., 2012; Abdi
et al., 2015) we modeled GPe as a network of two subpopulations.
These subpopulations are distinct in terms of their response
to cortical activity and may be part of different functional
pathways. Since the strengths of the majority of the projections
emanating from and projecting to GPe-TA and GPe-TI are
unknown, they are considered to be free parameters (marked
as red dashed lines in Figure 1). These include projections
to striatum (D2-MSNs, D1-MSNs and FSIs), projections from
D2-MSNs to GPe and recurrent projections between GPe and
STN. Although it has been suggested that GPe-TA populations
(arkypallidal) projects upstream to striatum much more than
GPe-TI population (prototypical), here both are included as
free parameters in order to include the possibility of few
but strong projections from prototypical neurons to striatum.
Similarly, the projections from both arkypallidal and prototypical

FIGURE 1 | Network schematic for mean field model of basal ganglia.

Connectivity strengths that can be estimated from experimental data are are

fixed in this study shown as blue solid lines. The strengths of red dashed

projections are considered to be free parameters in the model.

neurons to STN are considered, even though it is assumed
that the prototypical population projects downstream. All the
cortical projections, i.e., to the striatum as well as to STN are
also considered as free parameters, since their relative effective
strengths are also unknown. The model dynamics and structure,
and the estimation of the fixed connectivity parameters (blue
solid lines in Figure 1), are defined in Section 2.1 in Materials
and Methods.

3.2. An Ensemble of Network Model
Configurations
The firing rate model described in Sections 2.1 and 3.1 and
is incompletely specified due to the large number of unknown
connectivity strengths. To address this issue, rather than making
assumptions to specify these, we generate a large ensemble of
model configurations by performing a parameter search across
the 20 free parameters (see matrices A and B in Section 2.1).
A genetic algorithm is used to find configurations of the free
parameters shown in Figure 1 that conform to a series of criteria
based on their activity and phase relationships (see Table 4 in
Materials and Methods). A configuration is considered valid
if the firing activity and phase relationships of arkypallidal
and prototypical GPe subpopulations fit the experimental
observations made for healthy and 6OHDA-lesioned rats (i.e.,
modeling Parkinson’s disease) presented in Abdi et al. (2015) and
Mallet et al. (2008).
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The method is described in Section 2.2 and resulted in 1,214
network configurations classified as “physiological” and 1,265
classified as “parkinsonian.” The corresponding activity and
phase relationships are shown in Figure 2 (c.f. Figures 6 and
10 in Abdi et al., 2015). In the physiological condition, the beta
activation in cortex tends to increase the average activity in both
arkypallidal and prototypical subpopulations (Figure 2A) and
both populations mostly fire in-phase with the STN and cortical
activity (Figure 2B). In the parkinsonian condition, however,
beta activation has an opposite effect on the subpopulations. The
activity in prototypical neurons decreases, whereas the activity in
arkypallidal neurons increases, when the cortical activity switches
from SWA (slow wave activity) to beta activation (Figure 2C).
The subpopulations also differ in their phase relationship with
STN activity in the parkinsonian condition, with arkypallidal
neurons firing in-phase and prototypical neurons firing anti-
phase with STN activity (Figure 2D).

It should be noted that every data point in Figures 2A,C

indicates the activity of the arkypallidal and prototypical
populations in one example network (i.e., one valid parameter
configuration that fits the criteria). In contrast, each data point
shown in Figures 6 and 10 in Abdi et al. (2015) corresponds
to a different recorded neuron. Since this experimental data
was gathered from many animals (20 healthy and 16 6OHDA-
lesioned) , these neurons may well belong to different
homologous networks. It is also noteworthy that the model
results are consistent with experimental results even in an aspect
not used as a validity criterion (Table 4), namely that the phase
differences in physiological networks show a wider distribution
(with a peak ≈ 0◦, but some points showing a phase difference

of 270◦ or 180◦), as compared to the narrow distribution of
phase differences in parkinsonian networks (with peak ≈ 180◦

for prototypical and peak ≈ 0◦ for arkypallidal neurons). This
might be due to relatively looser constraints on the phase
difference in the heathy condition, where only weak modulation
of arkypallidal and prototypical neurons by cortical activity is
required (see Section 2.2).

Figure 3 shows the response of the seven neuronal
populations in the model to slow wave and beta activity in
the cortex. The activity is shown for four randomly selected
networks from both the physiological and parkinsonian classes.
In the physiological condition (Figures 3A,C), both GPe-TA
and GPe-TI show less modulation by cortical activity than in
parkinsonian networks (Figures 3B,D), in which the opposite
phase relationships between STN-arkypallidal (GPe-TA) and
STN-prototypical (GPe-TI) can clearly be seen. Moreover, the
parkinsonian networks exhibit an increase in GPi activity when
cortical activity is high, whereas GPi mostly shows a decrease
in its activity during high cortical activity in physiological
networks, suggesting an anti-phase relationship between GPi
and cortex (CTX). The parkinsonian networks also show a high
frequency oscillation over the imposed slow wave activity unlike
the physiological networks (Figures 3A,B), indicating an overall
higher susceptibility to oscillations.

Table 5 gives the medians and quartiles of the effective
connectivities generated for the physiological and parkinsonian
ensembles. Although relationships between effective
connectivities did not form part of the classification criteria,
there is a good fit between many of the structural relationships
observed in the generated ensembles and experimentally

FIGURE 2 | Mean firing rates (A,B) and phase difference with respect to STN activity (C,D) for prototypical neurons (GPe-TI; green) and arkypallidal neurons (GPe-TA;

cyan) during slow-wave (SWA) and beta activity (Beta). Left column: physiological condition. Right column: parkinsonian condition. Each line (symbol) corresponds to

one network configuration resulting from the genetic algorithm. For visual clarity, only 25% of network configurations are shown. Compare results to Figures 6–10 in

Abdi et al. (2015).
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FIGURE 3 | Nucleus specific response to cortical stimulation. Left column: physiological condition, right column: parkinsonian condition. (A,B) Activity in the seven

modeled nuclei in response to cortical slow wave activity (black curve) for four randomly selected networks. (C,D) As in (A,B) but for cortical beta activity.

observed data. Some of the matches to well explored structural
relationships include:

• Corticostriatal projections to D1-MSNs are stronger than
those to D2-MSNs in physiological networks, but the situation
reverses in parkinsonian networks. This is in agreement with
the general trend for Parkinson’s disease, i.e., the indirect
pathway becomes stronger than the direct pathway due to
dopamine depletion (Flores-Barrera, 2010; Escande et al.,
2016)
(physiological: JD1,CTX = 7.8, JD2,CTX = 2.6; parkinsonian:
JD1,CTX = 2.7, JD2,CTX = 9.7)

• Corticosubthalmic projections are weaker in parkinsonian
networks. Although the hyperdirect pathway is known
to strengthen in Parkinson’s disease, corticosubthalamic
projections are shown to break down, characterized by loss of
vGluT1-positive terminals in STN of parkinsonian monkeys
(Villalba et al., 2015) as also shown by our results. In
rodent models, although there is no direct evidence for
this prediction, it is corroborated by the observation that
optogenetic stimulation of corticosubthalamic projections

ameliorate bradykinesia and akinesia in 6-OHDA lesioned
mice (Sanders and Jaeger, 2016)
(physiological: JSTN,CTX = 3.8, parkinsonian: JSTN,CTX =

0.83)

Our results also predict that cortical projections to FSIs are
stronger in parkinsonian networks (physiological: JFSI,CTX =

1.9, parkinsonian: JFSI,CTX = 8.9). This prediction, however, is
in contradiction with the studies like Wiltschko et al. (2010),
Clarke and Adermark (2015) which show that dopamine agonists
increase FSI activity due to presence of D1 like D5 receptors.

Experimental data on the effective strengths of projections
emanating from and projecting to GPe-TA-TI has been largely
missing, until recently. In one such study, Glajch et al. (2016)
measured IPSCs in ex vivo slices from two types of GPe neurons,
one expressing NPas1+ and other expressing PV+. Neurons
expressing NPas1+ correspond to arkypallidal (GPe-TA) neurons
and those expressing PV+ correspond to prototypical (GPe-TI)
neurons, as also shown by Abdi et al. (2015). It turns out that
several relationships between the effective strengths of GPe-TA-
TI connections in physiological and parkinsonian conditions
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TABLE 5 | Medians and quartiles (25%, 75%) of the effective weight distributions

for physiological and parkinsonian networks (cf. Figure 4A).

Connection Physiological Parkinsonian

JD1,TA −0.83 (−0.18, −1.5) −0.93 (−0.08, −2.0)

JD1,TI −0.3 (−0.0, −0.79) −0.18 (−0.0, −0.61)

JD2,TA −1.2 (−0.4, −2.1) −1.4 (−0.61, −2.3)

JD2,TI −0.2 (−0.0, −0.76) −0.6 (−0.16, −1.1)

JFSI,TA −0.23 (−0.0, −0.8) −0.23 (−0.0, −0.81)

JFSI,TI −0.82 (−0.0, −1.75) −1.0 (−0.04, −2.1)

JTA,D2 −0.4 (−0.0, −1.0) −2.1 (−1.2, −4.3)

JTI,D2 −0.45 (−0.0, −1.0) −1.6 (−1.2, −2.62)

JTA,TA −0.6 (−0.0, −1.65) −1.2 (−0.17, −2.2)

JTA,TI −0.9 (−0.22 ,−1.6) −0.5 (−0.0, −1.3)

JTI,TA −0.27 (−0.0, −0.8) −0.25 (−0.0, −0.71)

JTI,TI −0.64 (−0.15, −1.2) −0.03 (−0.0, −0.14)

JSTN,TA −0.75 (−0.0, −1.41) −0.4 (−0.0, −0.81)

JSTN,TI −2.0 (−1.2, −2.8) −1.2 (−0.54, −1.9)

JTI,STN 0.92 (0.0, 1.97) 0.2 (0.0, 0.6)

JTA,STN 1.7 (0.7, 2.6) 1.4 (0.5, 2.3)

JD1,CTX 7.8 (0.4, 13.4) 2.7 (0.0, 7.4)

JD2,CTX 2.6 (0.0, 10.6) 9.7 (7.3, 12.0)

JFSI,CTX 1.9 (0.0, 6.4) 8.9 (4.4, 13.2)

JSTN,CTX 3.8 (1.5, 6.4) 0.83 (0.0, 2.6)

observed by Glajch et al. (2016) can also be found in our
generated ensembles:

• The projections from GPe-TA to D2-MSNs are stronger than
those to D1-MSNs. Moreover, both of these projections are
stronger in in 6-OHDA conditions
(physiological: JD2,TA = −1.2, JD1,TA = −0.83; parkinsonian:
JD2,TA = −1.4, JD1,TA = −0.93).

• The projections from GPe-TA population to striatal MSNs
(see above) are stronger than the corresponding projections
from GPe-TI population; this is also consistent with the
observations in Mallet et al. (2012) and Abdi et al. (2015).
(physiological: JD2,TI = −0.2, JD1,TI = −0.3; parkinsonian:
JD2,TI = −0.6, JD1,TI = −0.18).

• GPe-TI projections to D2-MSNs increased in parkinsonian
conditions
(physiological: JD2,TI = −0.2; parkinsonian: JD2,TI = −0.6 )

• GPe-TI projects more strongly to FSIs than GPe-TA
(physiological: JFSI,TI = −0.82, JFSI,TA = −0.23; parkinsonian:
JFSI,TI = −1.0, JFSI,TA = −0.23)

• GPe-TI projects more strongly to STN than GPe-TA in naive
mice; this is also consistent with the observations in Mallet
et al. (2012) and Abdi et al. (2015) that GPe-TI mostly projects
to downstream nuclei in basal ganglia.
(physiological: JSTN,TI = −2.0, JSTN,TA = −0.75 ).

Only one prediction is in contradiction with Glajch et al. (2016),
which predicts that GPe-TI projections to D1-MSNs remain
unchanged when measured in naive and 6-OHDA lesioned mice,
whereas our distributions show a slight decrease in GPe-TI
projections to D1-MSNs in parkinsonian conditions (JD1,TI =

−0.18) as compared to physiological conditions (JD1,TI =

−0.3). Predictions of the relationships that go beyond current
experimental observations are listed and discussed in Section 4.2.
In total, the good fit of the generated structural relationships in
our network ensembles to experimentally observed relationships
from a variety of sources allow us to conclude that these structural
relationships are crucial to evoke the different dynamics in the
physiological and parkinsonian conditions.

3.3. Variability and Correlations in the
Effective Connectivities for Physiological
And Parkinsonian Networks
The effective connection strengths generated by the genetic
algorithm show a considerable variation across the ensemble
of 1,214 physiological and 1,265 parkinsonian network
configurations, respectively (Figure 4A and Table 5). Whereas
some parameters have a narrow distribution (e.g., JD1,TI
for both categories, JTI,TI and JTI,STN for parkinsonian
networks), others are broadly distributed (e.g., JTA,D2
for parkinsonian networks, JD1,CTX and JFSI,CTX for both
categories). Moreover, pairs of effective connection strengths
are typically correlated (Figures 4B,C). Both in physiological
and parkinsonian networks, a number of effective-weight pairs
are positively correlated (e.g., {JD1,TA, JD1,TI}, {JFSI,TA, JFSI,TI},
{JTA,STN, JTI,STN},{JD1,CTX, JD2,CTX}), others exhibit negative
correlations (e.g., {JTA,TI, JTA,TA}, {JTI,TA, JTI,TI},{JTI,TA, JTI,STN}).
For most connection pairs, the magnitude of correlations is
slightly smaller in parkinsonian networks. Exceptions are, for
example, strong positive correlations for {JTI,TI, JD2,TI} and
{JTI,TI, JD2,TA} pairs in parkinsonian networks, which are not
observed in the physiological case. Further, {JTI,STN, JTI,D2}
and {JTI,STN, JTI,TA} pairs are more negatively correlated in
parkinsonian networks as compared to the physiological case.

For some projections, the difference between the physiological
and parkinsonian distributions is striking, for example the much
reduced cortical projection strength to D1-MSNs JD1,CTX. The
distributions of other connections, e.g., inhibition from GPe-TA
to GPe-TI, JTI,TA, are more similar.

To evaluate the functional significance of the observed
variability and covariability in the effective connectivity, we
test whether the classification of networks into “physiological”
and “parkinsonian” networks according to the criteria described
in Table 4 is robust with respect to (i) replacing effective
connection weights by the mean for that connection across the
ensemble (Figure 5A, top row), or (ii) shuffling the weights
across network configurations in the same ensemble (Figure 5A,
bottom row). The classification robustness is defined as the
fraction of networks that retain their original classification after
a given manipulation. The two manipulations are described in
further detail in Section 2.4.

The replace by mean manipulation tests the assumption that
the distribution of a parameter is just fluctuations around a mean
and is thus not important for the dynamics of the network.
The shuffle manipulation allows us to investigate whether it is
sufficient for the network dynamics to preserve the marginal
weight distributions across network configurations. Both types of
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FIGURE 4 | Variability of parameters for parkinsonian and physiological network configurations. (A) Distributions of values generated by the genetic algorithm for

each of the free parameters displayed as box plots for physiological (yellow) and parkinsonian (red) networks. The black lines within the box plots represent the median

values, whereas the box caps represent the 25% (Q1) and 75% (Q3) quartiles of the distributions. The whiskers represents the margin: (Q1–1.5×IQR, Q3+1.5×IQR),

where IQR = Q1− Q3. Outliers to the margins are represented by “+” markers. The values of the medians and quartiles are listed in Table 5. (B) Correlation

coeffiecients between the free parameters for physiological networks (C) As in (B) but for parkinsonian networks.

assumptions are very common in modeling studies integrating
experimentally obtained parameters, and neglect correlations
between the effective weights.

For the majority of connections, replacing the weight by
the corresponding ensemble average preserves the original
classification for more than 50% of both physiological and
parkinsonian networks. For some cases the classication
robustness is very high, for instance, replacing the weight
JD1,TA of the GPe-TA inhibition to D1-MSNs by the ensemble
average preserves the classification of about 95% of networks.
However, for a number of connections (e.g., JTI,STN), replacing
the weight by the ensemble average causes a substantial
fraction of networks (more than 50%) to no longer exhibit the
dynamics described in Table 4 for their original classifications.
Similar results are obtained by shuffling weights across
the ensemble of network configurations (bottom panel in

Figure 5A). Overall, the classification robustness is lower in this
case.

The above analysis is based on replacing the weight of
individual connections, leaving the other connections unaltered.
It is not clear whether manipulations of one parameter affect
the robustness with respect to other parameters. To address
this, we repeat the analysis in a cumulative fashion, i.e.,
performing themanipulations for each parameter in turn without
resetting the values changed in the previous manipulation. The
parameters are manipulated in order of decreasing classification
robustness in the individual case, as shown in Figure 5A. For
the replace by meanmanipulation, this order is fixed, and shown
as annotations to the data points (Figure 5B, solid curves).
The shuffle manipulation is carried out ten times to test the
robustness of the results with respect to different random weight
realizations. Potentially, each of these ten realizations has a
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FIGURE 5 | Robustness of network classification for physiological (yellow) and parkinsonian (red) networks with respect to manipulation of the parameters. (A)

Classification robustness, i.e., fraction of networks that retain (solid bars) or lose (hatched bars) their respective classification under manipulation of each free

parameter. Top row: parameter value is replaced by the mean of the corresponding distribution (replace by mean). Bottom row: parameter values are randomly

shuffled within the ensembles of network configurations with the same classification (shuffle); classification robustness is averaged over ten shuffle realizations. (B)

Classification robustness as a function of the number of parameters manipulated in a cumulative fashion. Circles: replace by mean. Stars: shuffle. Order of

manipulations is given by decreasing order of classification robustness in (A).This order is fixed for the replace by mean manipulation (see annotations next to circles);

for the shuffle manipulation (stars), the order depends on the realization of the random shuffle. Stars depict robustness averaged over ten shuffle realizations. (C)

Classification robustness as a function of the mean correlation coefficient of each free parameter (from matrices shown in Figures 4B,C). A line fit shows a strong

dependence with a R-value of −0.75 for parkinsonian networks and a weak dependence with R-value of −0.33 for physiological networks.

distinct classification-robustness order. The dashed curves in
Figure 5B depict averages across the ensemble of ten realizations.

With this ordering, a cumulative replacement of weights by
their respective ensemble averages leads to a maximum reduction
of classification robustness to about 0.3 for physiological
networks and 0.5 for parkinsonian networks, although initially
the physiological networks are more robust with respect
to multiple manipulations. Counterintuitively, if all weights
are replaced by their ensemble averages (rightmost circles
in Figure 5B), the fraction of unchanged networks jumps
back to 1. This suggests that the correlations observed
between the parameters in Figures 4B,C are not artifactual,
but are necessary for producing the dynamics of the two

categories. By restricting some parameters to their means, but
allowing others to maintain their distributions, some of the
resulting network configurations fall outside of the volume
in 20-dimensional parameter space that contains the original
ensemble, and no longer exhibit the correct dynamics. As
more parameters are restricted, the effect increases. However,
once all parameters are set to the means of their respective
distributions, the resulting network configuration is within the
original volume, and thus retains the original classification.
A similar effect can be seen with the shuffle manipulation,
which transforms an n-dimensional ellipsoid of network
configurations into an n-dimensional sphere, thus also causing
many network configurations to be shifted to points outside
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the original volume. Here, the classification robustness decays
monotonically.

To quantify the relationship between correlation and
classification robustness, in Figure 5C we plot the fraction of
networks that retained their classification for each parameter
against the average cross correlation coefficient between that
parameter and the others, calculated from the matrices shown
in Figures 4B,C. A strong dependency for parkinsonian and a
weak dependency for physiological networks is evident, with a
line fit yielding an R-value of −0.75 for parkinsonian and −0.33
for physiological networks.

In total, these results demonstrate that there is a wide
variability in the parameter configurations that pass the selection
criteria and can reproduce the network activity shown in
Figure 2. Our results show the dangers of restricting the
parameter search to produce a single set of parameters, especially
by taking the mean of distributions, unless this is carried out
systematically for all distributions. Similarly, our results illustrate
that the variability in parameter configurations cannot be boiled
down to the marginal distributions of the individual parameters,
due to presence of correlations between them.

3.4. Physiological and Parkinsonian
Networks Form Distinct Clusters in the
Dynamical Feature Space
In order to investigate the functional consequences of the
variability of the generated solutions shown in Figures 4, 5,
we evaluated the network configurations on the basis of their
dynamical properties, identified from experimental observations
on basal ganglia activity in physiological conditions and
Parkinson’s disease. It has been shown that insufficient GPi
suppression is usually associated with stymied movement.
For example, Boraud et al. (2000) showed that the ratio
of inhibited-to-activated GPi neurons is significantly reduced
during movement in a MPTP-treated monkey. In an another
experiment, the delayed suppression of GPi neurons was shown
to be correlated with slowing down of movement (Leblois
et al., 2006). Akinesia, which is the loss or impairment of
voluntary movements, is also associated with oscillations in the
basal ganglia system. The akinetic symptoms of the Parkinson’s
patients have been shown to grow worse with an imposed
low-frequency stimulation of 10–20 Hz in STN (Timmermann
et al., 2004; Chen et al., 2007). A tACS (transcranial alternating
stimulation) of 20 Hz in cortex leads to slowing of movements in
healthy individuals (Pogosyan et al., 2009).

Another parkinsonian symptom associated with the
oscillation frequency of basal ganglia, specifically the GPe,
STN, GPi and thalamus, is tremor. Electrophysiological studies
have found single units oscillating at tremor frequencies in
STN and pallidum (Raz et al., 2000; Levy et al., 2002) as well as
oscillations of large populations in STN oscillating at 8 − 20Hz
in tremor-dominant Parkinson’s patients (Moran et al., 2008).
These dynamical features also reflect the effect of striatal bias
downstream in the basal ganglia. A lack of striatal bias toward
“Go” can contribute to insufficient suppression of GPi rates.
Moreover, we previously showed in a numerical study that an

excess of striatal bias toward “No-Go” can initiate oscillations in
the GPe-STN circuit (Kumar et al., 2011).

We therefore evaluate the networks’ responses to a transient
square pulse with respect to two dynamical features, namely
the effective suppression of GPi rates to a transient cortical
activity (GS) and the susceptibility of basal ganglia circuit to
oscillations (SO). It should be noted that this input was not
used for parameter fitting in genetic algorithms to distinguish
between parkinsonian and physiological networks; the response
to this input is an emergent feature of the effective connectivities
generated to fulfill the parkinsonian or physiological criteria
given in Table 4. The GPi suppression (GS) is calculated as the
normalized difference of GPi rates in presence and absence of
the cortical activity, such that a value of one for GS represents
efficient suppression of GPi and zero or negative values indicate
ineffective suppression of GPi rates. The susceptibility to
oscillations (SO) is calculated from the spectral entropy (SE). A
white noise signal, for example, will show a power spectrum with
no clear peak and hence high entropy, whereas for an oscillatory
signal, the power will be concentrated in a certain frequency
band, yielding a lower entropy. We define the susceptibility to
oscillations as (1− SE), such that values toward zero indicate low
SO (high SE) and values toward one indicate high SO (low SE).
A full definition of both measures and the details of the transient
cortical input used as stimulation are given in Section 2.3.

An illustration of the relationship of these measures to the
activity evoked in the GPi by a transient square pulse is given
for some example networks in Figures 6A,B. The physiological
networks (Figure 6A) show no oscillatory activity (SO = 0.03
and SO = 0.09) with either effective (brown; GS = 1.0) or
ineffective suppression of GPi activity (orange; GS = −0.93).
The two examples of parkinsonian networks in Figure 6B both
show an increase in the GPi activity (hence ineffective GPi
suppression) during the cortical transient input (shown in black),
the corresponding values for GS are therefore negative (−0.9 and
−0.93). One example shows strong oscillatory activity (brown;
SO = 0.93) whereas the other shows no oscillations (orange;
SO = 0.03). The absence and presence of oscillatory activity
in physiological and parkinsonian networks, respectively, can
also be seen in the amplitude spectrum plotted in Figures 6C,D.
The mean normalized spectrum (thick curves) for parkinsonian
networks (Figure 6D) shows a clear peak in the beta range
(15–25Hz) for all nuclei, whereas the mean spectrum for
physiological networks shows no such peak (Figure 6C).

The results of projecting the network configurations classified
as physiological and parkinsonian onto the dynamical feature
space defined by SO andGS is given as 2D histograms in Figure 7.
The physiological networks displayed in Figure 7A have a mean
at SO = 0.06, GS = 0.97 (indicated by a cyan marker),
which indicates low susceptibility to oscillations and sufficient
suppression of GPi activity. The distribution of SO values is well
fit by a gamma distribution with shape parameter k = 1.48, scale
parameter θ = 0.045 and a mean of 0.06. The distribution of
GS values is well fit by a power law, with parameter α = 45 with
a mean of 0.97. The parkinsonian networks (Figure 7B) show a
mean at SO = 0.53, GS = −0.86, indicating a much higher
susceptibility to oscillations and insufficient suppression of GPi
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FIGURE 6 | Dynamical features of physiological (left column) and parkinsonian networks (right column). Top row: response of the GPi to a 1s square pulse from the

cortex (black). (A) Two example physiological networks (brown: GS = 1.0, SO = 0.03, orange: GS = −0.93, SO = 0.09). (B) Two example parkinsonian networks

(brown: GS = −0.93, SO = 0.93, orange: GS = −0.9, SO = 0.03). (C, D) Amplitude spectrum (normalized by area) of activity in response to the transient square

pulse for all nuclei in the model. Thick curves: mean across network configurations. Shaded areas: mean±standard deviation across network configurations.

Frequency resolution: 1 Hz.

activity. Unlike the physiological networks, in this case a closer
look at the 1D histograms reveals distributions of values that
are well fit by a triangular distribution for SO with lower limit
a = 0.07, upper limit b = 1.07 and mode c = 0.3, and a uniform
distribution for GS between−1.0 and−0.75 but also exhibiting a
small scattering of outliers reaching up to much higher values.

These results demonstrate clearly that although the
physiological and parkinsonian networks generated by the
genetic algorithm exhibit large variability in the 20-dimensional
structural space, they cluster together in the 2-dimensional
dynamical feature space and exhibit an unambiguous separation
between networks classified as physiological and those classified
as parkinsonian. Most of the parkinsonian networks show low
GS and high SO (Figure 7B, bottom), whereas most of the

physiological networks show high GS and low SO (Figure 7A,
top left).

However, there is some overlap between the physiological
and parkinsonian networks (e.g., bottom left corner, SO ≈ 0.1
and GS ≈ −0.9). This could indicate that these two dynamical
features are not enough to disambiguate these parkinsonian and
physiological networks. However, it may also turn out that some
networks are barely distinguishable even when projected onto
a space of many such functional features. Such networks might
be particularly useful for giving insight into the transition from
physiological state to parkinsonian and vice versa.

It should also be noted, that although the homologies were
constrained based on the characteristics of GPe(TA/TI)-STN
subnetwork, they show expected dynamical features that depend
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FIGURE 7 | Clustering of networks in dynamical feature space. (A) 2D histogram of physiological networks projected into the feature space spanned by susceptibility

to oscillations (SO) and GPi suppression (GS), mean indicated by a cyan marker. Margins give the corresponding 1D histograms, with means indicated by black

dashed lines. (B) As in (A) but for parkinsonian networks.

on the activity of the entire BG network. That is, 70% of
parkinsonian networks show a GS < −0.5 and a SO > 0.35,
whereas 95% of physiological networks show GS > 0.8 and SO
< 0.2. This indicates that the network characteristics of the BG
subcircuit (GPe-STN) such as firing rate and phase relationships
as shown in Mallet et al. (2008) and Abdi et al. (2015) are
predictive of the network state of the entire BG in GS-SO space.

4. DISCUSSION

In this study, we used a genetic algorithm to perform a
search over 20 free effective connectivity parameters, generating
thousands of basal ganglia network configurations that fulfill
the firing rate and phase relationships reported by Mallet
et al. (2008) and Abdi et al. (2015) for physiological and
parkinsonian networks. Although relationships between effective
connectivity strengths were not included in our classification
criteria, we observe a very good fit of many of the structural
relationships exhibited by our generated ensembles of networks
to experimental data. We observed that both the breadth
of the distribution of the individual parameters and the
degree of overlap in the distributions between physiological
and parkinsonian distributions were subject to substantial
variation.

To determine whether the variance for individual parameters
was simply a side effect of our method of generation, and could
therefore be reduced, we replaced the distributions by their
means and checked what proportion of the networks retained
their physiological or parkinsonian classification (i.e., according
to the criteria listed in Table 4). For most connections, replacing
the weight by the corresponding ensemble average preserves
the original classification for at least 50% of both physiological
and parkinsonian networks. A similar effect was observed when

parameter values were shuffled between members of the same
ensemble.

When the replace-by-mean manipulation was performed
cumulatively, the classification robustness fell until it saturated
at about 0.3 for physiological networks and 0.5 for parkinsonian
networks. However, when all parameters were replaced by
their means, the remaining networks retained the correct
classification. Cumulative application of the shufflemanipulation
resulted in a monotonic decrease in robustness. We interpret
these results as indicating that the ensembles generated by
the genetic algorithm give a good approximation of the 20-
dimensional volume in the parameter space that produces
the correct dynamics for the physiological and parkinsonian
conditions. Parameter manipulation that take a network
configuration out of this space tend to result in the network
no longer exhibiting the corresponding dynamics. Further, these
results demonstrate that the correlations between the parameters
are necessary for producing the dynamics associated with the
two categories. Beyond the current study, this suggests that
modelers should be cautious in taking an approach in which some
parameters are allowed to be heterogeneous whereas others are
restricted to mean values; networks constructed in this fashion
may be less representative of the target system than a more
reduced, simpler model where all parameters are fixed to mean
values.

We projected the 20-dimensional space spanned by
connection weights to a 2-dimensional space of dynamical
features defined by the response of a network to a transient
cortical pulse, namely: (1) its capacity to suppress GPi activity
(GS), and (2) its susceptibility to oscillations (SO). Our
results show that despite the high variability and overlap in
the 20-dimensional structural space, solutions form distinct
physiological and parkinsonian clusters in the dynamical space.
Most of the networks classified as parkinsonian show ineffective
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suppression of GPi activity (low GS) and high susceptibility to
oscillations (high SO). Conversely, the majority of physiological
networks show effective suppression of GPi activity (high GS)
and low susceptibility to oscillations (low SO). This suggests that
the characteristics of the BG subcircuit (GPe-STN) as shown in
Mallet et al. (2008) and Abdi et al. (2015) are predictive of the
network state of the entire BG and can serve as viable biomarkers
of the network state.

It should be emphasized that the response of the network to
the transient input used to measure GS and SO was not used in
the parameter search, or to classify the networks as physiological
or parkinsonian. The emerging dynamical features (GS and SO)
are not a trivial consequence of the constraints in Table 4. For
example, due to the complex recurrent interplay between all
nuclei, the absence of cortical modulation of GPe in physiological
conditions [constraints (7) and (9)] does not directly imply a
suppression of the GPi response. Similarly, due to the constraints
(6)–(10) in Table 4, one may expect an increased susceptibility
of the network to SWA oscillations at 2Hz, but not in the beta
range at 20Hz (cf. peaks in spectra in Figure 6D).

In the rest of this sections we briefly delineate the limitations
arising from our approach on interpreting our results, before
discussing novel predictions of our study and the implications
of the existence of the homologous networks generated by our
parameter search.

4.1. Limitations
The model used here is a firing rate model, which is a highly
simplified formulation that captures solely the evolution of the
mean activity of a population. This kind of model inherently
limits the insights that can be gained about the dynamics of
the system, for example it can give no information about the
structure of individual spike trains or higher order correlations
within a population. However, it has the advantage of being
computationally less expensive and with a restricted parameter
space with respect to higher resolution simulation methods (e.g.,
spiking neuronal networks). It should be noted, that an another
modeling work has described a spiking neural network model
of the basal ganglia by including the GPe-TA/TI subpopulations
(Lindahl and Hellgren Kotaleski, 2016). Although, the model
description of the aforementioned work is more detailed (spiking
neural networks) as compared to mean field models in our
case, the former constrains the system to exactly one solution of
effective weights. It would be interesting to check if these effective
weights falls under the solution space spanned by the homologies
in this work.

In this study we considered those parameters, for which
experimental data sets exist, to be fixed. However, in Section 3.3
we discovered that replacing the generated values for the free
parameters with the mean of the corresponding distribution
does not necessarily preserve the dynamical properties of the
networks, at least in part due to correlations between the free
parameters. This argument could be equally well applied to
the “fixed” parameters. A better approach might be to consider
the fixed parameters as free, albeit within the biological range
suggested by the experimental data. We plan to incorporate this
extension in the future work. This extension will enables us to

address changes in effective connectivities in the fixed parameters
such as increase in the inhibition from FSI to D2 (Gittis et al.,
2011; Corbit et al., 2016) and decrease in striatal lateral inhibition
during parkinsonian conditions (Taverna et al., 2008) which are
expected to be emergent trends in the weight distributions or can
be used as additional post-hoc constraints to reduce the number
of homologies.

Ideally one would choose the parameters of the activation
function according to F-I curves obtained in in-vitro
experiments. However, the activation function S(·) used in
the model corresponds to the stationary firing rate response of an
entire nucleus, rather than a single neuron. One could consider
the parameters of the activation function as free parameters
which are adjusted during the optimization process together
with the synaptic weights. This would lead to a scenario where
not only the synaptic weights but also the activation function
parameters are widely distributed across network configurations.
Future work can determine whether the additional insight
gained by such an approach is sufficient to justify the increased
computational complexity.

The cortical input in this model is considered as a feedforward
input; the feedback connections from basal ganglia to cortex such
as the pallidocortical (Chen et al., 2015) and thalamocortical
projections are not included. Hence, the model cannot make
predictions with respect to experimental observations such
as pharmacological blocking of FSIs cause large negative
suppressions of cortical LFPs which are time locked to fast
involuntary movements (Klaus and Plenz, 2016). Only excitatory
corticostriatal projections are considered, whereas recent data
shows that somatostatin interneurons in the cortex also affect the
striatal MSNs (Rock et al., 2016). The framework is sufficiently
flexible to allow the inclusion of other projections and nuclei,
however this would inevitably lead to an increase in number of
free parameters.

The oscillations measured in our model in response to a
square pulse of cortical input arise due to the change in the
effective connectivities between the nuclei. However, oscillations
might arise due to other causes, e.g., they may be purely delay
driven. Since this model does not consider any delays, the
results cannot provide any insight on the role of delays on
the oscillations. Secondly, it has also been shown that the beta
oscillations arise in striatum by increasing the activity of the
striatal cholinergic interneurons pharmacologically (McCarthy
et al., 2011). This model does not account for striatal cholinergic
interneurons and make an alternative suggestion for the origin of
oscillations in the absence of striatal cholinergic interneurons.

4.2. Predictions
In this study we collated experimental data on the strengths
of connections within the basal ganglia to determine the fixed
parameters of the model (see Section 2.1.1), and showed in
Section 3.2 that the relationships between the distributions
generated for the free effective connectivity parameters are a
good match to experimental observations. On the basis of
the connectivity strengths generated by our parameter search
(see Table 5), we can also predict structural relationships for
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physiological and parkinsonian networks which are yet to be
verified by experimental results:

• Striatopallidal projections are stronger in parkinsonian
networks; this is consistent with the hypothesis that the
indirect pathway becomes stronger in parkinsonian networks.
Parkinsonian networks in our results also show a higher
susceptibility to oscillations. These oscillations could initiate in
the GPe-STN circuit and could be initiated by a strong indirect
pathway, (i.e., a strong inhibition from striatum to GPe), as
demonstrated in our recent numerical study (Kumar et al.,
2011).
(physiological: JTA,D2 = −0.4, JTI,D2 = −0.45; parkinsonian:
JTA,D2 = −2.1, JTI,D2 = −1.6).

• Intrapallidal projections for GPe-TI are weaker in
parkinsonian networks, but those for GPe-TA are stronger.
(physiological: JTI,TI = −0.64, JTA,TA = −0.6; parkinsonian:
JTI,TI = −0.03, JTA,TA = −1.2).

• GPe-TI-STN coupling is weaker in parkinsonian networks.
(physiological: JSTN,TI = −2.0, JTI,STN = 0.92; parkinsonian:
JSTN,TI = −1.2, JTI,STN = 0.2).

It is also noteworthy that these predictions are not a result of one
model specification, but around thousand models that meet the
firing rate and phase relationships to be considered physiological
or parkinsonian. Therefore, firstly, we can state these predictions
more confidently than if they had emerged from a fitting to a
unique model specification, and secondly, as no limits on the
structural relationships were placed on the parameter search, it
seems reasonable to conclude that these emergent differences
in these relationships for the physiological and parkinsonian
ensemble are relevant for generating the differential dynamics of
the two conditions.

We also checked these predictions under three different
conditions: (a) increasing the inhibition from D2 to FSI (JD2,FSI)
for parkinsonian networks; (b) keeping the projections from
GPe-TA to STN (JSTN,TA) fixed and set to zero; (c) including
the projections from D1-MSNs to GPe (JTA,D1, JTI,D1) as free
parameters. The parameters distributions for first two conditions
are largely similar to the original distributions with no or few
differences as described below.

a) Experimental data shows that in parkinsonian networks, the
FSI increase their connection to D2-MSNs (Gittis et al., 2011;
Corbit et al., 2016). We checked this condition by increasing
the fixed parameter JD2,FSI given in Table 2 by a factor of 2.5 to
−0.75, leaving JD1,FSI fixed at its original value of −0.65. The
resulting weight distributions (Supplementary Figure 3A)
are qualitatively unchanged from those shown in Figure 4A,
however some subtle alterations to the correlations between
parameters can be observed (compare Figures 4B,C and
Supplementary Figures 3B,C).

b) For ensembles generated with JSTN,TA set to zero
(Supplementary Figure 4), the distributions for most
parameters are qualitatively similar to the original
distributions (Figure 4A), except for D2 projections to
GPe-TA (JTA,D2) and cortical projections to FSIs (JFSI,CTX).
The former is weaker than D2 projections to GPe-TI(JTI,D2) in

both physiological and parkinsonian networks, in contrast to
the results shown in Figure 4, where they are approximately
equal. Moreover, the projection JFSI,CTX becomes weaker in
parkinsonian than in physiological networks in contrast to
the original ensembles where this finding is reversed.

c) We also checked the predictions under the condition that
projections from D1-MSNs to GPe (JTA,D1, JTI,D1) were also
included as free parameters for the genetic algorithms.
This inclusion showed significant qualitative changes in the
parameter distributions (Supplementary Figure 5). Although
some of the predictions are still consistent with the original
distributions (Figure 4A), such as decrease in intrapallidal
projections for GPe-TI (JTI,TI) in parkinsonian conditions,
some predictions are at odds with the original model
findings. For example, JD2,CTX in physiological networks is
approximately the same as JD1,CTX, whereas in the original
distributions it is weaker.

In this work, we demonstrated that a particular limited set
of features (Table 4) from the GPe-STN sub-circuit can predict
dynamical characteristics (GS and SO) relevant for the behavior
of the entire BG network under physiological and parkinsonian
conditions. It remains to be investigated whether other feature
sets have a similar predictive power and what the minimal set of
predictive features is.

To test whether the mapping from the feature set in
Table 4 to the dynamical characteristics (GS and SO) is one
to one (injective), we performed a new set of numerical
experiments where networks were constrained by the dynamical
features GS and SO rather than by the original firing rates
and phase relationships. We then checked whether the firing
rate and phase relationships listed in Table 4 emerged as
a result. Here, a transient square pulse was used as an
input signal in the genetic algorithm. All the networks
that showed GS ≤ −0.7 and SO ≥ 0.45 were classified
as parkinsonian networks whereas the ones that showed
GS ≥ 0.85 and SO ≤ 0.2 were classified as physiological
networks. Only a fraction of the resulting networks are
consistent with the criteria in Table 4 (Supplementary Figure 7).
Hence, we can infer the dynamical feature GS and SO
from the firing rates and phase relationships of GPe-TA-
TI-STN subnetwork, but not vice versa. For the networks
that fulfill the criteria in Table 4, the marginal weight
distributions are very similar to the ones shown in Figure 4

(Supplementary Figure 6).

4.3. Homologous Networks
Our parameter search led to over a thousand valid solutions
(in 20 dimensional space) for both the physiological and the
parkinsonian classification criteria. Although this could simply
be a result of lack of constraints on the model, this could
also indicate the presence of homologous networks in basal
ganglia, in the sense that quite different parameter combinations
can give rise to essentially the same dynamics. Homology has
not yet been shown to occur in basal ganglia although other
neuronal networks have shown occurrences of this phenomenon.
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However, it seems rather likely due to the complexity of the
connectivity (Prinz et al., 2004).

What does the presence of homologous networks in our
results imply? One possibility is that it is simply a consequence
of the fact that we are mapping a high-dimensional parameter
space (here network connections) onto a low dimensional
space of network activity features (firing rates and phase
relationships). Another possibility is that some parameters
have only a small effect on the network activity features
that we are interested in studying and can therefore be
defined in a “sloppy” manner, i.e., with values are distributed
over a large area in the parameter space (Gutenkunst et al.,
2007). Our results show that indeed some parameters can
be replaced by the mean or shuffled, whilst retaining the
original classification for more than 95% of the ensemble.
However, other parameters are much more sensitive to such
manipulations. Thus, the existence of homologous networks
could imply that that rather than absolute values of the
parameters, it is their relative values that determine the
dynamical state.

This interpretation is supported by the presence of
correlations between the generated connectivity values, and the
greater sensitivity of the dynamical system to those parameters
that exhibit stronger cross-correlations (Figures 4B,C, 5C).
The presence of correlations between the free parameters is
also suggested as a possible reason for the presence of multiple
solutions by Achard and De Schutter (2006). We propose that the
approach of generating ensembles of homologous networks and
analyzing them in terms of dynamical features is advantageous,
as it gives us a framework for investigating complex interacting
biological systems such as the basal ganglia which exhibit
variability in structural parameters either due to nature (genetic
tendencies) or nurture (plasticity in response to environmental
factors).

In particular, it will enable us to examine whether the
diversity shown by Parkinson’s disease as a pathology is rooted in
structural variability, to characterize the dynamic and structural
properties of the transitions between different dynamical
regimes, and uncover possible compensatory mechanisms.
For example, we note that whereas the vast majority of
physiological network configurations are located in a cluster
characterized by effective suppression of GPi activity (high
GS) and low susceptibility to oscillations (low SO), and
parkinsonian networks typically display low GS and high SO,
some network configurations do not fall into these clusters.
Specifically, some networks classified as physiological with
respect to their rates and phase relationships exhibit low GS,
and some parkinsonian networks have low SO. These networks
may simply be outliers, but they could also indicate the existence
of transitional states between physiological and parkinsonian
conditions.

Apart from the two suggested dynamical features (GS and
SO), many others could be used to decompose a parkinsonian or
physiological dynamical regime into more easily understandable
dynamical features. Recent work by Escande et al. (2016)
shows that the activity of D1-MSNs in response to optogenetic
stimulation in cortex showed a gradient decrease from sham

to partially lesioned 6-OHDA (and asymptomatic animals) to
heavily lesioned (symptomatic animals). Hence, the gain of D1-
MSNs could be yet another dynamical feature that could used for
further functional classification.

On the basis of our results, we conclude that it may
ultimately be more fruitful to study Parkinson’s disease in
terms of its dynamical features rather than its structural
changes. Not only are dynamical features relatively low-
dimensional, they also provide symptomatic targets for
therapy (e.g., reduce susceptibility to oscillations) without
presupposing specific underlying structures which may
hold only in the mean, and not be applicable to a given
patient.
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Supplementary Figure 2 | Firing rate distributions of physiological and

parkinsonian homologies during cortical SWA and Beta input conditions. The
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Figure 3) across all parkinsonian and physiological networks.

Supplementary Figure 3 | Parameters distributions when JD2,FSI was increased

by a factor 2.5 for parkinsonian networks. (A–C) same as Figures 4A–C.

Supplementary Figure 4 | Parameters distributions when JSTN,TA was fixed to

zero. (A–C) same as Figures 4A–C.

Supplementary Figure 5 | Parameter distributions when connections from D1 to

GPe-TA/TI are included as free parameters in the genetic algorithm. (A–C) same

as Figures 4A–C.

Supplementary Figure 6 | Parameter distributions when GPi suppression (GS)

and Susceptibility to oscillations (SO) are used as constraints. (A–C) same as

Figures 4A–C.

Supplementary Figure 7 | Firing rates and phase relationships for valid and

invalid networks when constrained using GS and SO. Gray lines: invalid networks.

Cyan lines: Valid networks for GPe-TA. Green lines: Valid networks for GPe-TI.

Compare with Figure 2.
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