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The vast majority of human fMRI studies 
measure Blood-Oxygen-Level-Dependent 
(BOLD) contrast, which refl ects regional 
changes in cerebral blood fl ow (CBF), cer-
ebral blood volume (CBV) and blood oxy-
genation; all three vascular responses refl ect 
local increases in neural activity (Logothetis 
and Wandell, 2004). Understanding the exact 
mechanism (often referred to as neurovas-
cular coupling) by means of which changes 
in neural activity alter hemodynamics is 
obviously of paramount importance for the 
meaningful interpretation of fMRI results. 
Not surprisingly, over the last decade an 
increasing number of researchers investi-
gated the neurovascular coupling by com-
bining fMRI with electroencephalography 
(EEG) or magnetoencephalography (MEG) 
in humans, e.g. (Dale and Halgren, 2001) 
as well as with intracortical recordings in 
animals (Logothetis et al., 2001; Goense and 
Logothetis, 2008; Logothetis, 2008; Rauch 
et al., 2008). This neurovascular coupling 
can also be studied with the optical imag-
ing of intrinsic signals (OIS) (Bonhoeffer 
and Grinvald, 1996), an excellent invasive 
method of high spatiotemporal resolution 
that can measure changes in oxygenation 
and/or blood volume.

Recently, an OIS variant permitting 
simultaneous measurements of blood vol-
ume and oxygenation was used to image 
the visual cortex of behaving monkeys per-
forming visual or auditory tasks (Sirotin 
and Das, 2009). Concurrent hemodynamic 
measurements were performed by rapidly 
switching between two wavelengths, 530 nm 
and 605 nm, permitting the measurement 
of CBV and oxygenation, respectively. 
During the measurements the monkeys 
were required to periodically direct their 
gaze to a point source in order to receive a 
juice reward. The fi xation point remained 
on continuously, but switched between two 
equiluminant colors to cue the animal to 
‘fi xate’ (green) or ‘relax’ (red). In one task, 
the fi xation spot was followed by a brief vis-
ual stimulus presentation at  approximately 

2° eccentricity; in a second task only the 
fi xation spot was visible in an otherwise 
dark room. Finally, in a third control task 
the animals initiated a trial by pulling a 
lever. The monkeys were then presented 
with a tone and were trained to release the 
lever immediately after a change in tone 
pitch. Optical imaging was performed in 
a window covering the V1 representation 
of visual fi eld eccentricities ranging from 
about 1° to 5°. The time course of the 
average hemodynamic response over the 
full area and the neural signal assessed in 
extracellular recordings at various locations 
within the imaging fi eld were used to com-
pare electrical and vascular responses.

Upon imaging V1 while the animals per-
formed the fi xation-spot-only task, Sirotin 
and Das observed robust modulations of the 
hemodynamic signal at the trial frequency, 
even though the animals were virtually in 
total darkness and foveal V1, the only region 
receiving visual input from the fi xation 
point, lay outside of the imaged area. The 
authors concluded that in some conditions 
the hemodynamic responses, and thus fMRI 
signals, too, bear no relation to the underly-
ing regional neural activity, suggesting that 
the responses refl ect “distal neuromodula-
tory control of cerebral arteries” (Sirotin 
and Das, 2009). Not surprisingly, the fi nd-
ing sparked a great deal of controversy [e.g. 
see discussion in references Raichle, 2009; 
Zheng et al., 2010, and commentary by 
Kleinschmidt and Müller (2010)], because 
it challenges the view that fMRI refl ects local 
neural activity. What follows is a discussion 
of certain claims and conclusions by Sirotin 
and Das, as well as some comments on the 
implications of their fi ndings for how to 
interpret the relationship between fMRI 
measures and neural signals.

To begin with, it is worth reiterating 
that fMRI – just like any other method-
ology, extracellular recordings being no 
exception – has serious limitations. There 
is plenty of evidence (see Logothetis, 2008 
and references therein) suggesting that the 

fMRI signal does not differentiate between 
 function-specifi c processing and neuro-
modulation or between bottom-up and 
top-down signals, and it is likely to confuse 
excitation and inhibition. In cortical regions 
in which stimulus- or task-related percep-
tual or cognitive capacities are instantiated 
in the activity of a very small number of 
neurons, volume transmission (Agnati 
et al., 1992, 2006; Ridet and Privat, 2000; 
Sykova, 2003) – which probably underlies 
the altered states of motivation, attention, 
learning and memory – may affect hemo-
dynamic responses and often make it dif-
fi cult to deduce the exact role of the area in 
the task at hand, at least to the extent that 
this role is thought to be instantiated in the 
activity of stimulus- or task-selective corti-
cal projection neurons. Even so, the origin 
of the fMRI signal is at all times neurogenic, 
and it consistently refl ects local changes in 
overall neural activity.

Interestingly, evidence for the neuro-
genic basis of the BOLD signal may be 
found in the same Sirotin-Das (S-D) study 
that claims to demonstrate a case of neu-
rovascular uncoupling. Specifi cally, looking 
at the left spectrogram of Figure 1 (copied 
from Figure 2 of Sirotin and Das, 2009) one 
can discern two dark vertical bars (ca. 50% 
reduction of the neural signal). The bars are 
approximately aligned and coextensive with 
the periods of fi xation. The right spectro-
gram shows the 66- to 130-Hz frequency 
band, and the superimposed white trace 
depicts the average of power in this range. 
This trace was vertically stretched at the 
bottom of Figure 1 to allow visualization 
of the detailed time course of the neural 
signal. The blue arrow shows a systematic 
decrease in LFP, perhaps due to a decrease in 
spontaneous activity, followed by an over-
shoot (red arrow) after the fi xation period. 
An inspection of the spectrogram might 
lead one to expect that even greater signal 
changes may exist in certain subregions 
of the frequency domain (e.g. 70–75 Hz). 
The statistical signifi cance of such changes 
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 cannot be assessed on the basis of the 
 evidence provided in this study, and they 
may well be too small to formulate a data-
supported hypothesis. Yet a simple quali-
tative assessment of the fi gures should be 
suffi cient warning against drawing a con-
clusion of neurovascular uncoupling, even 
more so because changes in interneuronal 
activity might indeed go unnoticed during 
extracellular recordings.

In multiunit recordings, the electrodes 
measure changes in the mean extracellular 
fi eld potential (mEFP) that is mostly due 
to the distribution of current sources in the 
dendrites (Avitan et al., 2009). The magni-
tude of the mEFP in such recordings, as well 
as that of the signals measured in EEG and 
MEG, is approximately proportional to the 
magnitude of the population current dipole 
Q, i.e. the average of each cell’s current dipole 
(Barr et al., 1966; Geselowitz, 1967), and it 
depends critically on both the strength of 
individual dipoles and the local geometrical 

arrangements of neurons (Lorente de No, 
1947). Neurons with their dendrites fac-
ing in one direction and the somata in the 
other are said to have an open-fi eld confi g-
uration. Experimental and modeling work 
has shown that open-fi eld generators pro-
duce strong individual current dipoles and, 
under proper geometrical arrangement (e.g. 
all dendrites along the longitudinal axis, and 
neurons forming bundles), also powerful 
population electrical fi elds that extend over 
long distances; typical examples are the neo-
cortical and hippocampal pyramidal cells 
(Murakami et al., 2002, 2003; Murakami 
and Okada, 2006). On the other hand, cells 
with radially symmetric dendrites generate 
electric fi elds that are confi ned within the 
volume of the cells; they are hence con-
sidered to be closed-fi eld generators. The 
small amplitude multiple dipoles, created 
by action potentials traveling somatofugally 
in the radially symmetric dendrites tend to 
diminish, rather than enhance, each other 

in the extracellular space. Good examples 
are the aspiny (inhibitory) cortical cells 
that on average produce Q vectors that are 
weaker than the supra- and infragranular 
pyramidal neurons by a factor of up to 8 
(Murakami and Okada, 2006). Importantly, 
the Q of a population of such cells can be 
much weaker than the linear sum of their 
individual Q values due to their variable 
dendritic geometry (Murakami and Okada, 
2006). The conclusions drawn from such 
modeling work are likely to be applicable 
to the LFPs as well (0.05 through 250 Hz), 
since the EEG and LFP signals are correlated 
to each other (Whittingstall and Logothetis, 
2009). It is thus possible in principle that 
selective activation of certain classes of neu-
rons may have weak effects only on certain 
LFP bands, and even go unnoticed during 
extracellular recordings. This is simply a 
limitation of extracellular recordings that 
must be taken into account in studies of the 
neurovascular coupling. Moreover, the fact 

FIGURE 1 | Changes in neural and vascular activity during the performance 

of the fi x-spot-only task. The left spectrogram shows the power of the LFP 
signal in the 10- to 130-Hz range. On the right shown are the trial-triggered 
papillary (top), hemodynamic (middle), and LFP (bottom) responses (from 
Figure 2 and Figure S3 in Supplementary Material of the S-D study). An increase 
in CBV (negative defl ection) is evident after the trial onset, followed by an 
undershoot (positive defl ection). The bottom curve is a replica of the white trace 

shown in the ‘Dark’ plot of Figure 3A in Supplementary Material of the S-D study 
(see also inset), but here is vertically stretched to clearly show the activity 
changes during the task. It represents the trial-triggered power over the hi-LFP 
frequency range integrated over the 66- to 130-Hz range. The blue arrow shows 
a clear reduction in LFP (evident in the ‘dark’ band of the spectrogram over all 
frequencies during the fi xation ‘green’ periods), followed by a rebound (red 
arrow) activity most prominent in the 70- to-75-Hz band.
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that increased activity of single inhibitory 
interneurons likely results in vasomotor 
responses in neighboring brain micro-
vessels (Hamel, 2006) or that astrocytes 
may respond selectively to sensory stimuli 
(Schummers et al., 2008) does not by any 
means imply a lack of regional stimulus- 
or task-related, driver or neuromodulatory 
cortical neural responses (Chance et al., 
2002; McCormick et al., 2003; Hasenstaub 
et al., 2007).

The responses reported by Sirotin and 
Das are most likely due to site-specifi c effects 
of neuromodulatory input on the corti-
cal excitation-inhibition balance. In their 
experiments, these authors observed task 
(i.e. visual or auditory discrimination) 
independent pupillary responses that sys-
tematically preceded the trial-locked hemo-
dynamic fl uctuations (Figure 1). In humans 
such responses are obtained for a wide variety 
of cognitive processes ranging from simple 
sensory-event detection through attention, 
memory, and language processing (Beatty, 
1982). They are mediated almost exclusively 
via norepinephrine (NE) being released 
from the locus coeruleus (LC). In fact, LC 
efferents stimulate the iris dilator muscle 
both directly and indirectly through the 
Edinger–Westphal nucleus, which in turn 
projects to the ciliary ganglion (Yoshitomi 
et al., 1985; Loewenfeld, 1993). Notably, the 
LC-induced response is distinct from the 
pupillary light refl ex mediated by acetyl-
choline (Loewenfeld, 1993), so that under 
constant low-light conditions such as those 
used in the S-D study, pupil diameter will 
be a reliable measure of NE-induced neuro-
modulation (Koss, 1986; Loewenfeld, 1993; 
Aston-Jones and Cohen, 2005). In other 
words, during the Sirotin and Das experi-
ments there was a task-induced, modality-
independent periodic activation of the LC 
of the monkeys.

LC neurons project to most brain 
regions, including the paleo- and neocor-
tex (Jones et al., 1977), and LC terminals 
have both nonsynaptic release sites that 
may provide paracrine-type neurotrans-
mission (Beaudet and Descarries, 1978; 
Sara, 2009), as well as conventional syn-
apse-like appositions with postsynaptic 
specializations pointing to the co-exist-
ence of wiring transmission (Aston-Jones 
and Cohen, 2005). NE may increase neural 
responses by reducing after hyperpolariza-
tion (e.g. by blocking Ca2+-dependent K+ 

currents) or decrease them by enhancing 
GABA-induced inhibition (Sara, 2009).

In the S-D study, the monkey was 
involved in a demanding attentional task 
which required it to continuously discrimi-
nate between two point sources with differ-
ent spectral energy compositions and make 
a behavioral decision on the basis of the per-
ceived color. During such a task, the release 
of NE in V1 that follows LC activation is 
likely to augment the responses induced by 
the attended fi xation spot while decreasing 
spontaneous activity (the excitation-inhibi-
tion balance), as has been shown repeatedly 
by various investigators, e.g. see review by 
Aston-Jones and Cohen (Aston-Jones and 
Cohen, 2005). If reduction in spontaneous 
neural activity in the non-attended foveal 
and parafoveal regions imaged in the above 
study is mediated by increases in interneu-
ronal activity via volume transmission, 
dissociation between “measurable” neural 
and vascular signals cannot be excluded (see 
above), and the increase in CBV observed 
by the authors in the “hitherto unknown 
signal” (Figure 1, middle red trace) may 
simply refl ect increased metabolism due to 
increases in inhibitory conductance.

An interesting observation in the S-D 
study is the specifi city of V1 neuromodu-
lation. The LC-NE system was initially 
viewed as having relatively broad and spa-
tially nonspecifi c effects on cortical infor-
mation processing. But later studies showed 
that LC projections, although widespread, 
exhibit substantial regional and laminar 
specifi city. In monkeys, for instance, the 
laminar pattern of noradrenergic innerva-
tion in primary visual cortex differs funda-
mentally from that in both prefrontal and 
primary somatosensory cortices (Morrison 
et al., 1982; Foote et al., 1983). A large 
number of studies have demonstrated that 
the effects of the LC-NE system on target 
neurons are characterized by temporal and 
spatial discreteness. In other words, the 
LC-NE system acts on a discrete, specifi -
able set of neurons under a particular set 
of circumstances to produce a defi ned set 
of effects (Foote et al., 1983). The regional 
anatomical-functional specifi city is also 
congruent with the observation that bursts 
of LC activity are correlated with the out-
come of task-related decision processes (see 
references in the review by Aston-Jones and 
Cohen, 2005). Interestingly, the S-D study 
also showed that LC responses, evident via 

the  pupillary response, induce a task- and 
modality specifi c change in hemodynam-
ics: no CBV changes in V1 were measured 
during the auditory control task. By com-
bining broad access and specifi city, the mas-
sive efferent system of the LC is likely to 
impose simultaneous internal-state changes 
on many different brain regions subject to 
sensory stimulation.

In summary, Sirotin and Das addressed 
an important question using an outstanding 
methodology. In agreement with previous 
studies (see above), they demonstrated that 
their task selectively modulates neuronal 
activity in V1, likely reducing spontane-
ous activity (e.g. for gain control, Chance 
et al., 2002, but see also alternative observa-
tions, McCormick et al., 2003; Hasenstaub 
et al., 2007). The increased inhibition, 
visible in their spectrograms, may trigger 
CBV changes and yield the “anticipatory 
responses”. Yet, the authors’ generalizations 
are unjustifi ed, and I suspect that their con-
clusions are incorrect.

The fMRI methodology is used exten-
sively in cognitive neuroscience, and as in 
any advanced fi eld of investigation there are 
quite a few publications that are senseless 
and do not enhance our understanding of 
brain function. The problem, however, is 
not in the methodology but rather in those 
investigators who use it without under-
standing its limitations. Even if neurovas-
cular coupling were well understood, the 
limitations of fMRI refl ecting mass action 
(Logothetis, 2008) would still require a mul-
timodal approach before we can even begin 
to fathom the exact neural mechanisms 
underlying the usual fMRI activations and 
understand the role of the mapped areas. 
This having been said, and despite its short-
coming, fMRI is a useful and meaningful 
tool for the study of brain function, and 
fMRI signals refl ect changes in regional 
neuronal mass activity.
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